+ All Categories
Home > Documents > Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Date post: 30-Sep-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
40
Werner Vogel Universit¨ at Rostock Germany
Transcript
Page 1: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Werner Vogel

Universitat RostockGermany

Page 2: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Contents

Introduction

Nonclassical phase-space functions

Nonclassical characteristic functions

General nonclassicality condition

Nonclassical moments of two quadratures

Measuring moments of two quadratures

Nonclassical moments of number and quadrature

Comments on entangled states

Summary

Page 3: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Introduction

Characterization of quantum states

Balanced homodyne detection:

Page 4: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Introduction

Measured quantities:

• Difference statistics⇔ quadrature operator:

xϕ = aeiϕ + a†e−iϕ

• Perfect detection, strong LO:

P∆m =1|α|

p(x =∆m|α|

, ϕ)

Page 5: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Introduction

Experimental realization :

Page 6: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Introduction

Experimental realization :

→ squeezed vacuum state

[Smithey, Beck, Raymer, Faridani, Phys. Rev. Lett. 70, 1244 (1993)]

Page 7: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Introduction

Tomographic quantum-state reconstruction:

• measuring p(x, ϕ) for ϕ . . . ϕ + π

→ Wigner function: W(α)

→ Density matrix

[K. Vogel and H. Risken, Phys. Rev. A40, 2847 (1989)]

Page 8: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical phase-space functions

P-representation of the density operator:

ρ =

∫d2αP(α) |α〉〈α|

• expectation values:

〈: F(a†, a) :〉 =∫

d2αP(α)F(α∗, α)

Page 9: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical phase-space functions

P-representation of the density operator:

ρ =

∫d2αP(α) |α〉〈α|

• expectation values:

〈: F(a†, a) :〉 =∫

d2αP(α)F(α∗, α)

Correspond to classical mean values:

(1) ”subtracting” ground-state noise via F→ : F :

(2) P corresponds to classical probability: P(α) ≡ Pcl(α)[U.M. Titulaer and R.J. Glauber, Phys. Rev. 140, B676 (1965)]

Page 10: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical phase-space functions

A state is nonclassical, if:

(a) ground-state noise is substantial;cf. also nonclassicality in weak measurements[L.M. Johansen, Phys. Lett. A 329, 184 (2004)]

Page 11: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical phase-space functions

A state is nonclassical, if:

(a) ground-state noise is substantial;cf. also nonclassicality in weak measurements[L.M. Johansen, Phys. Lett. A 329, 184 (2004)]

(b) P fails to be a classical probability: P(α) , Pcl(α);

– The only classical pure states are coherent ones![M. Hillery, Phys. Lett. A111, 409 (1985)]

– Squeezing: 〈: (∆xϕ)2 :〉 < 0– sub-Poissonian photon statistics: 〈: (∆n)2 :〉 < 0

Page 12: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical phase-space functions

A state is nonclassical, if:

(a) ground-state noise is substantial;cf. also nonclassicality in weak measurements[L.M. Johansen, Phys. Lett. A 329, 184 (2004)]

(b) P fails to be a classical probability: P(α) , Pcl(α);

– The only classical pure states are coherent ones![M. Hillery, Phys. Lett. A111, 409 (1985)]

– Squeezing: 〈: (∆xϕ)2 :〉 < 0– sub-Poissonian photon statistics: 〈: (∆n)2 :〉 < 0

• Sought: observable conditions for P(α) , Pcl(α)

• Problem: P(α) may be strongly singular!

Page 13: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical characteristic functions

Characteristic function of P(α):

Φ(β) =∫

d2αP(α) exp[(αβ∗ − α∗β)]

• Bochner Theorem (1933):

Φ(β) is a classical characteristic function, if and only ifn∑

i, j=1

Φ(βi − β j) ξi ξ∗

j ≥ 0,

for any integer n and all complex βi, ξk (i, k = 1 . . . n).

Page 14: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical characteristic functions

• Define matrix: Φi j = Φ(βi − β j)

• Theorem:

Φ(β) is a classical characteristic function, if and only if

Dk ≡ Dk(β1, . . . βk) =

∣∣∣∣∣∣∣∣∣∣∣1 Φ12 · · · Φ1kΦ∗12 1 · · · Φ2k. . . . . . . . . . . . . . . .Φ∗1k Φ

2k · · · 1

∣∣∣∣∣∣∣∣∣∣∣ ≥ 0

for any order k = 1, . . . ,+∞.

Page 15: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical characteristic functions

• Define matrix: Φi j = Φ(βi − β j)

• Theorem:

Φ(β) is a classical characteristic function, if and only if

Dk ≡ Dk(β1, . . . βk) =

∣∣∣∣∣∣∣∣∣∣∣1 Φ12 · · · Φ1kΦ∗12 1 · · · Φ2k. . . . . . . . . . . . . . . .Φ∗1k Φ

2k · · · 1

∣∣∣∣∣∣∣∣∣∣∣ ≥ 0

for any order k = 1, . . . ,+∞.

⇒ P(α) is not a probability if and only if there exist va-lues of k and βk (k = 2 . . .∞) with

Dk(β1, . . . βk) < 0

[Th. Richter and W. Vogel, Phys. Rev. Lett. 89, 283601 (2002)]

Page 16: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical characteristic functions

Observable characteristic functions of quadratures

G(k, ϕ) = Ggr(k)Φ(ike−iϕ),with Φ = 1 in the ground state

• First-order nonclassicality:[W. Vogel, Phys. Rev. Lett. 84, 1849 (2000)]

|G(k, ϕ)| > Ggr(k)

Page 17: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical characteristic functions

Observable characteristic functions of quadratures

G(k, ϕ) = Ggr(k)Φ(ike−iϕ),with Φ = 1 in the ground state

• First-order nonclassicality:[W. Vogel, Phys. Rev. Lett. 84, 1849 (2000)]

|G(k, ϕ)| > Ggr(k)

• applies to many nonclassical states:Fock, squeezed, even/odd coherent states, . . .

• experimental demonstration:mixture of a single photon with the vacuum state

ρ = η|1〉〈1| + (1 − η)|0〉〈0|

[A.I. Lvovsky and J.H. Shapiro, Phys. Rev. A 65, 033830 (2002)]

Page 18: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical characteristic functions

Direct observation via fluorescence

resonance fluorescence

Page 19: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical characteristic functions

Direct observation via fluorescence

resonance fluorescence

• Hamiltonian: Hint =12~(ΩA12 +Ω

∗A21

)x(ϕ)

[S. Wallentowitz and W. Vogel, Phys. Rev. Lett. 75, 2932 (1995)]

⇒ experimental realization

[P.C. Haljan, K.-A. Brickman, L. Deslauriers, P.L. Lee, and C. Monroe (2004)]

Page 20: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

General nonclassicality condition

Reformulation

• Hermitian Operator: f † f

• Normally ordered expectation value:

〈: f † f :〉 =∫

d2α | f (α)|2P(α),

⇒ nonnegative for P(α) = Pcl(α), for any operator f

Page 21: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

General nonclassicality condition

Reformulation

• Hermitian Operator: f † f

• Normally ordered expectation value:

〈: f † f :〉 =∫

d2α | f (α)|2P(α),

⇒ nonnegative for P(α) = Pcl(α), for any operator f

• Quantum state nonclassical, iff there exists f with

〈: f † f :〉 < 0

⇒ various choices of representations of f !

Page 22: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

General nonclassicality condition

Sufficient Conditions for nonclassicality:

• Sub-Possonian number statistics:

f ≡ ∆n = n − 〈n〉, n = a†a

⇒ condition:〈: f † f :〉 → 〈: (∆n)2 :〉 < 0

• Quadrature Squeezing:

f ≡ ∆xϕ = xϕ − 〈xϕ〉, xϕ = aeiϕ + a†e−iϕ

⇒ condition:〈: (∆xϕ)2 :〉 < 0

Page 23: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

General nonclassicality condition

Fourier representation

f =∫

d2α f (α) :D(−α) :

• condition〈: f † f :〉 < 0

• now reads as:∫d2α

∫d2β f (α) f ∗(β)Φ(α − β) < 0

→ continuous version of the Bochner condition!

→ criteria for characteristic functions: special represen-tation!

Page 24: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

General nonclassicality condition

Taylor expansion

f ≡ f (A, B) =∑n,m

fnm : AnBm :

Choice of A, B for complete description:

• Hermitian operators:

(a) A = xϕ, B = pϕ, pϕ ≡ xϕ+π/2(b) A = xϕ, B = n

• non-Hermitian operators:

(c) A = a†, B = a⇒ different types of complete sets of criteria!

Page 25: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical moments of two quadratures

Taylor expansion in quadratures

f = f (xϕ, pϕ) =∑n,m

fnm : xnϕpm

ϕ :

• nonclassicality condition

〈: f † f :〉 ⇒∑

n,m,k,l

fnm f ∗klMnm,kl(ϕ) < 0

whereMnm,kl(ϕ) = 〈: xn+k

ϕ pm+lϕ :〉

[E. Shchukin, Th. Richter, and W. Vogel, to be published]

Page 26: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical moments of two quadratures

In terms of determinants:

• determinants under study:

d(N)ϕ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 〈: xϕ :〉 〈: pϕ :〉 〈: x2ϕ :〉 〈: xϕpϕ :〉 〈: p2

ϕ :〉 . . .〈: xϕ :〉 〈: x2

ϕ :〉 〈: xϕpϕ :〉 〈: x3ϕ :〉 〈: x2

ϕpϕ :〉 〈: xϕp2ϕ :〉 . . .

〈: pϕ :〉 〈: xϕpϕ :〉 〈: p2ϕ :〉 〈: x2

ϕpϕ :〉 〈: xϕp2ϕ :〉 〈: p3

ϕ :〉 . . .〈: x2

ϕ :〉 〈: x3ϕ :〉 〈: x2

ϕpϕ :〉 〈: x4ϕ :〉 〈: x3

ϕpϕ :〉 〈: x2ϕp2

ϕ :〉 . . .〈: xϕpϕ :〉 〈: x2

ϕpϕ :〉 〈: xϕp2ϕ :〉 〈: x3

ϕpϕ :〉 〈: x2ϕp2

ϕ :〉 〈: xϕp3ϕ :〉 . . .

〈: p2ϕ :〉 〈: xϕp2

ϕ :〉 〈: p3ϕ :〉 〈: x2

ϕp2ϕ :〉 〈: xϕp3

ϕ :〉 〈: p4ϕ :〉 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣• Necessary and sufficient nonclassicality conditions:

there exist values of N (N ≥ 2) and ϕ with

d(N)ϕ < 0

Page 27: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical moments of two quadratures

Sufficient conditions:

(1) Restriction to second-order determinant:

d(2)ϕ = 〈: (∆xϕ)2 :〉 < 0

→ quadrature squeezing!

Page 28: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical moments of two quadratures

Sufficient conditions:

(1) Restriction to second-order determinant:

d(2)ϕ = 〈: (∆xϕ)2 :〉 < 0

→ quadrature squeezing!

(2) Third-order determinant:

d(3)ϕ = 〈: (∆xϕ)2 :〉〈: (∆pϕ)2 :〉 − 〈: ∆xϕ∆pϕ :〉2 < 0

→ moments of two quadratures, but:

d(3)ϕ = 〈: (∆xϕ)2 :〉min〈: (∆pϕ)2 :〉max

→ no new effect!

Page 29: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical moments of two quadratures

(3) Elimination of one quadrature:

q(n)ϕ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1⟨: xϕ :

⟩. . .⟨: xn−1

ϕ :⟩⟨

: xϕ :⟩ ⟨

: x2ϕ :⟩. . .

⟨: xn

ϕ :⟩

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⟨: xn−1

ϕ :⟩ ⟨

: xnϕ :⟩. . .⟨: x2n−2

ϕ :⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣→ nonclassicality conditions due to Agarwal:

q(n)ϕ < 0

[G.S. Agarwal, Opt. Commun. 95, 109 (1993)]

Page 30: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical moments of two quadratures

(4) Sub-determinants, for example:

s(2)ϕ =

∣∣∣∣∣∣∣⟨: x2

ϕ :⟩ ⟨

: x2ϕpϕ :

⟩⟨: x2

ϕpϕ :⟩ ⟨

: x2ϕp2

ϕ :⟩∣∣∣∣∣∣∣ < 0

→ Illustration for the quantum state:

|ψ〉 =|0〉 + c |3〉√

1 + |c|2

→ nonclassical for a larger parameter range!

Page 31: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical moments of two quadratures

→ no squeezing (q(2) > 0), but q(3), s(2) < 0 !

Page 32: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Measuring moments of two quadratures

Basic measurement scheme:

see also [J.W. Noh, A. Fougeres, and L. Mandel, Phys. Rev. Lett. 67, 1426 (1991)]

Page 33: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Measuring moments of two quadratures

• effective photon-number operators:

n1,2 =14

(n ± |α| pϕ + |α|2

)n3,4 =

14

(n ± |α| xϕ + |α|2

)• detecting correlations, such as:

〈: nin j :〉, 〈: nin jnk :〉, . . .

• advantage: insensitive to efficiencies of detectors!

• extension to high orders possible!

[M. Beck, C. Dorrer, I. A. Walmsley, Phys. Rev. Lett. 87, 253601 (2001)]

Page 34: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical number-quadrature moments

Taylor expansion in number and quadrature

• Reformulate the condition 〈: f † f :〉 < 0

• with the representation

f = f (xϕ, n) =∑

k,l

fkl : xkϕnl :

• Conditions in terms of number-quadrature moments:

Mk,l = 〈: xkϕnl :〉

⇒ Homodyne correlation measurements[W. Vogel, Phys. Rev. Lett. 67, 2450 (1991); Phys. Rev. A51, 4160 (1995);

H.J. Carmichael, H.M. Castro-Beltran, G.T. Foster, L.A. Orozco, Phys. Rev.

Lett. 85, 1855 (2000)]

Page 35: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Nonclassical number-quadrature moments

⇒ Observables of dissimilar types:xϕ continuous and n discrete and non-negative!

⇒ Two different types of nonclassicality conditions:∣∣∣∣∣∣∣∣∣∣∣1 M0,1 M1,0 · · ·

M0,1 M0,2 M1,1 · · ·

M1,0 M1,1 M2,1 · · ·

. . . . . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣ < 0

∣∣∣∣∣∣∣∣∣∣∣2M0,1 −M2,0 2M0,2 −M2,1 2M1,1 −M3,0 · · ·

2M0,2 −M2,1 2M0,3 −M2,2 2M1,2 −M3,1 · · ·

2M1,1 −M3,0 2M1,2 −M3,1 2M2,1 −M4,0 · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣ < 0

Page 36: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Comment on entangled states

Criteria for continuous variable entanglement

• Conditions based on second-order moments[L.M. Duan, G. Giedke, J.I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722

(2000); R. Simon, Phys. Rev. Lett. 84, 2726 (2000)]

• Negative partial transposition of density matrix

Page 37: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Comment on entangled states

Criteria for continuous variable entanglement

• Conditions based on second-order moments[L.M. Duan, G. Giedke, J.I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722

(2000); R. Simon, Phys. Rev. Lett. 84, 2726 (2000)]

• Negative partial transposition of density matrix

⇒ General test via NPT condition:

〈 f † f 〉PT < 0

⇒ Fourier representation (two modes):

f =∫

d2α1 f (α1, α2) :D(−α1)D(−α2) :

Page 38: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Comment on entangled states

Complete condition for negative PT

• Discrete version of 〈 f † f 〉PT < 0:n∑

i, j=1

eα∗

iα j+β∗

iβ jΦ(αi − α j, β∗

j − β∗

i ) ξi ξ∗

j < 0

Page 39: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Comment on entangled states

Complete condition for negative PT

• Discrete version of 〈 f † f 〉PT < 0:n∑

i, j=1

eα∗

iα j+β∗

iβ jΦ(αi − α j, β∗

j − β∗

i ) ξi ξ∗

j < 0

⇒ Conditions for determinants of characteristic functions

⇒ Observable conditions

⇒ Systematic check of NPT for non-Gaussian continuousquantum states!

⇒ Only sufficient criterion for entanglement!

Page 40: Werner Vogel - – sub-Poissonian photon statistics:h: (∆nˆ)2:i

Summary

• Nonclassical P-functions

• Nonclassical characteristic functions

• Nonclassical conditions for quadrature moments

• Measurement of quadrature moments

• Nonclassical number-quadrature moments

• Criteria for NPT of entangled states


Recommended