+ All Categories
Home > Documents > * Université Montpellier II, I3M - EPS ** Université de Montréal,...

* Université Montpellier II, I3M - EPS ** Université de Montréal,...

Date post: 17-May-2020
Category:
Upload: others
View: 10 times
Download: 0 times
Share this document with a friend
49
Transcript
Page 1: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors and Hermitian quadratic forms

Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien Marchina*

* Université Montpellier II, I3M - EPS

** Université de Montréal, DMS

26 march 2013

Bastien Marchina (UM2) Complex random vectors 26 march 2013 1 / 49

Page 2: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

1 Introduction

2 Complex random vectors

3 Hermitian quadratic forms in complex random vectors

4 Statistics of complex random vectors

5 Applications to goodness-of-�t tests

Bastien Marchina (UM2) Complex random vectors 26 march 2013 2 / 49

Page 3: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Introduction

1 Introduction

2 Complex random vectors

3 Hermitian quadratic forms in complex random vectors

4 Statistics of complex random vectors

5 Applications to goodness-of-�t tests

Bastien Marchina (UM2) Complex random vectors 26 march 2013 3 / 49

Page 4: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Introduction

Complex random data

Complex data appears in various situations. For instance, periodic

signals can be representated by (a collection of) complex numbers.

For instance, radar and fMRI data are usually aggregated as

complex-valued data.

Thus arises the need for statistical modeling using complex random

elements.

Many results have already been established by the signal processing

community, but are not well known in the statistical community.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 4 / 49

Page 5: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Introduction

Example of complex random data

Fig.: fMRI data representation

Bastien Marchina (UM2) Complex random vectors 26 march 2013 5 / 49

Page 6: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Introduction

Motivation : fMRI activation with complex data

D.B. Rowe and B.R. Logan (2004) une normality assumptions to build a

fMRI activation model using all the complex signal.

Fig.: fMRI data representation

Thus arises the need for a proper test for complex normality.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 6 / 49

Page 7: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Introduction

Complex random variables in mathematical statistics

The probability distribution P of X can be characterised by its

characteristic function

ϕX(t) = E(e i(t′X)).

.

The empirical characteristic function

ϕn(t) =1

n

n∑k=1

e i(t′Xk)

of independent copies X1, . . . ,Xn, of X ∼ P is an estimator of the

characteristic function of P and is complex valued.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 7 / 49

Page 8: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors

1 Introduction

2 Complex random vectors

3 Hermitian quadratic forms in complex random vectors

4 Statistics of complex random vectors

5 Applications to goodness-of-�t tests

Bastien Marchina (UM2) Complex random vectors 26 march 2013 8 / 49

Page 9: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors

Complex Random Vectors

If X and Y are random vectors in Rd , Z = X+ iY is a random vector in

Cd .

Ze = (Z′,ZH)

′is the augmented vector associated with Z and

X = MZe , Ze = 2MHX , MMH = 2Id , (1)

with X = (X′,Y

′)′and

M =1

2

(Id Id−i Id i Id

), M−1 =

(Id i IdId −i Id

). (2)

The characteristic function of Z is

ϕZ(ν) = E(e i Re(ν

HZ)). (3)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 9 / 49

Page 10: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors

First and second order parameters for complex random

vectors

Expectation : µ = E(Z) = µX + iµY,Positive semi-de�nite hermitian covariance matrix :

Γ = E[(Z− µ)(Z− µ)H

], (4)

Positive semi-de�nite symmetric relation matix :

P = E[(Z− µ)(Z− µ)

′], (5)

Positive semi-de�nite hermitian covariance-relation matrix

ΓP = E[(Ze − µe )(Ze − µe )H] =

(Γ P

PH Γ∗

). (6)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 10 / 49

Page 11: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors

Complex normal distribution

De�nition (Van den Bos (1995), or Picinbono (1996))

Z = X+ iY ∈ Cd is following the complex normal distribution i�(X

Y

)∼ N

((µX

µY

),

(ΣXX ΣXY

ΣYX ΣYY

)). (7)

We write Z ∼ CNd (µ, Γ,P), or alternatively Ze ∼ CeN2d (µe , ΓP) with

ΣX = MΓPMH , ΓP = M−1ΣX (MH)−1. (8)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 11 / 49

Page 12: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors

Proper normal distribution

Consider Z ∼ CNd (µ, Γ, 0), i.e., Z is a complex normal random vector with

P = 0. Then,

fZ(z) =1

πd |Γ|1/2exp{

(z− µ)HΓ−1 (z− µ)}. (9)

This is the density of the complex normal distribution with two parameter

introduced by Wooding (1956). It is usually refered as the �proper� or

�circular� complex normal distribution.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 12 / 49

Page 13: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors

Proper and improper complex normal data

●●

●●

●●

●●

●● ●

●● ●

● ●●

●●

●●

●●

●●

●●

● ● ●

●●

●●

●●

●●●

●●

●●

●●●

●● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●●

●●

● ●

●●

●●

● ●●

●●●

●●

●●

●●

● ●

●●

●●

● ●

●●

● ●

● ●

●●●

● ●

● ●

●●

● ●● ●

●●

●●

●●

●●

●●

●●

●● ●

●●

● ●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

● ●

●●

●●●

● ●

●●

●●

●●●

● ●

●●

●●

●●

● ●●

● ●

●●

●●

●●

● ●

●●

●●●

● ●

● ●

●●

●● ●

●●

●● ●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

● ●

●●

●●

●●

●●

● ●●

● ●

● ●●

●●

●●

●●●

●●●

●●● ●

● ●

●●

●●

●●

●● ●

●●

●●

●●

● ●●

●●

●●

●●

●●

●●

● ●

● ●

●●

● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

● ●

● ●

●●

● ●

●●

●● ●

●●

● ●

●●

●●

●●

●●

●●

● ●●

●●

●●●

●●

● ●

●●

●●

●●●

●●

●●

●●

● ●

●●

● ●

●●

●● ●

●●

●●

●●●

●●●

● ●●

●●

●●

●●

●●

−3 −2 −1 0 1 2 3

−3

−2

−1

01

23

kn = 0

Partie réelle

Pa

rtie

im

ag

ina

ire

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

● ●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●●●

●●● ●

●●●

●●

●●

●● ●

●●

● ●

●●

●●

●●●

●●

●●

●●

●●

●●

● ●●●

●●

●●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●●

●●●

●●

●●

●●●

● ●

● ●

●●

● ●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●● ●

●●

●●● ●

●●

●● ●●

●●

●●

●●

● ●

● ●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●●●

● ●

●●

●● ●

●●●

●●

●●

●●

● ●

●●

● ●

● ●●

●●

●● ●●

●●

●●●

● ●●

●●● ●●

● ●

●●

● ●

● ●

●●

●●

●●●●●

●●

●●

●●●

●●

●●

●●

●● ●

●●

● ●

●●

●●

●●●

●●

●●

● ●

●●

●●

●●

● ●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

● ●●

●●

●●

● ●●

●●

●●

●●

●●●

●● ●

● ●

● ●

●●

●●●

●●

● ●

●●

●● ●●

●●

●●

● ●

●●

●●

●●●●

●●

●●

● ●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●●

●●

●●

●● ●

●●

●●● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●●

●●

−3 −2 −1 0 1 2 3

−3

−2

−1

01

23

kn = 0.3

Partie réelle

Pa

rtie

im

ag

ina

ire

● ●

●●

●● ●

●●

●●

●●

●●

●●

● ●

●● ●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

● ●

●●

●●

●● ●

●●

●● ●●

●●

● ●

●●

●●

●●●●

●●

●●

●● ●

● ●

● ●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

●●

● ●

●●

●●

●●

●●

●●

● ●

● ●

●● ●●

●●●

●●

●●

●●

●●

● ●

●●●

●●

● ●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

●●

●●●

●●

●●

●●●

●● ●

●●

●●

●●

●●

●●●

●●

● ●●

●●

●●

●●

● ●●

● ●

●●

●●

●●

●●

●● ●

●●

●●

●●●

●●

●●

●●

● ●●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

● ●●

●●

● ●●●●●●

●●

● ●

●●

●●

●●

● ●

●●

●●

●●

● ●●

●● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

●●●

●●● ●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●● ●

●● ●

●●

●●

●●

● ●

●●

●●

● ●●

●●

●●

●●

−3 −2 −1 0 1 2 3

−3

−2

−1

01

23

kn = 0.6

Partie réelle

Pa

rtie

im

ag

ina

ire

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●●●

●●●

●●

●●

●●●

●●

●●●

●●

●● ●

●●

●●

●●

●●

●●

●●

● ●●

●●

●●

●●

●●

●●

●●● ●

●●●

●●

●●

●●●

● ●

●●

●● ●

● ●●

●●

● ●

●●

●●

●●

● ●●

● ●

●●

●●

● ●

●●

●●

●●●

● ●

●●

● ●●●

● ●

●●●

●●

● ●

● ●●●

●● ●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

●●●

●●

● ●

● ●

●●

●●

●●

● ●●

●●

● ●

●●

●●

●●

●●

●●

●● ●

●●

●● ●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●● ●

●●

●●

●●● ●

●●

●●

●●

●●

●●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

● ●

●●

●●

●●●

●●

●●●

●●

●●

● ●

●●

●●

●● ●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

● ●

● ●

●●

●●●

●●

●● ●●

●●

●●

●●

●●

−3 −2 −1 0 1 2 3

−3

−2

−1

01

23

kn = 0.9

Partie réelle

Pa

rtie

im

ag

ina

ire

Bastien Marchina (UM2) Complex random vectors 26 march 2013 13 / 49

Page 14: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors

Characteristic function and density

The characteristic function of Z is

ϕZ(`) = exp

{i Re(`Hµ)− 1

4

(`HΓ`− Re(`HP`∗)

)}. (10)

If ΓP is invertible

fZ(z) =1

πd |ΓP |1/2exp

{−12

((z− µ)′, (z− µ)H)Γ−1P

(z− µ

(z− µ)∗

)}.

(11)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 14 / 49

Page 15: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors

Complex normal distribution � Main results

Conservation by linear transforms

Let Z ∼ CNd (µ, Γ,P) and A ∈ Cm×d , then

AZ ∼ CNm(Aµ,AΓAH,APA′). (12)

Conservation by augmented linear transforms

Let Ze ∼ CeN2d (µe , ΓP), AB ∈ C2m×2d such that

AB =

(A B

B∗ A∗

), (13)

then ABZe ∼ CeN2m(ABµe ,ABΓPAHB ).

Bastien Marchina (UM2) Complex random vectors 26 march 2013 15 / 49

Page 16: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors

Complex normal distribution � Independence

Theorem : Independence between complex gaussian variables

Let Z = (Z1,Z2) ∼ CN2(µ, Γ,P). Z1 and Z2 are independent if and only if

Γ =

(γ1 0

0 γ2

),

and

P =

(p1 0

0 p2

).

Bastien Marchina (UM2) Complex random vectors 26 march 2013 16 / 49

Page 17: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Complex random vectors

Complex normal distribution � Independence

Corollary : Independence between complex gaussian vectors

Let Z ∼ CNd1+d2(µ, Γ,P), Partition Z as (Z′1,Z

′2)′where Z1 is d1 × 1, Z2

is d2× 2, and likewise µ into (µ1, µ2), Γ in

(Γ1 Γ12

ΓH12 Γ2

)and similarly for P .

Z1 and Z2 are independent if and only if Γ12 = P12 = 0.

Corollary : Independence between components of a complex gaussian vector

Let Z = (Z1, . . . ,Zd )′ ∼ CNd (µ, Γ,P). The components Z1, . . . ,Zd are

independent if and only if Γ and P are diagonal.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 17 / 49

Page 18: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Hermitian quadratic forms

1 Introduction

2 Complex random vectors

3 Hermitian quadratic forms in complex random vectors

4 Statistics of complex random vectors

5 Applications to goodness-of-�t tests

Bastien Marchina (UM2) Complex random vectors 26 march 2013 18 / 49

Page 19: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Hermitian quadratic forms

Hermitian quadratic forms

Let Z ∼ CNd (µ, Γ,P). We study positive quadratic forms of the form

ZeHRZe .First, notice that

ZeHRZe = 2X ′SX , (14)

with S = MRM−1. It leads to

R = M−1SM

=

(S11 + S22 + i(S12 − S21) S11 − S22 + i(S12 + S21)S11 − S22 − i(S12 + S21) S11 + S22 − i(S12 − S21)

),

and �nally, because S is a symmetric matrix,

R =

(G K

KH G ∗

). (15)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 19 / 49

Page 20: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Hermitian quadratic forms

Hermitian quadratic forms

Theorem

Let

R =

(G K

KH G∗

). (16)

and Z ∼ CNd (µ, Γ,P). Then

ZeHRZe =2d∑k=1

αkχ21(δ2k), (17)

where the χ21(δ2k) are independent, the αk are the eigenvalues of RΓP and

the δk are function of µ, Γ, P and R.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 20 / 49

Page 21: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Hermitian quadratic forms

Hermitian quadratic forms

Corollary

Let

R =

(G K

KH G∗

). (18)

and Z ∼ CNd (0, Γ,P). Then

ZeHRZe =2d∑k=1

αkχ21, (19)

where the χ21 are independent and the αk are the eigenvalues of RΓP .

Bastien Marchina (UM2) Complex random vectors 26 march 2013 21 / 49

Page 22: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Hermitian quadratic forms

Moore-Penrose inverse

The Moore-Penrose inverse of A is the only matrix such that

AA+A = A A+AA+ = A+

(AA+)H = AA+ (A+A)H = A+A,

A few of the properties of the Moore-Penrose are

1 Let α 6= 0. Then (αA)+ = α−1A+,

2 (A′)+ = (A+)′, (A∗)+ = (A+)∗ and (AH)+ = (A+)H,

3 Let A be m × n complex and B be n × p complex. If AAH = Im or

BHB = Ip, then (AB)+ = B+A+,

4 If A is invertible, then A+ = A−1.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 22 / 49

Page 23: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Hermitian quadratic forms

More results on hermitian quadratic forms

Theorem

Let Z ∼ CNd (0, Γ,P). Let Γ+P be the Moore-Penrose inverse of the

covariance-relation matrix ΓP of Z. Then,

ξ = ZeHΓ+PZe ∼ χ2q, (20)

where q ≤ 2d is the rank of ΓP .

Corollary

Let Z ∼ CNd (0, Γ,P), such that ΓP is invertible. Then,

ξ = ZeHΓ−1P Ze ∼ χ22d . (21)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 23 / 49

Page 24: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Hermitian quadratic forms

More results on hermitian quadratic forms

Theorem

Let Z ∼ CNd (µ, Γ,P), Ze =

(Z

Z

), m =

(µµ

), A and B two 2d × 2d

matrices, that share properties with matrix R in (18). Then ZeHAZe and

ZeHBZe are independent if and only if

(i) ΓPAΓPBΓP = 0,

(ii) ΓPAΓPBΓPm = ΓPBΓPAm = 0,

(iii) mHAΓPBΓPm = 0.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 24 / 49

Page 25: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Hermitian quadratic forms

More results on hermitian quadratic forms

Theorem

Let Y ∼ CNd (0, ΓY,PY) and Z ∼ CNd′ (0, ΓZ,PZ), such that Y and Z are

independent. Let ΓP,Y and ΓP,Z be the covariance-relation matrices of Y

and Z respectively. Then,

b

a

YeHΓ+P,YYe

ZeHΓ+P,ZZe

∼ F(a, b),

where a ≤ 2d is the rank of ΓP,Y, b ≤ 2d′is the rank of ΓP,Z and F(a, b)

denotes the Fisher distribution with degrees of freedom a and b.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 25 / 49

Page 26: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Hermitian quadratic forms

More results on hermitian quadratic forms

Corollary

Let Z = (Z′1,Z

′2)′ ∼ CNd1+d2(0, Γ,P). Let ΓP,1 and ΓP,2 be the

covariance-relation matrices of the marginal distributions of Z1 and Z2,

with respective ranks a and b and a + b ≤ 2d Then,

b

a

Z1e HΓ+P,1Z1e

Z2e HΓ+P,2Z2e

∼ F(a, b), (22)

if and only if if Z1 and Z2 are independent.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 26 / 49

Page 27: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Statistics of complex random vectors

1 Introduction

2 Complex random vectors

3 Hermitian quadratic forms in complex random vectors

4 Statistics of complex random vectors

5 Applications to goodness-of-�t tests

Bastien Marchina (UM2) Complex random vectors 26 march 2013 27 / 49

Page 28: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Statistics of complex random vectors

Central limit theorem for complex random vectors

Theorem

Let W be a random vector in Cd , E(W) = µ, with de�nite covariance and

relation matrices Γ and P . Let W1, . . . ,Wn be independant copies of W.

Then,

√n

1

n

n∑j=1

Wj − µ

CNd (0, Γ,P). (23)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 28 / 49

Page 29: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Statistics of complex random vectors

Maximum likelihood and moments method estimators

Z1, . . . ,Zn is a random sample of CN(µ, Γ,P). Method of moments and

maximum likelihood estimators for µ, Γ and P are identical.

Parameter estimates

µ =1

n

n∑k=1

Zk = Z,

Γ =1

n

n∑k=1

(Zk − Z)(Zk − Z)H,

P =1

n

n∑k=1

(Zk − Z)(Zk − Z)′,

ΓP =1

n

n∑k=1

(Zke − Ze )(Zke − Ze )H.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 29 / 49

Page 30: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Statistics of complex random vectors

Asymptotics in the case d = 1

In this case,

√n

µ− µγ − γp − p

CN3(0, Γθ,Pθ), (24)

where

Γθ =

γ 0 0

0 γ2 + |p|2 2p∗γ0 2pγ 2γ2

, Pθ =

p 0 0

0 γ2 + |p|2 pγ0 2pγ 2p2

. (25)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 30 / 49

Page 31: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

1 Introduction

2 Complex random vectors

3 Hermitian quadratic forms in complex random vectors

4 Statistics of complex random vectors

5 Applications to goodness-of-�t tests

Bastien Marchina (UM2) Complex random vectors 26 march 2013 31 / 49

Page 32: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Empirical characteristic function and empirical characteristic

process

Let X1, . . . ,Xn be a random sample with characteristic function ϕX(·). Inorder to test H0 : ϕX(·) = ϕ0(·) it is customary to intoduce the empirical

characteristic process

Un(t) =√n(ϕn(t)− ϕ0(t)). (26)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 32 / 49

Page 33: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

The empirical characteristic process

Under H0, the empirical characteristic process is such that

E(Un(·)) = 0

C (s, t) = E(Un(s)Un(t)∗) = ϕ0(s− t)− ϕ0(s)ϕ0(t)∗,

P(s, t) = E(Un(s)Un(t)) = ϕ0(s+ t)− ϕ0(s)ϕ0(t) = C (s,−t).

(27)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 33 / 49

Page 34: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Koutrouvelis's goodness-of-�t test

Koutrouvelis (1980) gives a test statistic of H0 : P = P0 based on the

evaluation of Un(·) on cleverly chosen points t1, . . . , td .

With Wn = (R1, . . . ,Rd , I1, . . . Id )′, Rk = Re(Un(tk)) and Ik = Im(Un(tk)),

he shows that

W′nΣ−1Wn χ22d . (28)

under H0 with Σ the covariance matrix of Wn under H0.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 34 / 49

Page 35: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Use of a complex quadratic form

Using a complex framework, we have the following test statistic

ξn = Une HΓ+PUne χ2q, (29)

with Une = (U′n,U

Hn )

′, Un = (Un(t1), . . . ,Un(td )) and q < 2d is the rank

of

ΓP =

(ΓUn PUnPHUn

Γ∗Un

), (30)

ΓUn =

0B@C(t1, t1) . . . C(t1, tm)...

...C(tm, t1) . . . C(tm, tm)

1CA , PUn =

0B@P(t1, t1) . . . P(t1, tm)...

...P(tm, t1) . . . P(tm, tm)

1CA (31)

Bastien Marchina (UM2) Complex random vectors 26 march 2013 35 / 49

Page 36: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Test of a simple hypothesis for complex distributions

A sample of complex random vectors has the following e.c.f.

ϕn(ν) =1

n

n∑k=1

e i Re(νHZk), (32)

and Un(·) has the same properties than in the real case. Once again,

Une HΓ+PUne χ2q, (33)

with Un = (Un(ν1), . . . ,Un(νd )) and q < 2d is the rank of ΓP .

Bastien Marchina (UM2) Complex random vectors 26 march 2013 36 / 49

Page 37: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Test for complex normality

Back to our signal processing problematic, we need to test the composite

hypothesis

H0 : P ∈ { CN1(µ, γ, p), | µ ∈ C, γ ∈ R, p ∈ C such that |p| < γ }. (34)

The parameters are unknown and must be estimated in order to build a

test statistic.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 37 / 49

Page 38: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Test for complex normality

From the circularized empirical characteristic process

Un,Y (ν) =√n(ϕn,Y (ν)− ϕ0(ν)), (35)

where

ϕ0(ν) is the c.f. of a CN1(0, 1, 0),

Ye = Γ−1/2P (Ze − µe), and therefore Y ∼ CN1(0, 1, 0).

we build

Un,Y (ν) =

√n(ϕ

n,Y (ν)− ϕ0(ν)), (36)

where Y is obtained through the m.l.e. estimates of the parameters.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 38 / 49

Page 39: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Test for complex normality

The modi�ed ξn test statistic follows

ξn = UeHn,Y ΓP(ν)−1Ue n,Y . (37)

Here

UHn,Y

= (Un,Y (ν1), . . . ,U

n,Y (νm))′

ΓP(ν), albeit complicated, does not depend on the true value of the

parameters, but only on the choice of points.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 39 / 49

Page 40: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Simulation : case m = 1

Tab.: Quantiles of the distribution of ξn based on 30 000 repetitions with m = 1

n E0 V0 Q90 Q95 Q99

50 2.02 3.27 3.82 5.82 14.55

250 1.98 2.38 4.33 5.80 11.42

500 1.98 2.19 4.44 5.93 10.41

1000 1.99 2.12 4.48 5.87 9.97

χ22 2 2 4.60 5.99 9.21

Bastien Marchina (UM2) Complex random vectors 26 march 2013 40 / 49

Page 41: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

P-P plot for the case m = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p−p plot for xi(1) vs. a chi2(2) distribition

theoretical cumulative distribution

empi

rical

cum

ulat

ive d

istrib

utio

n

Bastien Marchina (UM2) Complex random vectors 26 march 2013 41 / 49

Page 42: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Simulation : case m = 3

Tab.: Quantiles of the distribution of ξn based on 30 000 repetitions with m = 3

n E0 V0 Q90 Q95 Q99

50 6.07 5.45 10.87 14.64 27.10

250 6.00 4.07 10.74 13.37 20.85

500 6.00 3.85 10.68 13.04 19.16

1000 6.00 3.66 10.68 12.83 17.93

χ26 6 3.46 10.64 12.59 16.81

Bastien Marchina (UM2) Complex random vectors 26 march 2013 42 / 49

Page 43: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

P-P plot for the case m = 3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p−p plot for xi(3) vs. a chi2(6) distribition

theoretical cumulative distribution

empi

rical

cum

ulat

ive d

istrib

utio

n

Bastien Marchina (UM2) Complex random vectors 26 march 2013 43 / 49

Page 44: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Back to the real data

Fig.: ξn applied to the 16384 datasets

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●●●

●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●

●●●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●

●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●

●●

●●●●●●

●●

●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●

●●

●●●●●●●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●

●●●●●●●●●●●●●●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●

●●●●●

●●●●

●●

●●●●●●●●●●●●

●●

●●

●●

●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●

●●●●●●●●●●

●●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●●●●●●●●

●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●●●●●●

●●●●●

●●●

●●

●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●●●

●●

●●

●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●●●●●

●●

●●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●

●●●●

●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●

●●●●●●●

●●●●●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●

●●●●

●●

●●

●●

●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●

●●●●

●●

●●●●●●●

●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●

●●

●●

●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●

●●

●●●●●●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●

●●

●●●●●●●

●●

●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●●●

●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●

●●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●

●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●●

●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 5000 10000 15000

010

0020

0030

0040

0050

0060

00Obersved value for xi(3) using the FMRI dataset

Sample number

Obs

erve

d va

lue

Bastien Marchina (UM2) Complex random vectors 26 march 2013 44 / 49

Page 45: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Back to the real data

Examining closely sets associated with high ξn value, they show unusually

high values in the �rst and last observations. Here is the 5050-th dataset,

ξn = 4676.

Fig.: fMRI data representation

●●●●●

●●

●●

●●

●●

●●●●●●

●●

●●

●●●

●●●●●

●●●●

●●●

●●

●●

●●

●●●●

●●●●●

●●●●●

●●●

●●

●●●●

●●

●●

●●●●

●●●●●

●●

●●

●●

●●●

●●●

●●●●●

●●

●●

●●

●●

●●●

●●

●●

●●●●●

●●

●●

●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●

●●

●●

0 50 100 150 200 250

0.0

0.1

0.2

0.3

0.4

0.5

5050−th dataset : Modulus

Index

Mod

ulus

Bastien Marchina (UM2) Complex random vectors 26 march 2013 45 / 49

Page 46: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Back to the real data

We can build an image of the brain slice with colors depending on ξn.

30 40 50 60 70 80 90 100

3040

5060

7080

9010

0

Brain representation using xi(3) on the FMRI dataset

x

y

Bastien Marchina (UM2) Complex random vectors 26 march 2013 46 / 49

Page 47: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Back to the real data

Alternatively, and using

√ξn,.

30 40 50 60 70 80 90 100

3040

5060

7080

9010

0Brain representation using sqrt(xi(3)) on the FMRI dataset

x

y

Bastien Marchina (UM2) Complex random vectors 26 march 2013 47 / 49

Page 48: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

1 T. Adali, P. J. Schreier, L. L. Scharf �Complex-Valued Signal Processing : TheProper Way to Deal With Impropriety�, IEEE Transactions on Signal Processing,vol. 59, n.11, pp.5101�5124, November 2011.

2 Rowe, D. B. and Logan, B. R. �A complex way to compute fMRI activation�,NeuroImage, vol. 23, 1078�1092, 2004.

3 I.A. Koutrouvelis, �A Goodness-of-�t Test of Simple Hypotheses Based on theEmpirical Characteristic Function�, Biometrika, vol. 67, n. 1, pp. 238�240.

4 A. van den Bos, �The Multivariate Complex Normal Distribution - aGeneralization�, IEEE Transactions on Information Theory, vol. 31, pp.537�539,1995.

5 R.A. Wooding, �The Multivariate Complex Distribution of Complex Normal

Variables�, Biometrika, vol. 43, pp.212�215, 1956.

Bastien Marchina (UM2) Complex random vectors 26 march 2013 48 / 49

Page 49: * Université Montpellier II, I3M - EPS ** Université de Montréal, …irma.math.unistra.fr/~gardes/SEMINAIRE/marchina.pdf · Gilles Ducharme*, Pierre Lafaye de Micheaux** and Bastien

Applications to goodness-of-�t tests

Thank you for your attention

Bastien Marchina (UM2) Complex random vectors 26 march 2013 49 / 49


Recommended