+ All Categories
Home > Documents > , Roberto LEONARDUZZI P-EXPONENTS AND P-LEADERSHerwig.Wendt/data/poster_ICASSP... · 2018-05-24 ·...

, Roberto LEONARDUZZI P-EXPONENTS AND P-LEADERSHerwig.Wendt/data/poster_ICASSP... · 2018-05-24 ·...

Date post: 23-Mar-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
1
Assessing cross-dependencies using bivariate multifractal analysis Herwig WENDT 1 , Roberto LEONARDUZZI 2 , Patrice ABRY 2 , St´ ephane ROUX 2 St´ ephane JAFFARD 3 , St´ ephane SEURET 3 1 Univ de Toulouse, IRIT-ENSEEIHT, CNRS, Toulouse, France, [email protected] 2 Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Lab de Physique, F-69342 Lyon, France [email protected] 3 Univ Paris Est, LAMA, UPEC, CNRS, F-94010, Cr´ eteil, France, [email protected] Abstract — Multifractal analysis has become a reference tool to char- acterize scale-free temporal dynamics in time series. It proved successful in numerous applications very diverse in nature. However, such successes remained restricted to univariate analysis, while many recent applications call for the joint analysis of several components. Surprisingly, multivariate multifractal analysis remained mostly overlooked. The present contribu- tion aims at defining a wavelet-leader-based framework for multivariate multifractal analysis and at studying its properties and estimation per- formance. To better understand what properties of multivariate data are actually captured, a multivariate multifractal model is used as representa- tive paradigm and permits to show that multivariate multifractal analysis puts in evidence transient and local dependencies that are not well quan- tified or even evidenced by the classical Pearson correlation coefficient. Multifractal analysis Multifractal Spectrum Local Regularity: Get regularity exponent from function X (t) Compare X with local polynomial approximation P t Most common: H¨older exponent h(t) 0 |X (t + a) - P t (a)| a0 + a h(t) Multifractal Spectrum: Bivariate signal: X =(X 1 ,X 2 ) H¨olderexponents: (h 1 (t),h 2 (t)) Multifractal spectrum: D(h 1 ,h 2 )= dim Hausdorff {t : h 1 (t)= h 1 and h 2 (t)= h 2 } -→ “Quantity”of points with given regularity h 2 D(h 1 ;h 2 ) h 1 Problem: Can not be computed in practice -→ Use multifractal formalism to estimate Multiresolution quantities X (t) -→ T X (j, k ) (scale 2 -j , position k = t 2 j ) Choice 1 : Discrete wavelet transform T X (j, k )= d X (j, k )= d X (λ) -→ Poor performance – Dyadic intervals: λ = λ j,k = (2 -j (k - 1), 2 -j k ] and 3λ j,k = S 1 i=-1 λ j,k +i 3λ k j Choice 2 : Wavelet leaders (Wendt, Abry & Jaffard, 2007) T X (j, k )= X (j, k ) = sup λ 0 3λ |c λ 0 | -→ Much better performance Multifractal Formalism: Definition Goal: provide estimate of D(h 1 ,h 2 ) from wavelet leaders – Easily computable in practice. Steps: 1. Structure functions S : S (q 1 ,q 2 ,j )= 1 n j n j X k =1 L X 1 (j, k ) q 1 L X 2 (j, k ) q 2 2. Scaling function ζ : S (q 1 ,q 2 ,j ) 2 -(q 1 ,q 2 ) , j →∞ 3. Legendre spectrum L: L(h 1 ,h 2 ) = inf q 1 ,q 2 ( 1+ q 1 h 1 + q 2 h 2 - ζ (q 1 ,q 2 ) ) ≥D(q 1 ,q 2 ). – Upper bound L used as estimate for D Multifractal Formalism: Cumulants – Bivariate cumulants of (ln L X 1 (j, k ), ln L X 2 (j, k )) C p 1 p 2 (j )= E ln ( L X 1 (j, ·) ) p 1 ln ( L X 2 (j, ·) ) p 2 Order p 1 + p 2 1 – Scale dependence: C p 1 p 2 (j )= c 0 p 1 p 2 + c p 1 p 2 ln 2 j – Polynomial expansion: L(h 1 ,h 2 ) 1+ c 02 b 2 h 1 - c 10 b 2 + c 20 b 2 h 2 - c 01 b 2 - c 11 b h 1 - c 10 b h 2 - c 01 b where b = c 20 c 02 - c 2 11 0 – Information synthesized in second order: 5 parameters – Interpretation: c 01 ,c 10 : average regularity on each component c 02 ,c 20 : width of regularity fluctuations on each component c 11 : leading-order joint regularity fluctuation Practical Estimation ζ (q 1 ,q 2 ) -→ linear regressions log 2 S (q 1 ,q 2 ,j ) vs log 2 2 j c p 1 p 2 -→ linear regressions C p 1 p 2 (j ) vs ln 2 j Synthetic Process Bivariate Multifractal Random Walk Synthetic process with bivariate multifractal behavior Definition Use two pairs of stochastic processes Pair 1: bivariate fractional Gaussian noise G 1 (t),G 2 (t) * Self-similarity parameters: H 1 ,H 2 * Covariance matrix: Σ ss = 1 ρ ss ρ ss 1 Pair 2: Gaussian processes ω 1 (t)2 (t) * Multifractality parameters: λ 1 2 * Covariance function: Σ mf such that {Σ mf } ij (k,l )= ρ mf (i, j )λ i λ j log N |k - l | +1 ,i =1, 2 where ρ mf = 1 ρ mf ρ mf 1 -→ Logarithmic covariance to induce multifractality G i (t)i (t) synthesized following (Helgason, Pipiras & Abry, 2011) Final process: X i (t)= t X k =1 G i (k )e ω i (k ) , i =1, 2 Properties Correlation coefficient of final process: ρ bMRW = ρ ss · f (ρ mf 1 2 ) -→ Can have ρ bMRW =0 with ρ mf 6=0 ! Cumulants: * c 10 = H 1 + λ 2 1 /2 and c 01 = H 2 + λ 2 2 /2 * c 20 = -λ 2 1 and c 02 = -λ 2 2 * c 11 = -ρ mf λ 1 λ 2 Results Estimation performance: univariate -1 -0.5 0 0.5 1 0.6 0.605 0.61 0.615 0.62 0.625 ˆ c 10 ρ mf -1 -0.5 0 0.5 1 -0.025 -0.02 -0.015 -0.01 ˆ c 20 ρ mf – Performance independent of correlation – Performance independent of multifractal dependence Estimation performance: bivariate -1 -0.5 0 0.5 1 -0.04 -0.02 0 0.02 0.04 ˆ c 11 ρ ss =0.5 ρ mf -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1 1.5 ˆ ρ mf ρ ss =0.5 ρ mf -1 -0.5 0 0.5 1 0 0.002 0.004 0.006 0.008 0.01 rms ˆ c 11 ρ mf -1 -0.5 0 0.5 1 0 0.05 0.1 0.15 0.2 0.25 0.3 rms ˆ ρ mf ρ mf ρ ss =0 ρ ss =0.5 ρ ss =0.9 – Excellent estimation performance – Estimation performance largely independent of ρ ss and ρ mf – Relevant and robust estimates for bivariate parameters c 11 and ρ mf Higher-order dependence – Set ρ ss =0 = ρ bMRW =0 -1 -0.5 0 0.5 1 × 10 -3 -5 0 5 ˆ ρ bMRW ρ ss =0 ρ mf -1 -0.5 0 0.5 1 -1.5 -1 -0.5 0 0.5 1 1.5 ˆ ρ mf ρ ss =0 ρ mf – Measured Pearson correlation indeed null (left) – Estimated ˆ ρ mf 6=0 = dependence beyond correlation Multifractal spectra – Orientation and eccentricity of support: higher-order dependence ρ ss =0mf =0 = : uncorrelated, independent ρ ss =0mf > 0 = : uncorrelated, positive dependence ρ ss =0mf < 0 = : uncorrelated, negative dependence References –S. Jaffard, S. Seuret, H. Wendt, R. Leonarduzzi, S. Roux and P. Abry, “Multivariate multifractal analysis,” Applied and Computational Harmonic Analysis, 2018, in press. https://doi.org/10.1016/j.acha.2018.01.004 –H. Wendt, P. Abry, and S. Jaffard, “Bootstrap for empirical multifractal analysis,” IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 38–48, 2007 –H. Helgason, V. Pipiras, and P. Abry, “Fast and exact synthesis of stationary mul- tivariate Gaussian time series using circulant embedding,” Signal Processiong, vol. 91, no. 5, pp. 1123–1133, 2011. ICASSP 2018 – Calgary – Canada
Transcript
Page 1: , Roberto LEONARDUZZI P-EXPONENTS AND P-LEADERSHerwig.Wendt/data/poster_ICASSP... · 2018-05-24 · multifractal formalismfor p-exponents is devised and shown at work on synthetic

EXTENDING MULTIFRACTAL ANALYSIS TO NEGATIVE REGULARITY:P-EXPONENTS AND P-LEADERS

Roberto Leonarduzzi^, Herwig Wendt_, Stephane Ja↵ard`, Stephane G. Rouxa, Marıa E. Torres^, Patrice Abrya

^ CONICET, Universidad Nacional de Entre Rios, Argentina [email protected], [email protected]

_ IRIT, CNRS UMR5505, University of Toulouse, France [email protected]

` LAMA, UMR8050, Paris Est Creteil University, France [email protected]

a Physics Dept., CNRS UMR5672, ENS Lyon, France [email protected]

Summary. Multifractal analysis characterizes data by describing globally and geometrically the fluctua-tions of local regularity, commonly measured by means of the Holder exponent. A major limitation is that itapplies only to locally bounded functions or signals, i.e., to signals with positive regularity. In this work, wepropose to characterize local regularity with a new quantity, the p-exponent, that permits negative regularity,a widely observed property in real-world data. Relations to Holder exponents are detailed and a p-leadermultifractal formalism for p-exponents is devised and shown at work on synthetic multifractal processes.Even when Holder and p-exponents coincide, the p-leader formalism yields better estimation performance.

MULTIFRACTAL ANALYSIS

Multifractal Spectrum-Local regularity:

X(t) �! regularity exponent h(t)

most commonly used:

�! Holder exponent (see below)

proposed here:

�! p-exponent (see below)

-Multifractal spectrum:

�! geometric structure of subsets Eh : h(ti) = h

D(h) = dimHausdor↵{E(h)} (1)

ti

h(ti) = 0.2

0.2

D(h)

h0

d

ti

h(ti) = 0.6

0.6

D(h)

h0

d

Multifractal Formalism-Multiresolution quantities:

X(t) �! TX(j, k) (scale 2j, position k)

-dX(j, k) dyadic wavelet transform coe�cients

- `X(j, k) = sup�0⇢3�j,k|dX(�0)| wavelet leaders .

�! Required key property: for t = 2jk, 2j ! 0 .

TX(j, k) ⇠ C2jh(t) (2)

-Multifractal formalism:

–Scaling function�

with S(2j, q) = 1/nj

X

k

TX(j, k)q�

⇣(q) = lim inf2j!0

log2 S(2j, q)/ log2 2j (3)

–Legendre spectrum �! upper bound for multifractal spectrum

L(h) = minq(1 + qh � ⇣(q)) � D(h) (4)

P-EXPONENT LOCAL REGULARITY

Holder exponent-X(t) locally bounded:

�! local power law behavior

|X(t0 + a) � Pt0(a)| C|a|↵, |a| ! 0

C > 0, deg(Pt0) < ↵

Holder exponent h(t0): largest such ↵

-Bounded function requirement:

. �! h(t) > 0

uniform regularity exponent:

hmin = lim2j!0

log2

�supk|dX(j, k)|

�/ log2

�2j�

� 0

p-Exponent-X(t) locally in Lp(R):

⇣ 1

a

Z t+a/2

t�a/2

|X(u) � Pt0(u � t0)|pdu

⌘1/p

Ca↵ (5)

↵ > �1/p, C > 0, deg(Pt0) < ↵, 8a < R

p-exponent hp(t0): largest ↵ such that (5) verified

. �! hp(t) > �1/p can be negative!

. �! hp(t) ⌘ h(t) for p = +1-Local Lp(R) requirement:

⌘(p) = lim2j!0

log2

⇣ 1

nj

njX

k=1

|dX(j, k)|p⌘/ log2

�2j�

� 0

X 2 Lp(R) () ⌘(p) � 0 () L(h) 1 + ph

Synthetic examplesf (x) = C|t � t0|↵ C|t � t0|↵ sin

⇣1

|x�x0|�⌘

C|t � t0|↵ C|t � t0|↵ sin⇣

1|x�x0|�

cusp h=0.4

t0

cusp h=0.2

t0

chirp h=0.4

t0

chirp h=0.2

t0

cusp h=−0.2

t0

cusp h=−0.4

t0

chirp h=−0.2

t0

chirp h=−0.4

t0

h(t0) = 0.4 0.2 0.4 0.2 undefined undefined undefined undefinedhp(t0) = 0.4, 8p > 0 0.2, 8p > 0 0.4, 8p > 0 0.2, 8p > 0 �0.2, 8p 5 �0.4, 8p 2.5 �0.2, 8p 5 �0.4, 8p 2.5

ICASSP 2014 — Florence — Italy .

p-LEADER MULTIFRACTAL FORMALISM

p-Leaders-Wavelet p-leaders:

`(p)X (j, k) =

⇣2j

X

�0⇢3�j

|d�0|p2�j0⌘1/p

(6)

dX(j, k) – dyadic wavelet transform coe�cients

�j,k – dyadic cube ((k � 1)2j, k2j]

3�j,k – union with two closest neighbors

l(p)X (j,k)

h’� 3hj

dX(j,k)

2j−2

2j−1

2j

...

...

k

-Key property cf., (2) .– if X(t) locally in Lp(R):

hp(t0) = lim infj!�1

log�`(p)X (j, k(t0))

log(2j)

p-Leader Multifractal formalism-Scaling function ⇣p(q) cf., (3) .

S(p, q, j) = 1/nj

njX

k=1

L(p)(j, k)q ⇠ Cp,q2j⇣p(q), 2j ! 0

-Legendre spectrum cf., (4) .

L(p)(hp) = minq

(1 + qhp � ⇣p(q)) � D(p)(hp)

-Cumulant expansion:

- ⇣p(q) =X

m�1

c(p)m

qm

m!

-L(h) ' 1 � (h � c(p)1 )2/(2|c(p)

2 |) + · · ·

.

c1

c2

D(h)

h0

d

-C(p)m (2j) – m-th cumulant of ln `

(p)X (j, k)

C(p)m (2j) ⌘ Cumm[ln `

(p)X (j, k)] = c(0,p)

m + c(p)m ln 2j (7)

-Estimation: Eqs. (3), (7) �! linear regressions .

Numerical performance evaluation-Multifractal Random Walk:

X(k) =Pn

k=1 GH(k)e!(k)

GH(k): increments of fBm

!(k): Gaussian, indepependent of GH, Cov[!(k1),!(k2)] = c2 ln⇣

L|k1�k2|+1

-Multifractal properties:

⇣(q) = (H + c2)q � c2q2/2 cf., (3) .

D(p=+1)(hp) = 1 + (hp � c1)2/(2c2) (with c1 = H + c2).

- Fractional di↵erentiation �! negative regularity

–X (�) = F�1⇥(ı!)�F [X ]

�! D(p)(hp) = 1 + (hp � c1 � �)2/(2c2)

.Numerical illustration

theory —Lp limit - -

p = 2481

hmin = 0.4−0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

h

D(h) − Lx − Px (p=2 4 8 ')

hmin = 0−0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

h

D(h) − Lx − Px (p=2 4 8 ')

hmin = �0.1−0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

h

D(h) − Lx − Px (p=2 4 8 ')

hmin = �0.2−0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

h

D(h) − Lx − Px (p=2 4 8 ')

hmin = �0.3−0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

h

D(h) − Lx − Px (p=2 4 8 ')

Estimation performance: cumulant expansion

rmse

std

bias

.

−0.04

−0.02

0

0.02

0.04 c1

−5

0

5

10

15x 10−3

c2

1 2 3 4 5 8 10 Inf0

2

4

6

8x 10−3

c3

1 2 3 4 5 8 10 Inf−5

0

5

10

15x 10−3

c4

– R.F. Leonarduzzi, P. Abry, S. Ja↵ard, S.G. Roux, M.E. Torres, H. Wendt, p-exponentand p-Leaders for Multifractal Analysis, 2014, in preparation.

– P. Abry, S. Ja↵ard, and H. Wendt. A bridge between geometric measure theory andsignal processing: Multifractal analysis, in The Abel Symposium 2012, SpringerSeries Abel Symposia, Vol. 9, 2014, to appear.

– S. Ja↵ard, P. Abry, and H. Wendt, Irregularities and Scaling in Signal and Im-age Processing: Multifractal Analysis, in Benoit Mandelbrot: A Life in ManyDimensions, M. Frame, ed., World scientific publishing, 2014, to appear.

Assessing cross-dependencies using bivariatemultifractal analysis

Herwig WENDT1, Roberto LEONARDUZZI2, Patrice ABRY2, Stephane ROUX2

Stephane JAFFARD3, Stephane SEURET3

1 Univ de Toulouse, IRIT-ENSEEIHT, CNRS, Toulouse, France, [email protected] Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Lab de Physique, F-69342 Lyon, France

[email protected] Univ Paris Est, LAMA, UPEC, CNRS, F-94010, Creteil, France, [email protected]

EXTENDING MULTIFRACTAL ANALYSIS TO NEGATIVE REGULARITY:P-EXPONENTS AND P-LEADERS

Roberto Leonarduzzi^, Herwig Wendt_, Stephane Ja↵ard`, Stephane G. Rouxa, Marıa E. Torres^, Patrice Abrya

^ CONICET, Universidad Nacional de Entre Rios, Argentina [email protected], [email protected]

_ IRIT, CNRS UMR5505, University of Toulouse, France [email protected]

` LAMA, UMR8050, Paris Est Creteil University, France [email protected]

a Physics Dept., CNRS UMR5672, ENS Lyon, France [email protected]

Summary. Multifractal analysis characterizes data by describing globally and geometrically the fluctua-tions of local regularity, commonly measured by means of the Holder exponent. A major limitation is that itapplies only to locally bounded functions or signals, i.e., to signals with positive regularity. In this work, wepropose to characterize local regularity with a new quantity, the p-exponent, that permits negative regularity,a widely observed property in real-world data. Relations to Holder exponents are detailed and a p-leadermultifractal formalism for p-exponents is devised and shown at work on synthetic multifractal processes.Even when Holder and p-exponents coincide, the p-leader formalism yields better estimation performance.

MULTIFRACTAL ANALYSIS

Multifractal Spectrum-Local regularity:

X(t) �! regularity exponent h(t)

most commonly used:

�! Holder exponent (see below)

proposed here:

�! p-exponent (see below)

-Multifractal spectrum:

�! geometric structure of subsets Eh : h(ti) = h

D(h) = dimHausdor↵{E(h)} (1)

ti

h(ti) = 0.2

0.2

D(h)

h0

d

ti

h(ti) = 0.6

0.6

D(h)

h0

d

Multifractal Formalism-Multiresolution quantities:

X(t) �! TX(j, k) (scale 2j, position k)

-dX(j, k) dyadic wavelet transform coe�cients

- `X(j, k) = sup�0⇢3�j,k|dX(�0)| wavelet leaders .

�! Required key property: for t = 2jk, 2j ! 0 .

TX(j, k) ⇠ C2jh(t) (2)

-Multifractal formalism:

–Scaling function�

with S(2j, q) = 1/nj

X

k

TX(j, k)q�

⇣(q) = lim inf2j!0

log2 S(2j, q)/ log2 2j (3)

–Legendre spectrum �! upper bound for multifractal spectrum

L(h) = minq(1 + qh � ⇣(q)) � D(h) (4)

P-EXPONENT LOCAL REGULARITY

Holder exponent-X(t) locally bounded:

�! local power law behavior

|X(t0 + a) � Pt0(a)| C|a|↵, |a| ! 0

C > 0, deg(Pt0) < ↵

Holder exponent h(t0): largest such ↵

-Bounded function requirement:

. �! h(t) > 0

uniform regularity exponent:

hmin = lim2j!0

log2

�supk|dX(j, k)|

�/ log2

�2j�

� 0

p-Exponent-X(t) locally in Lp(R):

⇣ 1

a

Z t+a/2

t�a/2

|X(u) � Pt0(u � t0)|pdu

⌘1/p

Ca↵ (5)

↵ > �1/p, C > 0, deg(Pt0) < ↵, 8a < R

p-exponent hp(t0): largest ↵ such that (5) verified

. �! hp(t) > �1/p can be negative!

. �! hp(t) ⌘ h(t) for p = +1-Local Lp(R) requirement:

⌘(p) = lim2j!0

log2

⇣ 1

nj

njX

k=1

|dX(j, k)|p⌘/ log2

�2j�

� 0

X 2 Lp(R) () ⌘(p) � 0 () L(h) 1 + ph

Synthetic examplesf (x) = C|t � t0|↵ C|t � t0|↵ sin

⇣1

|x�x0|�⌘

C|t � t0|↵ C|t � t0|↵ sin⇣

1|x�x0|�

cusp h=0.4

t0

cusp h=0.2

t0

chirp h=0.4

t0

chirp h=0.2

t0

cusp h=−0.2

t0

cusp h=−0.4

t0

chirp h=−0.2

t0

chirp h=−0.4

t0

h(t0) = 0.4 0.2 0.4 0.2 undefined undefined undefined undefinedhp(t0) = 0.4, 8p > 0 0.2, 8p > 0 0.4, 8p > 0 0.2, 8p > 0 �0.2, 8p 5 �0.4, 8p 2.5 �0.2, 8p 5 �0.4, 8p 2.5

ICASSP 2014 — Florence — Italy .

p-LEADER MULTIFRACTAL FORMALISM

p-Leaders-Wavelet p-leaders:

`(p)X (j, k) =

⇣2j

X

�0⇢3�j

|d�0|p2�j0⌘1/p

(6)

dX(j, k) – dyadic wavelet transform coe�cients

�j,k – dyadic cube ((k � 1)2j, k2j]

3�j,k – union with two closest neighbors

l(p)X (j,k)

h’� 3hj

dX(j,k)

2j−2

2j−1

2j

...

...

k

-Key property cf., (2) .– if X(t) locally in Lp(R):

hp(t0) = lim infj!�1

log�`(p)X (j, k(t0))

log(2j)

p-Leader Multifractal formalism-Scaling function ⇣p(q) cf., (3) .

S(p, q, j) = 1/nj

njX

k=1

L(p)(j, k)q ⇠ Cp,q2j⇣p(q), 2j ! 0

-Legendre spectrum cf., (4) .

L(p)(hp) = minq

(1 + qhp � ⇣p(q)) � D(p)(hp)

-Cumulant expansion:

- ⇣p(q) =X

m�1

c(p)m

qm

m!

-L(h) ' 1 � (h � c(p)1 )2/(2|c(p)

2 |) + · · ·

.

c1

c2

D(h)

h0

d

-C(p)m (2j) – m-th cumulant of ln `

(p)X (j, k)

C(p)m (2j) ⌘ Cumm[ln `

(p)X (j, k)] = c(0,p)

m + c(p)m ln 2j (7)

-Estimation: Eqs. (3), (7) �! linear regressions .

Numerical performance evaluation-Multifractal Random Walk:

X(k) =Pn

k=1 GH(k)e!(k)

GH(k): increments of fBm

!(k): Gaussian, indepependent of GH, Cov[!(k1),!(k2)] = c2 ln⇣

L|k1�k2|+1

-Multifractal properties:

⇣(q) = (H + c2)q � c2q2/2 cf., (3) .

D(p=+1)(hp) = 1 + (hp � c1)2/(2c2) (with c1 = H + c2).

- Fractional di↵erentiation �! negative regularity

–X (�) = F�1⇥(ı!)�F [X ]

�! D(p)(hp) = 1 + (hp � c1 � �)2/(2c2)

.Numerical illustration

theory —Lp limit - -

p = 2481

hmin = 0.4−0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

h

D(h) − Lx − Px (p=2 4 8 ')

hmin = 0−0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

h

D(h) − Lx − Px (p=2 4 8 ')

hmin = �0.1−0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

h

D(h) − Lx − Px (p=2 4 8 ')

hmin = �0.2−0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

h

D(h) − Lx − Px (p=2 4 8 ')

hmin = �0.3−0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

h

D(h) − Lx − Px (p=2 4 8 ')

Estimation performance: cumulant expansion

rmse

std

bias

.

−0.04

−0.02

0

0.02

0.04 c1

−5

0

5

10

15x 10−3

c2

1 2 3 4 5 8 10 Inf0

2

4

6

8x 10−3

c3

1 2 3 4 5 8 10 Inf−5

0

5

10

15x 10−3

c4

– R.F. Leonarduzzi, P. Abry, S. Ja↵ard, S.G. Roux, M.E. Torres, H. Wendt, p-exponentand p-Leaders for Multifractal Analysis, 2014, in preparation.

– P. Abry, S. Ja↵ard, and H. Wendt. A bridge between geometric measure theory andsignal processing: Multifractal analysis, in The Abel Symposium 2012, SpringerSeries Abel Symposia, Vol. 9, 2014, to appear.

– S. Ja↵ard, P. Abry, and H. Wendt, Irregularities and Scaling in Signal and Im-age Processing: Multifractal Analysis, in Benoit Mandelbrot: A Life in ManyDimensions, M. Frame, ed., World scientific publishing, 2014, to appear.

Abstract — Multifractal analysis has become a reference tool to char-acterize scale-free temporal dynamics in time series. It proved successfulin numerous applications very diverse in nature. However, such successesremained restricted to univariate analysis, while many recent applicationscall for the joint analysis of several components. Surprisingly, multivariatemultifractal analysis remained mostly overlooked. The present contribu-tion aims at defining a wavelet-leader-based framework for multivariatemultifractal analysis and at studying its properties and estimation per-formance. To better understand what properties of multivariate data areactually captured, a multivariate multifractal model is used as representa-tive paradigm and permits to show that multivariate multifractal analysisputs in evidence transient and local dependencies that are not well quan-tified or even evidenced by the classical Pearson correlation coefficient.

Multifractal analysis

Multifractal Spectrum– Local Regularity:

– Get regularity exponent from function X(t)

– Compare X with local polynomial approximation Pt– Most common: Holder exponent h(t) ≥ 0

|X(t + a)− Pt(a)| a→0+∼ ah(t)

– Multifractal Spectrum:

– Bivariate signal: X = (X1, X2)

– Holder exponents: (h1(t), h2(t))

– Multifractal spectrum:

D(h1, h2) = dimHausdorff {t : h1(t) = h1 and h2(t) = h2}

−→ “Quantity”of points with given regularity

h2

D(h1; h2)

h1

– Problem: Can not be computed in practice−→ Use multifractal formalism to estimate

Multiresolution quantities–X(t) −→ TX(j, k) (scale 2−j, position k = t 2j)

– Choice 1 : Discrete wavelet transform

TX(j, k) = dX(j, k) = dX(λ)

−→ Poor performance

– Dyadic intervals:λ = λj,k = (2−j(k − 1), 2−jk] and 3λj,k =

⋃1i=−1 λj,k+i

λ

3λk

j

– Choice 2 : Wavelet leaders (Wendt, Abry & Jaffard, 2007)

TX(j, k) = `X(j, k) = supλ′∈3λ

|cλ′|

−→ Much better performance

Multifractal Formalism: Definition– Goal: provide estimate of D(h1, h2) from wavelet leaders

– Easily computable in practice. Steps:

1. Structure functions S:

S(q1, q2, j) =1

nj

nj∑

k=1

LX1(j, k)q1LX2

(j, k)q2

2. Scaling function ζ:

S(q1, q2, j) ∼ 2−jζ(q1,q2), j →∞

3. Legendre spectrum L:

L(h1, h2) = infq1,q2

(1 + q1h1 + q2h2 − ζ(q1, q2)

)≥ D(q1, q2).

– Upper bound L used as estimate for D

Multifractal Formalism: Cumulants– Bivariate cumulants of (lnLX1

(j, k), lnLX2(j, k))

–Cp1p2(j) = E[ln(LX1

(j, ·))p1 ln

(LX2

(j, ·))p2]

– Order p1 + p2 ≥ 1

– Scale dependence:

Cp1p2(j) = c0p1p2 + cp1p2 ln 2j

– Polynomial expansion:

L(h1, h2) ≈ 1 +c02b

2

(h1 − c10

b

)2

+c20b

2

(h2 − c01

b

)2

− c11b

(h1 − c10

b

)(h2 − c01

b

)

where b = c20c02 − c211 ≥ 0

– Information synthesized in second order: 5 parameters

– Interpretation:

– c01, c10: average regularity on each component

– c02, c20: width of regularity fluctuations on each component

– c11: leading-order joint regularity fluctuation

Practical Estimation– ζ(q1, q2) −→ linear regressions log2 S(q1, q2, j) vs log2 2j

– cp1p2 −→ linear regressions Cp1p2(j) vs ln 2j

Synthetic Process

Bivariate Multifractal Random WalkSynthetic process with bivariate multifractal behavior

– Definition

– Use two pairs of stochastic processes

– Pair 1: bivariate fractional Gaussian noise G1(t), G2(t)

∗ Self-similarity parameters: H1, H2

∗ Covariance matrix:

Σss =

(1 ρssρss 1

)

– Pair 2: Gaussian processes ω1(t), ω2(t)

∗Multifractality parameters: λ1, λ2

∗ Covariance function: Σmf such that

{Σmf}ij(k, l) = ρmf (i, j)λiλj log

(N

|k − l| + 1

), i = 1, 2

where

ρmf =

(1 ρmfρmf 1

)

−→ Logarithmic covariance to induce multifractality

–Gi(t), ωi(t) synthesized following (Helgason, Pipiras & Abry, 2011)

– Final process:

Xi(t) =

t∑

k=1

Gi(k)eωi(k), i = 1, 2

– Properties

– Correlation coefficient of final process:

ρbMRW = ρss · f (ρmf , λ1, λ2)

−→ Can have ρbMRW = 0 with ρmf 6= 0 !

– Cumulants:

∗ c10 = H1 + λ21/2 and c01 = H2 + λ2

2/2

∗ c20 = −λ21 and c02 = −λ2

2∗ c11 = −ρmfλ1λ2

Results

Estimation performance: univariate

-1 -0.5 0 0.5 10.6

0.605

0.61

0.615

0.62

0.625c10

ρmf

-1 -0.5 0 0.5 1-0.025

-0.02

-0.015

-0.01c20

ρmf

– Performance independent of correlation

– Performance independent of multifractal dependence

Estimation performance: bivariate

-1 -0.5 0 0.5 1-0.04

-0.02

0

0.02

0.04c11 ρss = 0.5

ρmf

-1 -0.5 0 0.5 1-1.5

-1

-0.5

0

0.5

1

1.5ρmf ρss = 0.5

ρmf

-1 -0.5 0 0.5 10

0.002

0.004

0.006

0.008

0.01rms c11

ρmf

-1 -0.5 0 0.5 10

0.05

0.1

0.15

0.2

0.25

0.3rms ρmf

ρmf

ρss

=0ρ

ss=0.5

ρss

=0.9

– Excellent estimation performance

– Estimation performance largely independent of ρss and ρmf

– Relevant and robust estimates for bivariate parameters c11 and ρmf

Higher-order dependence– Set ρss = 0 =⇒ ρbMRW = 0

-1 -0.5 0 0.5 1

×10-3

-5

0

5ρbMRW ρss = 0

ρmf

-1 -0.5 0 0.5 1-1.5

-1

-0.5

0

0.5

1

1.5ρmf ρss = 0

ρmf

– Measured Pearson correlation indeed null (left)

– Estimated ρmf 6= 0 =⇒ dependence beyond correlation

Multifractal spectra

– Orientation and eccentricity of support: higher-order dependence

– ρss = 0, ρmf = 0 =⇒ : uncorrelated, independent

– ρss = 0, ρmf > 0 =⇒ : uncorrelated, positive dependence

– ρss = 0, ρmf < 0 =⇒ : uncorrelated, negative dependence

References– S. Jaffard, S. Seuret, H. Wendt, R. Leonarduzzi, S. Roux and P. Abry, “Multivariate

multifractal analysis,” Applied and Computational Harmonic Analysis, 2018, in press.https://doi.org/10.1016/j.acha.2018.01.004

– H. Wendt, P. Abry, and S. Jaffard, “Bootstrap for empirical multifractal analysis,”IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 38–48, 2007

– H. Helgason, V. Pipiras, and P. Abry, “Fast and exact synthesis of stationary mul-tivariate Gaussian time series using circulant embedding,” Signal Processiong, vol.91, no. 5, pp. 1123–1133, 2011.

ICASSP 2018 – Calgary – Canada

Recommended