+ All Categories
Home > Documents > ò ± w: g ¶ Ö ´ t A ÿ ¢² s w ® Í ¯ T £ 1 · 2020. 8. 5. · 2020.5.7. ® Ú ¿ Ä h t ò...

ò ± w: g ¶ Ö ´ t A ÿ ¢² s w ® Í ¯ T £ 1 · 2020. 8. 5. · 2020.5.7. ® Ú ¿ Ä h t ò...

Date post: 31-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
18
2020.5.7.ʮϚʔέοτΛޠΔΊʹײછͷཧΛͿʢԼʣฤʯ 1 ײછͷཧΛͿɿ1 ϖʔδʹཁʢલճͷʮʯΒʣ 1. ·ɺΔͷײછʢ=ʮࡏݱɺײછதͷਓʯʣͷɺʮೖʯͱʮग़ʯͰ·Γ ·ΒɺͷͱΓʹॻͱͰ·ɻ ײ= نͷײճ෮ΔΔͰײછΒআ֎ΕΔਓͷ 2. ͷɺ৽نͷײછʹɺӸͷجతͳཧϞσϧʢSIR Ϟσϧʣʹ ͱɺͷ 4 ͷʮʯͰ·Γ·ɻ نͷײ= (1 ߦݶ) × ج× ໔ӸΛͳਓͷ߹ × ײ= (1 ߦݶ) × ߦݶͷ× ײ= ߦ ޙݶͷ× ײʮੜʯɺɺ৽ฉςϨϏɺΠϯλʔωοτɾϝσΟΞʹΑग़·ɻɺʮײ1 ਓΓɺײછΒճ෮ʢʣ·Ͱͷظʹ ɺฏ ۉɺԿਓʹײછΔʯΛݟΔͷͰɺΘɺײછͰɻʮجੜʯɺ ەࡉΠϧεຊདྷඋΔ ੜͰɺʮཧతͳঢ়ଶʯͰͷײછͰɻײછਓ ʹΛҾىΔΘͰΒɺ৽ܕίϩφΠϧεͷج1 Λճ ΔͱߟΒΕ·ʢɺLiu et al (2020) ɺ12 ͷҟͳΔਪܭՌΒɺϨϯδɿ 1.4-6.49ɺฏۉɿ3.29ɺதҐɿ2.79 ͱɺ·ͱΊ·ʣɻʮ ੜʯɺͰ ؍ΕΔɺͷ ੜͰɻߟΕΔओͳɺͷͱΓͰɻ 1. 1 ΛԼճΔΑͳߦݶΛߦɺײݮগʹసΔɻ 2. ɺߦݶΛղআΕɺʮ໔ӸΛͳਓͷ߹ʯґવߴ*Ί ʹɺײେΔɻʢ*ߦݶɺཧతʹɺͷΑͳͱʹΕΔɻʣ 3. ͳΘɺߦݶΛߦΘʹײݮগΔʹɺײછେΔ΄ͳ ɻɺײછͷʮݧܦʯɺϫΫνϯͷछʹΑՄͰΔɻ 4. ·ΓɺײછͷେΛΔΊʹɺʢༀʣϫΫνϯ։ΕΔ·Ͱɺ ఔͷΕɺߦݶΛଓΔ΄ͳɻ 5. ҬʹΑΔײછਪҠͷ૬ҧͷཁҼͱɺݕʢෆݦײછଟ߹ʣਓ ޱɺʢهͷΑΓʣ A. جੜΕମʢΠϧεͷҨʣɺ B. ߦͷ໔Ӹʢવ໔ӸͱଞͷϫΫνϯΛΉಘ໔Ӹʣɺ C1. ߦલͷߦ ݶʢ ɾखચɾϚεΫɾߦಈғͳͲͷश׳ʣɺC2. ޙߦͷߦݶڍΒΕΔɻ
Transcript
  • 2020.5.7. 1

    1 →

    1. =

    = −

    2. SIR

    4

    = (1− )× × ×

    = (1− )× ×

    = ×

    1

    1

    → Liu et al (2020) 12

    1.4-6.49 3.29 2.79

    1. 1

    2. *

    *

    3.

    4.

    5.

    A. B.

    C1.

    C2.

  • 2020.5.7. 2

    13 SIR 3

    13.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    13.2 SIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    13.3 R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    14 SIR 5

    15 6

    16 7

    16.1 . . . . . . . . . . . . . . . . . 7

    16.2 x y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    16.3 . . . . . . . . . . . . . . . . . . . . . . . 9

    16.4 x y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    16.5 x y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    16.6 y x ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    16.7

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    16.8 x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

  • 32020.5.7.

    13 SIR

    13.1

    1.

    2.

    3.

    3

    1. Susceptibles

    2. Infected

    3. Removed *1

    SIR 3 Susceptibles Infected

    Removed/Recovered 3

    S I R

    S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0 for 0 ≤ t

  • 2020.5.7. 4

    13.2 SIR

    SIR S I R t

    dS(t)

    dt= −β

    S(t)

    NI(t) (3)

    dI(t)

    dt= β

    S(t)

    NI(t)− γI(t) (4)

    dR(t)

    dt= γI(t) (5)

    β > 0 γ > 0

    dS(t) t dt

    S difference

    dS(t) = S(t+ dt)− S(t) (6)

    (3)(4)(5) 0

    dS(t)

    dt+

    dI(t)

    dt+

    dR(t)

    dt= 0 (7)

    dS(t) + dI(t) + dR(t) = 0 (8)

    N

    (2) t

    (4)(5) I γ R

    (5)(3) R S

    = *2

    → → (9)

    *2 1 =

  • 2020.5.7. 5

    13.3 R0

    R0 1

    =

    R0 =β

    γ(10)

    *3 (10) ×

    14 SIR

    (3)(4)(5)

    (3)(4)(5) N

    x(t) = S(t)/N y(t) = I(t)/N z(t) =

    R(t)/N (3)(4)(5)

    dx(t)

    dt= −βx(t)y(t) (11)

    dy(t)

    dt= βx(t)y(t)− γy(t) (12)

    dz(t)

    dt= γy(t) (13)

    β

    γ

    tx(t) + y(t) + z(t) = 1 (14)

    *3 Hethcote (2000)

  • 62020.5.7.

    0 ≤ x(t) ≤ 1, 0 ≤ y(t) ≤ 1, 0 ≤ z(t) ≤ 1 for 0 ≤ t

  • 72020.5.7.

    16

    16.1

    *4

    1.

    2.

    3.

    4.

    1. →

    2.

    3.

    4. →

    SIR

    x(t) = S(t)/N y(t) = I(t)/N z(t) = R(t)/N

    (11)(12)(13)

    dx(t)

    dt= −βxy = 0 (16)

    dy(t)

    dt= (βx− γ)y = 0 (17)

    dz(t)

    dt= γy = 0 (18)

    y = 0 (19)

    *4

  • 2020.5.7. 8

    y = 0 (x, y, z)

    x, y, z

    1. y

    2. y

    3. y

    16.2 x y

    (14) x(t) y(t)

    z(t) x y

    N

    t = 0

    t = 0

    y = 0

    (x(0), y(0), z(0)) = (x(0), 0, z(0)) (20)

    t = 0

    z

    y(x(0), y(0), z(0)) = (1, 0, 0) (21)

    y

    y(t) > 0; t > 0 (22)

  • 2020.5.7. 9

    t t = 0

    y(t)

    limt→0

    y(t) = 0 (23)

    t > 0 I 1

    N 1

    y = I/N t = 0

    I(0) = y(0) = 0

    x(0) > 0 (24)

    16.3

    y(t) (12)

    dy(t)

    dt= βx(t)y(t)− γy(t) (12)

    = (βx(t)− γ)y(t) (25)

    t > 0, t→ 0

    dy(t)

    dt= (βx(0)− γ)y(t) > 0 (26)

    (21)

    βx(0)− γ > 0 (27)

    βx(0) > γ (28)

    x(0) >γ

    β(29)

  • 2020.5.7. 10

    x(0) >γ

    β(30)

    16.4 x y

    (14) x(t) y(t)

    z(t) x y

    x(t) (11)

    dx(t)

    dt= −βx(t)y(t) (11)

    β > 0 (15)(22)(24) dx(t)/dt < 0

    x(t) t

    y(t) (12)

    dy(t)

    dt= βx(t)y(t)− γy(t) (12)

    = (βx(t)− γ)y(t) (25)

    (22) y(t) t x(t) (30)

    x(0) > γ/β

    1. x(t) > γ/β t dy(t)/dt > 0

    2. x(t) = γ/β t dy(t)/dt = 0

    3. x(t) < γ/β t dy(t)/dt < 0

    x(t) y(t)

  • 2020.5.7. 11

    16.5 x y

    x(t) y(t)

    (15)-(18) y = 0

    y(t)

    t = t∗

    (x(t∗), y(t∗), z(t∗)) = (x(t∗), 0, z(t∗)) (31)

    t = t∗

    y = 0

    t y(t)

    limt→∞

    y(t) = 0 (32)

    y = 0 t = 0 t→∞

    16.6 y x ?

    y

    x y

    x

    y x

    y x

  • 2020.5.7. 12

    y x

    = x y

    y

    (11)(12)(13)

    dx(t)

    dt= −βx(t)y(t) (11)

    dy(t)

    dt= βx(t)y(t)− γy(t) (12)

    dz(t)

    dt= γy(t) (13)

    (12) (11)

    dy(t)

    dx(t)= −1 +

    γ

    β

    1

    x(t)(33)

    = −1 +R−101

    x(t)(34)

    (34)

    y(t)− y(0)

    x(t)− x(0)= −1 +R−10

    1

    x(t)(35)

    y(t)− y(0) = x(0)− x(t) +R−10x(t)− x(0)

    x(t)(36)

    = x(0)− x(t)−R−10x(0)− x(t)

    x(t)(37)

    = x(0)− x(t)−R−10 logx(0)

    x(t)(38)

    = x(0)− x(t) +R−10 logx(t)

    x(0)(39)

    R−10 logx(t)

    x(0)= (y(t)− y(0)) + (x(t)− x(0)) (40)

    logx(t)

    x(0)= R0((y(t)− y(0)) + (x(t)− x(0)) (41)

    x(t)

    x(0)= exp

    {

    R0((y(t)− y(0)) + (x(t)− x(0))}

    (42)

  • 2020.5.7. 13

    x(t) = x(0) exp{

    R0((y(t)− y(0)) + (x(t)− x(0))}

    (43)

    = x(0) exp{

    R0((y(t) + x(t))− (y(0) + x(0))}

    (44)

    (43) t → ∞ (23)(32) x(t) x(∞) = limt→∞ x(t)

    x(∞) = x(0) exp{

    R0((y(∞)− y(0)) + (x(∞)− x(0))}

    (45)

    = x(0) exp{

    R0(x(∞)− x(0))}

    (46)

    = x(0) exp{

    −R0(x(0)− x(∞))}

    (47)

    (47) (24)

    x(∞) 6= 0 (48)

    (15)

    x(∞) > 0 (49)

    y x

    x y y

    (47) x(t)

    a. R0 b. x(0)

    16.7

    (23)(32) (38) x(t) x(∞) = limt→∞ x(t)

    x(0)− x(∞)−R−10 logx(0)

    x(∞)= 0 (50)

  • 2020.5.7. 14

    f(R0, x(0), x(∞)) = x(0)− x(∞)−R−1

    0 logx(0)

    x(∞)(51)

    R0

    dx(∞)

    dR0= −

    ∂f(R0, x(0), x(∞))/∂R0∂f(R0, x(0), x(∞))/∂x(∞)

    (52)

    = −

    −(

    −1

    R20

    )

    logx(0)

    x(∞)

    −1−R−10x(∞)

    x(0)

    (

    −x(0)

    (x(∞))2

    )

    (53)

    = −

    1

    R20log

    x(0)

    x(∞)

    −1 +R−10x(∞)

    (54)

    (30) (11)

    x(0) > R−10

    (

    β

    )

    > x(∞) (55)

    dx(∞)

    dR0< 0 (56)

    R0

    =

    x

    x(0)

    dx(∞)

    dx(0)= −

    ∂f(R0, x(0), x(∞))/∂x(0)

    ∂f(R0, x(0), x(∞))/∂x(∞)(57)

  • 2020.5.7. 15

    = −

    1−R−10x(∞)

    x(0)

    1

    x(∞)

    −1−R−10x(∞)

    x(0)

    (

    −x(0)

    (x(∞))2

    )

    (58)

    = −

    1−R−10x(0)

    −1 +R−10x(∞)

    (59)

    (55)

    dx(∞)

    dx(0)< 0 (60)

    =

    x

    16.8 x

    R0 = β/γ x(0)

    (17) y(t) (11) y ȳ > 0

    dy(t)

    dt= (βx̄− γ)ȳ = 0 (17)

    βx̄− γ = 0 (61)

    x̄ =γ

    β(62)

    =1

    R0(63)

    (38) (23)

    y(t) = x(0)− x(t)−1

    R0log

    x(0)

    x(t)(38)

  • 2020.5.7. 16

    ȳ = x(0)− x̄−1

    R0log

    x(0)

    x̄(64)

    = x(0)−1

    R0−

    1

    R0logR0x(0) (65)

    (65) R0

    ∂ȳ

    ∂R0= −

    (

    −1

    (R0)2

    )

    −(

    −1

    (R0)2

    )

    logR0x(0)−1

    R0

    x(0)

    R0x(0)(66)

    =1

    (R0)2−(

    −1

    (R0)2

    )

    logR0x(0)−1

    (R0)2(67)

    = −(

    −1

    (R0)2

    )

    logR0x(0) > 0 (68)

    →(30) R0x(0) > 1

    R0

    (65) x(0)

    ∂ȳ

    ∂x(0)= 1−

    1

    R0

    R0R0x(0)

    (69)

    = 1−1

    R0x(0)> 0 (70)

    →(30) R0x(0) > 1

    x(0)

  • 2020.5.7. 17

    [1] W. O. Kermack, and A. G. McKendrick, A Contribution to the Mathematical

    Theory of Epidemics, Proceedings of the Royal Society of London. Series A,

    Containing Papers of a Mathematical and Physical Character, Volume 115, Issue

    772 1927, 700-721

    [2] Herbert W. Hethcote, The Mathematics of Infectious Diseases , SIAM Review,

    42(4), 599653, 2000, Society for Industrial and Applied Mathematics

    [3] 2008 4

    NO.538

    [4] Tiberiu Harko, Francisco S. N. Lobo and M. K. Mak, Exact analytical solutions

    of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model

    with equal death and birth rates , Applied Mathematics and Computation, Volume

    236, 1 June 2014, Pages 184-194

    [5] Natsuko Imai, Ilaria Dorigatti, Anne Cori, Steven Riley, Neil M. Ferguson, Report

    2: Estimating the potential total number of novel Coronavirus cases in Wuhan

    City, China. [cited 24 Jan 2020].

    [6] Natsuko Imai, Anne Cori, Ilaria Dorigatti, Marc Baguelin, Christl A. Donnelly,

    Steven Riley, Neil M. Ferguson, Transmissibility of 2019-nCoV., Imperial College

    London (25-01-2020), doi: https://doi.org/10.25561/77148

    [7] Ying Liu, Albert A. Gayle, Annelies Wilder-Smith, and Joacim Rocklöv, The re-

    productive number of COVID-19 is higher compared to SARS coronavirus, Jour-

    nal of Travel Medicine, 1-4, 2020

    [8] Gypsyamber D Souza and David Dowdy, What is Herd Immunity and How Can

    We Achieve It With COVID-19?, Johns Hopkins University, Bloomberg School

    of Public Health, April 10, 2020

    [9] Paul Fine, Ken Eames, David L. Heymann, Herd Immunity : A Rough Guide,

    Clinical Infectious Diseases, Volume 52, Issue 7, 1 April 2011, Pages 911916,

    https://doi.org/10.1093/cid/cir007

  • 2020.5.7. 18

    [10] Aaron Miller, Mac Josh Reandelar, Kimberly Fasciglione, Violeta Roumenova,

    Yan Li, Gonzalo H Otazu, Correlation between universal BCG vaccination policy

    and reduced morbidity and mortality for COVID-19: an epidemiological study,

    medRxiv, The Preprint Server for Health Sciences,

    [11]

    [12]

    2018

    [13] 2000

    [14]

    2015 9 11


Recommended