+ All Categories
Home > Documents > 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly...

0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly...

Date post: 20-Jan-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
48
. 0 Universiti Malaysia PAHANG Engineering • TechnOlogy • Cre-atMty SUPERVISOR'S DECLARATION I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy in Chemical Engineering. (Supervisor's Signature) Full Name : DR. SUNARTI BINTI ABDUL RAHMAN Position Date :JANUARY2017 (Co-supervisor's Signature) Full Name Position Date
Transcript
Page 1: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

.

0 Universiti Malaysia PAHANG Engineering • TechnOlogy • Cre-atMty

SUPERVISOR'S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Doctor of

Philosophy in Chemical Engineering.

(Supervisor's Signature)

Full Name : DR. SUNARTI BINTI ABDUL RAHMAN

Position

Date :JANUARY2017

(Co-supervisor's Signature)

Full Name

Position

Date

Page 2: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

0 Universiti Malaysia PAHANG EngtrteerWtg • Tecl'.nology • Creattvtty

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

(Student' s Signature)

Full Name : KHALID TURK! RASHID

ID Number : PKC 13009

Date : JANUARY2017

Page 3: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

POLY (VINYLIDE 11rnrnrn 1 0000117844

LUOROPROPYLENE)

HG.J...J.L.A.J vv ~ - ~DRD lYLDlVlDKJ-\.l'llb FOR

MEMBRANE DISTILLATION

KHALID TURKI RASHID

Thesis submitted in fulfilment of the requirements for the award of the degree of

Doctor of Philosophy in Chemical Engineering

Faculty of Chemical & Natural Resources Engineering

UNIVERSITI MALAYSIA PAHANG

JANUARY 2017

I J 7 APR 20t

Page 4: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

To my wife, my kids (Muhammad, Ali and Zahraa)

ii

~~-~ ~-----------

Page 5: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

ACKNOWLEDGEMENTS

In The Name of Allah Most Gracious Most Merciful. First, I would like to point out my gratitude and thanks to the One and The Almighty Creator, the Lord and Sustainer of the universe, and the Mankind, in particular; peace and blessings of Allah be upon the noblest of the Prophets and Messengers, our Prophet Mohammed and upon his family, companions and those who followed them in truth until the Day of Judgment. First and foremost I want to thank God for helping me to complete my thesis.

I would like to express my deepest thanks and gratitude to my supervisor Dr. Sunarti Binti Abdul Rahman for her support and assistance. I'm appreciate her suggestions, instructions and guidance over the research.

I would also like to thank my family for their enthusiasm for me to finish this attempt. I am also grateful to Iraqi Ministry of Higher Education and Scientific Research and University of Technology for giving me the permission for this study. I don't forget to thank to Professor Dr. Qusay F. Al Salhy, he is a first guide to me for scientific field research.

iii

Page 6: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

ABSTRAK

Membran gentian berongga poly (vinylidene fluoride~co-hexafluoropropylene), PVDF-co-HFP, telah berjaya dibikin melalui satu penggunaan kaedah fasa songsangan. Polyvinylpyrrolidone (PVP) (MW, K-30) telah digunakan sebagai satu penambah pembentukan liang untuk meningkatkan morfologi, struktur dan juga ciri- ciri pada membran PVDF-co-HFP. Dimethylacetamide (DMAc) telah digunakan sebagai pelarut. Kesan kepekatan PVP dalam larutan dop ke atas struktur membran telah dikaji untuk mendapat satu membran dengan ciri­ciri yang baik dan sesuai untuk. Membran Penyulingan Terus Sentuh (DCMD). Pengaruh kepekatan sodium klorida akueus (NaCl), kadar aliran suapan, suhu suapan kepada fluks penelapan membran gentian berongga PVDF -co-HFP telah dinilai. Ciri ciri morfologi untuk semua gerongga telah di kaji menggunakan field emission scanning electron microscopy (FESEM) dan juga atomic force microscopy (AFM). Pembentukan rongga mikro dalam membran PVDF-co-HFP telah diperhatikan dan sudut sentuh sedikit menurun dengan peningkatan PVP daripada (0 wt.% kepada 9 wt. %). Saiz liang pada gentian berongga nyata sekali meningkat daripada 0.097 Jlm kepada 0.286 Jlm dengan penambahan PVP (0 kepada 9) wt. %. PVP dalam larutan dop, memberi keputusan temyata meningkatkan fluks penelapan daripada 4.2 kepada 22 kg/m2h pada suhu suapan 80 °C. Juga, penolakan garam untuk semua gentian berongga ialah setinggi 99.98%. Ini juga telah menemukan ada peningkatan pada fluks penelapan daripada 14 kepada 22 kg/m2h pada suhu suapan 80°C dengan peningkatan pada kadar aliran suapan daripada 0.3 kepada 0.6 Llmin, di mana satu kenaikan pada kepekatan NaCl dalam aliran suapan 3.5 kepada 5 wt.% telah menjadi punca penurunan pada fluks penelapan daripada 22 kepada 14.7 kg/m2h pada membran dengan PVP 9 wt. %. Kejayaan pengubahsuaian menggunakan asid formik ke atas membran PVDF -co-HFP dengan PVP 5 wt. % telah terbukti dengan sudut sentuh meningkat daripada 97.8° kepada 109.9°, tekanan kemasukan cecair bagi air meningkat daripada 2 kepada 2.4 bar. Fluks penelapan terbaik bagi membran yang diubahsuai dengan PVP 9 wt. % adalah 23.9 kg/m2 h pada suhu suapan 80°C dengan suapan air laut. Pengoptimuman parameter operasi bagi membran gentian berongga PVDF-co-HFP untuk DCMD sistem telah dikaji. Pengaruh parameter operasi seperti suhu suapan ( 40-80) °C, kadar alir suapan (0.3-0.6 Llmin), juga kepekatan suapan di beza- bezakan daripada 3.5wt % hingga 5.0 wt. %, dan interaksi antara mereka kepada fluks penelapan membran PVDF-co-HFP telah dikaji ... Parameter operasi yang optimum telah ditentukan menggunakan Full Factorial dan teknik pengoptimuman Taguchi untuk mendapat kan bacaan fluks penelapan yang baik. Keputusan menunjukan yang membran PVDF-co-HFP mempunyai prestasi terbaik pada 20.4 (kg/m2 h) dengan suhu panas suapan pada 78.8 °C, 0.6 Llmin kadar alir suapan dan kadar kepekatan NaCl 3.5 wt. % . Keputusan ramalan dengan pembangunan model menunjukkan satu persetujuan dengan data eksperimen dengan kesalahan 6.95 %.

iv

Page 7: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

ABSTRACT

The poly (vinylidene fluoride-co-hexafluoropropylene), PVDF-co-HFP, hollow fibre membrane was successfully fabricated through an adoption in the phase inversion method. Polyvinylpyrrolidone (PVP) (MW, K-30) was utilized as a pore-forming additive to improve the morphology, structure and also characteristics of the PVDF-co-HFP membrane. Dimethylacetamide (DMAc) was used as solvent. Effects of the PVP concentration in dope solution on membrane structure were studied to obtain a membrane with good characteristics and be appropriate for Direct Contact Membrane Distillation (DCMD) applications. The impact of the concentration of aqueous NaCl solution, feed flow rate, and feed temperature on PVDF­co-HFP hollow fibre permeation flux was evaluated. Morphological properties of all fibres were studied via field emission scanning electron microscopy (FESEM) and also atomic force microscopy (AFM). The formation of microvoids in the PVDF-co-HFP membrane was observed and the contact angle was slightly declined with an increase of PVP from (0 wt. % to 9 wt. %). Pore size of the hollow fibre increased significantly from 0.097 Jlm to 0.286 Jlm with the addition of PVP (0 to 9) wt. %. PVP in the dope solution, resulting in a remarkable increase in the water permeation flux from 4.2 to 22 kg/m2h at feed temperature of 80 °C. Also, the salt rejection for all hollow fibres was as high as 99.98%. It was also discovered that there was an increase in the permeate flux from 14 to 22 kg/m2h at feed temperature of 80°C by increasing the feed flow rate from 0.3 to 0.6 L/min, whereas an increment in the NaCl concentration in the feed stream from 3.5 to 5 wt.% led to a decline in the membrane permeate flux from 22 to 14.7 kg/m2h of membrane with 9 wt.% PVP. The success of formic acid modification onto PVDF­co-HFP membrane with 5 wt.% PVP was proven by contact angle which increased from 97.8° to 109§, liquid entry pressure ofwater increased from 2 to 2.4 bar. Best permeate flux of the modified membrane with 9 wt. % PVP was about 23.9 kg/m2 h at 80°C feed temperature of sea water feed. The optimisation of the operating parameters of PVDF-co-HFP hollow fibre membrane for DCMD system was studied. The influence of the operation parameters, such as the feed temperature ( 40-80) °C, the feed flow rate (0.3-0.6 L/min), as well as the feed concentration varied from 3.5wt% to 5.0 wt. %, and their interactions on the PVDF-co-HFP membrane flux were investigated. The optimum operating parameters have been specified using Full Factorial and Taguchi optimization technique in order to obtain a good value of permeate flux. The results showed that PVDF-co-HFP membrane has best performance of20.4 (kg/m2 h) with the hot feed temperature of 78.8 °C, 0.6 L/min feed flow rate and 3.5 wt.% NaCl feed concentration. The predicted results by the developed model show a good agreement with the experimental data with a 6.95% error.

v

~~~~~~- ------~-~--------------~-----~----------

Page 8: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

-~--~-~~~~~

TABLE OF CONTENT

DECLARATION

TITELPAGE i

DEDICATION ii

ACKNOWLEDGEMENTS iii

ABSTRAK iv

ABSTRACT v

TABLE OF CONTENT vi

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOLS XV

LIST OF ABBREVIATIONS xviii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 8

1.3 Objectives of Study 9

1.4 Scopes of Study 10

1.5 Research Contribution 10

1.6 Thesis Arrangement 10

CHAPTER 2 LITERATURE REVIEW 12

2.1 Introduction 12

2.2 Applications of Membrane Distillation 13

vi

Page 9: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

2.3 Advantage ofMD Process 14

2.4 Membrane Preparation 14

2.4.1 Phase Inversion Method 15

2.4.2 Interfacial Polymerization (IP) 17

2.5 Membrane Bulk Modification 17

2.5.1 Additives and Blending Methods 17

2.5.2 Chemical Treatment 23

2.6 Membrane Surface Modification 24

2.6.1 Super hydrophobic Membrane 29

2.6.2 Coating Process 31

2.6.3 Plasma Modification Technique 32

2.6.4 Effect of formic acid on membrane structure 35

2.7 Modification for Other Applications ofMD 36

2.7.1 Gas Separation Application 36

2.7.2 Food Industries 41

2.7.3 Waste Water Treatment 41

2.8 Membrane Modules Modifications 42

2.9 Membrane Fouling 46

2.9.1 Fouling due to the Crystallisation 48

2.9.2 Fouling due to Corrosion 49

2.10 Flux Reduction 49

2.11 Heat and Mass Transfer Phenomena in DCMD 50

2.11.1 Heat and Mass Transfer Modelling 51

2.11.2 Heat Transfer 52

2.11.3 Heat Transfer Model 52

2.11.4 Mass Transfer 58

vii

Page 10: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

2.11.5 Mass Transfer Model 59

2.12 DCMD Optimisation 62

CHAPTER 3 MATERIALS & METHODOLOGY 64

3.1 Introduction 64

3.2 Research Methodology Framework 65

3.3 Materials 66

3.4 Preparation ofPolymer Solution 66

3.5 Membrane Fabrication 67

3.6 Membrane Modification 70

3. 7 Membrane Characterization 70

3. 7.1 Contact Angle 70

3. 7.2 Liquid Entry Pressure (LEP) 73

3. 7.3 Porosity 74

3.7.4 Thickness ofMembrane Layer 75

3. 7.5 Field Emission Scanning Electron Microscopy (FESEM) 75

3.7.6 Atomic Force Microscopy (AFM) 75

3.7.7 Fourier Transfer Infrared (FTIR) 75

3.8 DCMD Performance 76

CHAPTER4 RESULTS AND DISCUSSIONS 79

4.1 Introduction 79

4.2 Membrane Characterization 79

4.2.1 Contact Angle 79

4.2.2 Liquid Entry Pressure (LEP) 81

4.2.3 Membrane Porosity 82

viii

Page 11: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

4.3 The Effects ofPVP Content on the Membrane Structure 84

4.4 Morphology of Membrane Surface 89

4.5 Membrane Performance 94

4.5.1 Effects of PVP Content on Membrane Performance 94

4.5.2 Effects of Operating Conditions on DCMD Performance 96

4.5 .2.1 Feed Temperature 96

4.6 Membrane Salt Rejection Factor 104

4.7 Membrane Surface Modification Process 105

4.7.1 Chemical Surface Modification 105

4.7.2 Morphology Affected by Modification Process 106

4.7.3 Contact Angle Affected by Modification Process 108

4.7.4 FTIR Analysis 110

4.7.5 Liquid Entry Pressure 111

4.7.6 Performance ofModified PVDF--co-HFP Membrane 112

CHAPTER 5 OPTIMISATION AND MODELLING 114

5.1 Introduction 114

5.2 Optimisation of Operating Parameters 114

5.3 Analysis ofVariance (ANOVA) 116

5.4 Evaluating and Analysing Results 118

5.5 Parameters Interactions 120

5.6 Normal Probability Plot 121

5.7 Equivalence and Independence for Difference Assumptions 122

5.8 Response Surface Analysis 124

5.9 Optimisation ofDCMD Permeate Flux 128

5.10 Validity of Optimized Parameters 129

ix

Page 12: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

----.------------ -~--

5.11 Mathematical Model and Experimental Results 129

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 133

6.1 Introduction 133

6.2 Conclusions 133

REFERENCES 136

APPENDIX A 161

APPENDIXB 167

APPENDIXC 168

APPENDIXE 177

X

-~-~~------- -------

Page 13: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Table 2.1

Table 3.1

Table 3.2

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 5.1

Table 5.3

Table 5.4

LIST OF TABLES

Nusselt number correlations for laminar flow system. 58

Formulation of PVDF-co-HFP casting solutions 66

Spinning condition of the PVDF-co-HFP hollow fibre membrane 68

Contact angle ofPVDF-co-HFP hollow fibres 81

Meart pore size, (LEP), porosity and roughness of the inner and outer surfaces of the PVDF-co-HFP fibres 94

Comparison the performances ofPVDF-co-HFP membranes reported in the literature with that found in this work, (FS) is Flat-sheet; (HF) is Hollow fibre 96

Roughness of the outer and inner surface ofM1, M1*, M4 and M4*. PVDF-co-HFP hollow fibre membrane 106

LEPw of unmodified (M) and modified (M*) PVDF-co-HFP hollow fibre membranes 112

Codes and levels of input variables 115

AN OVA Analysis ofV ariance for PVDF -co-HFP flux rate. Response Surface Regression: J versus T; F; C 116

ANOVAforJ 117

Table 5.5 Unusual Observations of J 117

Table 5.6 Predicted Response for New Design Points Using Model for J 118

Table (A1) Contact angle ofhollow fibre membrane before and after modification 166

xi

Page 14: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Figure 1.1

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5

Figure 3.4

Figure 3.5

LIST OF FIGURES

Membrane distillation configurations 3

Distributions ofPS/Ti02 membranes pore size of (a) 0 wt. % Ti02, b: 1 wt.% Ti02, c: 2 wt.% Ti02, and d: 3 wt.% Ti02 21

Schematic illustration of CF4 plasma modification of the porous membranes 34

Structure ofMatrimid polyimide 37

Flux with different module designs configuration 45

Different module design and hollow fibre geometries configurations 45

Contact angle measurement for the inner surface. (A) Schematic diagram of the instrument for measuring the internal contact angle. (B) Force balance at interface boundary 72

Experimental set-up for measurement of water entry pressure. (1) Nitrogen tank, (2) regulating pressure valve, (3) pressure gauge, (4) water vessel, and (5) hollow fibre sample. 74

Figure 3.6 Schematic DCMD experimental setup 77

Figure 3. 7 Hollow fibre module 78

Figure 4.2 Effect ofPVP added on water entry pressure ofthe PVDF-HFP hollow fibre membranes 82

Figure 4.7 3D & 2D AFM images ofthe PVDF-HFP fibre M1 (A) inner surface; (B) outer surface 90

Figure 4.9 3D & 2D AFM images of the PVDF-HFP fibre M3 (A) inner surface; (B) outer surface 92

Figure 4.10 3D & 2D AFM images ofthe PVDF-HFP fibre M4 (A) inner surface; (B) outer surface 93

Figure 4.11 Permeate flux of the fibres M1, M2, M3and M4 under feed temperature of 80 °C and flow rate of 0.6 Llmin 95

Figure 4.12 Effects of feed temperature on the DCMD permeate flux for M1, M2, M3 and M4 97

Figure 4.13 Vapor pressure of feed stream as a function oftemperature 98

Figure 4.14 Permeation flux of the fibres as a function of flow rate ofthe feed at Tf 80 °C for M1, M2, M3, and M4 membranes 99

Figure 4.15 Effects ofNaCl feed concentration on the permeate flux for M1, M2, M3, and M4 membranes 101

Figure 4.16 Flux of permeate solution as a function of temperature of permeate side for M1, M2, M3 and M4 membrane with 0.6 Llmin feed flow rate at 80 ° C 102

Figure 4.17 Flow pattern in the hollow fibre membrane module A: Co-current, B: Counter-current configuration 103

xii

Page 15: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Figure 4-19 Effect of feed temperature on salt rejection for solution at 35000 ppm and 0.6 L/min feed flow rate 105

Scheme 4.1 Reaction ofPVDF-co-HFP membrane with formic acid. 106

Figure 4.20 3D & 2D AFM images of the PVDF-HFP fibre M1 (A) inner surface; (B) outer surface 107

Figure 4.21 3D & 2D AFM images of the PVDF-HFP fibre M4 (A) inner surface; (B) outer surface 108

Figure 4.23 Contact angle for Ml, M1 *, M2, M2*, M3, M3*, M4 and M4* PVDF-co-HFP hollow fibre membrane 110

Figure 4.24 FTIR spectra ofthe unmodified M4 membrane (1) and modified (2)111

Figure 5.1 Pareto Chart of the Parameters impacts on flux 119

Figure 5.2. Major impact plot for membranes permeate flux 120

Figure 5.3 Interaction plots for fibres permeate flux 121

Figure 5.4. Normal probability plot of residuals for PVDF-co-HFP fibres flux 122

Figure 5.5 Plot of residuals with data order. 123

Figure 5.6 The residuals versus fitted values Plot 123

Figure 5.7 A three-dimensional response surface for the expected flux as a function of feed flow rate and feed temperature at fixed fed concentration 125

Figure 5.8 Contour plot of the response surface of the expected flux as a function of feed flow rate and feed temperature 125

Figure 5.9 A three-dimensional response surface plot of the expected flux as a function of feed flow rate and feed concentration at fixed feed temperature 126

Figure 5.10 A contour plot of the response surface of the expected flux as a function of feed flow rate and feed concentration 126

Figure 5.11 A three-dimensional response surface plot of the expected flux as a function of feed temperature and feed concentration at fixed feed flow rate 127

Figure 5.12 A contour plot of the response surface of the expected flux as a function of feed temperature and feed concentration 127

Figure 5.13 Optimisation chart of operational variables for maximum flux for sea water 128

Figure 5.14 Modelling and experimental permeate flux as a function of feed temperatures 130

Figure 5.15 Modelling and experimental permeate flux as a function of feed flow rate 131

Figure 5.16 Modelling and experimental permeate flux as a function of feed concentration 132

FigureA.1 Calibration curve for NaCl concentration with conductivity 162

xiii

Page 16: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

FigureA2

FigureA3

Figure B1

Figure C.2

Figure C.3

Figure C.4

Figure C.5

Figure D.1

Membrane weight for M1 after modification process

membrane for M1 after modification process

FTIR spectra of the modified for M1, M2, M3

164

165

167

Cross-section structure of fibres prepared with various concentrations ofPVD-HFP copolymer: A: C17, B: C19, C: C20, D: C22 and E: C24 169

SEM images foruncoated surface ofPVDF membrane 170

SEM images for coated surface ofPVDF membrane with chitosan 2.0% (w/v) 171

Schematic illustration of the effect of anti -plasticisation 172

PVDF-co-HFP hollow fibre spinning system 173

Figure D.2 Picture ofDCMD system: 1, 2: Thermometers.3, 4: Gauge pressure.5: Module. 6: Permeate pump.7: Feed pump.8, 9: Permeate &Feed Flow meter 10: Water bath.11: Refrigerator .12: Feed tank.13: Permeate tank 174

Figure D.3 Field Emission Scanning Electron Microscopy (FESEM) 175

Figure D.4 Atomic force microscopy (AFM) 176

xiv

Page 17: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

LIST OF SYMBOLS

Symbol Description

A Membrane Active Area (m2)

B Geometric Factor

Mass transfer coefficient (m/sec)

Concentration of Feed Aqueous NaCI Solution (mol/L)

Specific Heat Capacity (J/K)

Concentration of Permeate Aqueous NaCl Solution (mol/L)

Hydraulic Diameter (m)

Inner Hollow Fibre Membrane Diameter (mm)

Outer Hollow Fibre Membrane Diameter (mm)

Maximum Pore Diameter (J.lm)

F Surface Tension Force (N/m)

g Acceleration due to Gravity (m/s2)

G Collecting Permeate Water Reading (L/h)

H Water Level Between Cusp and Water Surface in the Beaker (mm)

HEC Hydraulic Energy Consumption

XV

Page 18: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

hr Heat Transfer Coefficient of the Feed Zone W/(m2K)

Heat Transfer Coefficient of the Membrane W/(m2K)

Heat Transfer Coefficient of the Permeate Zone W/(m2K)

J Vapor Flux (kg/m2 h)

Effective Membrane Conductivity (W /mK)

Solid and Vapour Thermal Conductivity Coefficient

L Effective Length of Hollow Fibres (m)

N Number of Fibres inside the Module

p Total Pressure inside the Membrane (bar)

Air Pressure in the Membrane (bar)

Diffusion Coefficient (m2/s)

Partial Pressures of Water at the Feed and Permeate Part (bar)

R Universal Gas Constant (kg m2 /mol K s2)

r Pore Radius (J..Lm)

R% Membrane Salt Rejection Factor of Aqueous NaCl Solution

Liquid-Vapour Interface (Feed and Permeate) Temperatures (0 C)

Feed and Permeate Temperatures e C)

Mean Temperature e C)

xvi

Page 19: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

u

xA

y

Nu

Pr

Re

y

e

AV

p

Feed Velocity (m/s)

Mole Fraction of Water Vapor in the Pore

Liquid Mole Fraction

wetted perimeter (m)

Nusselt number

Prandtl number

Reynolds number

Liquid Surface Tension (N/m)

Membrane Porosity (%)

Contact Angle Between the Membrane Surface and the Solution (degree)

Dynamic viscosity, N s/m2

Latent Heat of Vaporization (J/kg)

Water Density (kg /m3)

Membrane Tortuosity (No unit)

Thickness of the Membrane (mm)

Weight loss (g)

xvii

~~~~~- ------------ -~~~~- --- --------~--------

Page 20: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

LIST OF ABBREVIATIONS

AFM Atomic force microscopy

AGMD Air Gap Membrane Distillation

ANOVA Analysis of Variance

CFD Computational Fluid Dynamics

c~ Methane

CMF Critical Membrane Flux

CMS Carbon molecular sieves

Carbon dioxide

DCMD Direct Contact Membrane Distillation

DDS Dimethydichlorosilane

DI Deionized Water

DMAc Dimethylacetamide

DSC Differential Scanning Calorimetric

EDA Ethylenediamine

EE Thermal Efficiency

xviii

Page 21: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

------- ---~------ - -----

FESEM Field Emission Scanning Electron Microscopy

FTIR Fourier transforms infrared spectroscopy

Hydrogen Gas

LEP Liquid entry pressure

LiCl Lithium Chloride

LiOH Lithium Hydroxide

MD Membrane distillation

MDES Methyldiethoxysilane

MF Microfiltration

MPC 2-methacryloylo:xyethyl phosphorylcholine polymer

MTS Methyltrichlorosilane

Mv Viscosity-Average Molecular weight

Molecular Weight (kg/mol)

Nitrogen Ga5

NaCl Sodium Chloride

NF Nano filtration

xix

Page 22: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

--~--------------------------

Oxygen

OD Osmotic Distillation Process

PAC Powdered activated carbon

PAS Positron Annihilation Spectroscopy

PBI Poly (benzimidazole)

PDMS Polydimethylsiloxane

PEG Poly (ethylene glycol)

PEl Polyetherimide

PES Polyethersulfone

pp Polypropylene

PTFE Polytetra:fluoroethylene

PVDF-co-HFP Poly (vinylidene fluoride-co-hexa:fluoropropylene)

PVP Polyvinylpyrrolidone

RF Radio frequency

RO Reverse Osmosis

SEM Scanning Electron Microscope

XX

Page 23: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

-- --- -------------- -- ------- ----- ----- - -------~---_-___ --,.~-- --__ -_--, -_----; _-, ... - -------

SGMD Sweep Gas Membrane Distillation

SMMs Surface Modifying Macromolecules

TEOS Tetraethoxysilane

Titanium dioxide/Polystyrene

TMSCl Trimethylchlorosilane

UF Ultrafiltration

VMD Vacuum Membrane Distillation

XPS X-Ray Photoelectron Spectroscopy

XRD X-ray Diffraction

xxi

Page 24: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

REFERENCES

Adham, S., Hussain, A., Matar, J. M., Dores, R., and Janson, A. (2013). Application of membrane distillation for desalting brines from thermal desalination plants.

Desalination, 314, 101-108.

Ahmad, A. L., Abdulkarim, A. A., Ooi, B. S., and Ismail, S. (2013). Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chemical engineeringjournal,223, 246-267.

Al-Amoudi, A.and Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF

membranes and factors affecting cleaning efficiency. Journal of Membrane Science,303(1), 4-28.

Ali, A., Macedonio, F., Drioli, E., Aljlil and Alharbi, 0. A. (2013). Experimental and theoretical

evaluation of temperature polarization phenomenon in direct contact membrane distillation. Chemical Engineering Research and Design,91(10), 1966-1977.

Alkhudhiri, A., Darwish, N.and Hilal, N. (2012).Membrane distillation: A comprehensive

review. Desalination, 287,2-18.

Alklaibi, A. M., & Lior, N. 2005. Transport analysis of air-gap membrane distillation. Journal of membrane scienc,. 255(1), 239-253.

Alklaibi, A. M.and Lior, N. (2005). Membrane-distillation desalination: status and potential. Desalination, 171 (2), 111-131.

Alklaibi, A. M.and Lior, N. (2006). Heat and mass transfer resistance analysis of membrane distillation. Journal of membrane science, 282(1), 362-369.

Alsaadi, A. S., Ghaffour, N., Li, J. D., Gray, S., Francis, L., Maab, H. and Amy, G. L. (2013). Modeling of air-gap membrane distillation process: a theoretical and experimental

study. Journal of Membrane Science, 445, 53-65.

Al Malek, S. A., Seman, M. A., Johnson, D., and Hilal, N. (2012). Formation and characterizationcof polyethersulfone membranes using different concentrations of

polyvinylpyrrolidone. Desalination,288, 31-39.

136

Page 25: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Andrjesd6ttir, 6. Ong, C. L., Nabavi, M., Paredes, S., Khalil, A. S. G., Michel, B.and Poulikakos, D. (2013). An experimentally optimized model for heat and mass transfer in direct contact membrane distillation. International Journal of Heat and Mass Transfe,.66, 855-867.

Atchariyawut, S., Feng, C., Wang, R., Jiraratananon, Rand Liang, D. T. (2006). Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers. Journal of Membrane Science, 285(1), 272-281.

Ayyavoo, J., Nguyen, T. P. N., Jun, B. M., Kim, I. C., and Kwon, Y. N. (2016). Protection of polymeric membranes with antifouling surfacing via surface modifications. Colloids and Surfaces A: Physicochemical and Engineering Aspects,506, 190-201.

Bakeri, G., Matsuura, T., Ismail, A. F., & Rana, D. (2012). A novel surface modified polyetherimide hollow fiber membrane for gas-liquid contacting processes. Separation and purification technology, 89, 160-170.

Balabin, R. M. (2009). Polar (acyclic) isomer of formic acid dimer: Gas-phase Raman spectroscopy study and thermodynamic parameters. The Journal of Physical Chemistry A, 113(17), 4910-4918.

Berthier, J. (2012). Micro-drops and digital microjluidics. 2nd ed. USA: William Andrew.

Bhattacharya, A., Rawlins, J. W., and Ray, P. (Eds.). (2009). Polymer grafting and cross/inking. Hoboken, NJ: John Wiley.

Bolong, N., Ismail, A. F., Salim, M. R., Rana, D.and Matsuura, T. (2009). Development and characterization of novel charged surface modification macromolecule to polyethersulfone hollow fiber membrane with polyvinylpyrrolidone and water. Journal of Membrane Science,331(1), 40-49.

Bonyadi, S.and Chung, T. S. (2009). Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach. Journal of Membrane Science,331(1), 66-74.

Bonyadi, S.and Chung, T. S. (2007). Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes. Journal of Membrane Science, 306 (1), 134-146.

137

Page 26: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Bottino, A., Capannelli, G., Munari, S., and Turturro, A. (1988). High performance ultrafiltration membranes cast from LiCl doped solutions. Desalination, 68(2-3), 167-177.

Bouchrit, R., Boubakri, A., Hafiane, A.and Bouguecha, S. A. T. (2015). Direct contact membrane distillation: Capability to treat hyper-saline solution. Desalination, 376,.117-129.

Bui, V. A., Vu, L. T. T.and Nguyen, M. H. (2010). Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules. Journal of Membrane Science, 353(1), 85-93.

Burgoyne, A., and Vahdati, M. M. (2000). Direct contact membrane distillation. Separation Science and Technology, 35(8), 1257-1284.

Cadotte, J. E., Petersen, R. J., Larson, R. E., & Erickson, E. E. (1980). A new thin-film composite seawater reverse osmosis membrane. Desalination, 32, 25-31.

Camacho, L. M., Dumee, L., Zhang, J., Li, J. D., Duke, M., Gomez, J.and Gray, S. (2013). Advances in membrane distillation for water desalination and purification applications. Water, 5(1), 94-196.

Cao, J. H., Zhu, B. K., Lu, H., and Xu, Y. Y. (2005). Study on polypropylene hollow fiber based recirculated membrane bioreactor for treatment of municipal wastewater. Desalination, 183(1), 431-438.

Cao, J. H., Zhu, B. K.and Xu, Y. Y. (2006). Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes. Journal of membrane science,281(1), 446-453.

Cath, T. Y., Adams, V. D., & Childress, A. E. (2004). Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement. Journal of Membrane Science. 228(1), 5-16.

Chakrabarty, B., Ghoshal, A. K., and Purkait, M. K. (2008). Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. Journal of Membrane Science,315(1), 36-47.

Chanachai, A., Meksup, K.and Jiraratananon, R. (2010). Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and flavor loss in osmotic distillation process. Separation and Purification Technology, 72(2), 217-224.

138

Page 27: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

--------

Chen, G., Lu, Y., Krantz, W. B., Wang, R.and Fane, A. G. (2014). Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge. Journal of Membrane Science, 450, 1-11.

Chen, H.Z., Xiao, Y. C.and Chung, T. S. 2011. Multi-layer composite hollow fiber membranes derived from poly (ethylene glycol) (PEG) containing hybrid materials for CO 2/N 2 separation. Journal of Membrane Science, 381(1), 211-220.

Chemyshov, M. N., Meindersma, G. W.and de Haan, A. B. (2003). Modelling temperature and salt concentration distribution in membrane distillation feed channel. Desalination, 157(1 ), 315-324.

Choi, S. H., Tasselli, F., Jansen, J. C., Barbieri, G.and Drioli, E. (2010). Effect of the preparation conditions on the formation of asymmetric poly (vinylidene fluoride) hollow fibre membranes with a dense skin. European Polymer Journal, 46(8), 1713-1725.

Chuang, W. Y., Young, T. H., Chiu, W. Y.and Lin, C. Y. (2000). The effect of polymeric additives on the structure and permeability of poly (vinyl alcohol) asymmetric membranes. Polymer, 41(15), 5633-5641.

Couto, D. S., Dornier, M., Pallet, D., Reynes, M., Dijoux, D., Freitas, S. P.and Cabral, L. M. (2011). Evaluation of nanofi ltration membranes for the retention of anthocyanins of a~ai (Euterpe oleracea Mart.) juice. Desalination and Water Treatment, 27(1-3), 108-113.

Criscuoli, A., Carnevale, M. C., and Drioli, E. (2008). Evaluation of energy requirements in membrane distillation. Chemical Engineering and Processing: Process Intensification, 47(7), 1098-1105.

Curcio, E.and Drioli, E. (2005). Membrane distillation and related operations-a review. Separation and Purification Reviews, 34(1), 35-86.

Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S.and Chowdhury, Z. Z. (2014). Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination.,336, 97-109.

Das, S., Kumar, P., Dutta, K.and Kundu, P. P. (2014). Partial sulfonation ofPVDF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell. Applied Energy, 113, 169-177.

139

Page 28: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

---- ----- ---

Deshmukh, S. K. (20 11 ). Performance Enhancement of Membrane Distillation Process of Fruit Juice. Journal of Membrane Science and Technology,l(2), 1-6.

Deshmukh, S. P.and Li, K. (1998). Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes. Journal of Membrane Science,l50(1), 75-85.

Devi, S., Ray, P., Singh, K.and Singh, P. S. (2014). Preparation and characterization of highly micro-porous PVDF membranes for desalination of saline water through vacuum membrane distillation. Desalination, 346, 9-18.

Ding, Z., Ma, Rand Faile, A. G. (2003). A new model for mass transfer in direct contact membrane distillation. Desalination, 151(3), 217-227.

Dingwall, P. A.(2013). Mechanistic insights into organocatalysis. Ph.D.Thesis. Imperial College , UK.

Drioli, E., & Wu, Y. (1985). Membrane distillation: an experimental study. Desalination, 53(1), 339-346.

Drioli, E., Ali, A.and Macedonia, F. (2015). Membrane distillation: Recent developments and perspectives. Desalination, 356, 56-84.

Duong, H. C., Cooper, P., Nelemans, B., Cath, T. Y., and Nghiem, L. D. (2015). Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small­scale seawater desalination. Desalination, 3 7 4, 1-9.

Edwie, F., Teoh, M. M., and Chung, T. S. (2012). Effects of additives on dual-layer hydrophobic-hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance. Chemical engineering science,68(1), 567-578.

Edwie, F.and Chung, T. S. (2012). Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization. Journal a/Membrane Science, 421, 111-123.

El-Bourawi, M. S., Ding, Z., Ma, Rand Khayet, M. (20060. A framework for better understanding membrane distillation separation process. Journal of Membrane Science,285(1), 4-29.

140

Page 29: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Eleiwi, F., Ghaffour, N., Alsaadi, A. S., Francis, Land Laleg-Kirati, T. M.2016. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process. Desalination. 3 84, 1-11.

Eleiwi, F., and Laleg-Kirati, T. M. (2014). Dynamic modeling and optimization in membrane

distillation system. IFAC Proceedings, 47(3), 3327-3332.

Epstein, N. (1988). Particulate fouling of heat transfer surfaces: mechanisms and models. In Fouling science and technology (143-164). Springer Netherlands.

Eykens, L, Hitsov, I., De Sitter, K., Dotremont, C., Pinoy, L., Nopens, I., & Vander Bruggen,

B. (2016). Influence of membrane thickness and process conditions on direct contact

membrane distillation at different salinities. Journal of Membrane Science, 498, 353-364.

Eykens, L, Hitsov, I., De Sitter, K., Dotremont, C., Pinoy, L, Nopens, I., and Vander Bruggen, B. (2016). Influence of membrane thickness and process conditions on direct contact

membrane distillation at different salinities. Journal of Membrane Science, 498, 353-

364.

Fane, A. G., Wang, Rand Hu, M. X. (2015). Synthetic membranes for water purification: status

and future. Angewandte Chemie International Edition,54(11), 3368-3386.

Pard, A. K., Rhadfi, T., Khraisheh, M., Atieh, M. A., Khraisheh, M.and Hilal, N. (2016). Reducing flux decline and fouling of direct contact membrane distillation by utilizing

thermal brine from MSF desalination plant. Desalination.,379, 172-181.

Pard, A. M. K.(2013). Membrane istillation desalination: water quality and energy efficiency analysis .PhD Thesis. Qatar university.QTR.

Favvas, E. P., Papageorgiou, S. K., Nolan, J. W., Stefanopoulos, K. Land Mitropoulos, A.

C.(2013). Effect of air gap on gas permeance/selectivity performance of BTDA­

TDI/MDI copolyimide hollow fiber membranes. Journal of Applied Polymer Science,130 (6), 4490-4499.

Feng, C. Y., Khulbe, K. C., Matsuura, T., and Ismail, A. F. (2013). Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications. Separation and Purification Technology, Ill, 43-71.

141

Page 30: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

--~--~------------~----- ~--=-=---=---=---=--

Feng, C., Shi, B., Li, G.and Wu, Y.(2004). Preparation and properties of microporous

membrane from poly (vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane

distillation. Journal of membrane science, 237(1), 15-24.

Feng, C., Wang, R., Shi, B., Li, G.and Wu, Y. (2006). Factors affecting pore structure and

performance of poly (vinylidene fluoride-co-hexafluoro propylene) asymmetric porous

membrane. Journal of membrane science, 277(1), 55-64.

Figoli, A., Hoinkis, J.and Bundschuh, J. (2016). Membrane Technologies for Water Treatment: Removal of Toxic Trace Elements with Emphasis on Arsenic.2nd ed.Fluoride and

Uranium. CRC Press.

Findley, M. E.(1967).Vaporization through porous membranes. Industrial and Engineering Chemistry Process Design and Development, 6(2), 226-230.

Fontananova, E., Jansen, J. C., Cristiano, A., Curcio, E., & Drioli, E. (2006). Effect of additives

in the casting solution on the formation of PVDF membranes. Desalination, 192(1),

190-197.

Fosi-Kofal, M., Mustafa, A., Ismail, A. F., Rezaei-DashtArzhandi, M., and Matsuura, T. (2016).

PVDF /CaCO 3 composite hollow fiber membrane for CO 2 absorption in gas-liquid

membrane contactor. Journal ofNatural Gas Science and Engineering, 31,428-436.

Franken, A. C. M. (2009). Prevention and control of membrane fouling: practical implications

and examining recent innovations. Amersfoort, Netherlands: Institute for Sustainable

Process Technology.

Fujii, Y., Kigoshi, S., Iwatani, H.and Aoyama, M.(1992). Selectivity and characteristics of

direct contact membrane distillation type experiment. I. Permeability and selectivity

through dried hydrophobic fine porous membranes. Journal of membrane

science, 72(1), 53-72.

Garcia-Payo, M. C., Rivier, C. A., Marison, I. W.and Von Stockar, U. (2002). Separation of

binary mixtures by t.hermostatic sweeping gas membrane distillation: II. Experimental

results with aqueous formic acid solutions. Journal of Membrane Science, 198(2), 197-

210.

Garcia-Payo, M.D. C., Essalhi, M.and Khayet, M.(2010). Effects ofPVDF-HFP concentration

on membrane distillation performance and structural morphology of hollow fiber

membranes. Journal of Membrane Science,347(1), 209-219.

142

Page 31: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

------------ ------------------- ----------- ------------- ------- -- - - - --- -- -- -- - -- - ------ - --- -- --------- - -------- - --------------------------------- _" __ _

Garda~Payo, M. D. C., Izquierdo-Gil, M. A.and Femandez~Pineda, C.(2000). Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions. Journal of colloid and interface science,230(2), 420-431.

Greenlee, L. F., and Rentz, N. S. (2016). Influenceofnanoparticle processing and additives on PES casting solution viscosity and cast membrane characteristics. Polymer, I 03, 498-508

Gryta, M. (2005). Long-term performance of membrane distillation process. Journal of Membrane Science,265(1), 153-159.

Gryta, M. (2011). Water desalination by membrane distillation. Desalination,!, 21-40.

Gryta, M., Markowska-Szczupak, A., Bastrzyk, J., and Tomczak, W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. Journal of membrane science,431, 1-8.

Gryta, M., Tomaszewska, M., Grzechulska, J.and Morawski, A. W.(2001). Membrane distillation of NaCl solution containing natural organic matter. Journal of Membrane

Science, 181(2), 279-287.

Gryta, M., Tomaszewska, M.and Morawski, A. W. (1997). Membrane distillation with laminar flow. Separation and Purification Technology, 11(2), 93-101.

Gryta, M.(2000). Concentration of saline wastewater from the production of heparin. Desalination, 129(1), 35-44.

Gryta, M.(2008). Fouling in direct contact membrane distillation process. Journal of membrane science,325(1), 383-394.

Gryta, M.and Barancewicz, M. (2010). Influence of morphology ofPVDF capillary membranes on the performance of direct contact membrane distillation. Journal of Membrane

Science,358(1), 158-167.

Hausmann, A., Sanciolo, P., Vasiljevic, T., Weeks, M., Schroen, K., Gray, S., and Duke, M. (2013). Fouling mechanisms of dairy streams during membrane distillation. Journal of

membrane science, 441, 102-111.

He, F., Gilron, J., Lee, H., Song, Land Sirkar, K. K. (2008). Potential for scaling by sparingly soluble salts in crossflow DCMD. Journal of Membrane science, 311(1), 68-80.

143

Page 32: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

~~~~ ~--~---------- -----------~------~-- -- ~-- -~- ~- -- -- -- ------ -- -- --- -- --- ~----- -- -~ ----~~-- ------ -~--=--=-----_-_-

Heidi Lynn, R., Priscilla GL, B.and Emmanuel, I. (2012). Metal nanoparticle modified polysulfone membranes for use in wastewater treatment: a critical review. Journal of Surface Engineered Materials and Advanced Technology,2,183-193.

Hestrin, S. (1949). The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. Journal of Biological Chemistry, 180(1), 249-261.

Hilal, N., Khayet, M.and Wright, C. J .(2012). Membrane modification.1 st .ed. Technology and applications. CRC Press.

Hogan, P. A., Fane, A. G.and Morrison, G. L. (1991). Desalination by solar heated membrane distillation. Desalination.,81(1), 81-90.

Holman, J.P. (1989) Heat Transfer. 2nd ed.USA:McGraw-Hill.

Hosseini, S. S., Peng, N.and Chung, T. S. (2010). Gas separation membranes developed through integration of polymer blending and dual-layer hollow fiber spinning process for hydrogen and natural gas enrichments. Journal of Membrane Science, 349(1), 156-166.

Hou, D., Wang, J., Qu, D., Luan, Z.and Ren, X. (2009). Fabrication and characterization of hydrophobic PVDF hollow fiber membranes for desalination through direct contact membrane distillation. Separation and Purification Technology,69(1), 78-86,

Hou, D., Wang, J., Sun, X., Ji, Z.and Luan, Z. (2012). Preparation and properties of PVDF composite hollow fiber membranes for desalination through direct contact membrane distillation. Journal of Membrane Science, 405, 185-200.

Hsu, S. T., Cheng, K. T.and Chiou, J. S. (2002). Seawater desalination by direct contact membrane distillation. Desalination, 143(3), 279-287.

Hwang, H. J., He, K., Gray, S., Zhang, J.and Moon, I. S. (2011). Direct contact membrane distillation (DCMD): Experimental study on the commercial PTFE membrane and modeling. Journal of Membrane Science, 371(1), 90-98.

Ibrahim, S. S.and Alsalhy, Q. F. (2013). Modeling and simulation for direct contact membrane distillation in hollow fiber modules. AIChE Journal,59(2), 589-603.

144

Page 33: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

------------------- ----- ------------ ---------- -------- ------------- - ------ ------------------------------------~

Imdakm, A. 0., and Matsuura, T. (2005). Simulation of heat and mass transfer in direct contact membrane distillation (MD): The effect of membrane physical properties. Journal of membrane science, 262(1), 117-128.

Inc, L (2004). Membrane technology benefits the food processing industry. Filtration and separation, 41(8), 32-33.

Ismail, A. F .and Hassan, A. R. (2007). Effect of additive contents on the performances and structural properties of asymmetric polyethersulfone (PES) nanofiltration membranes. Separation and purification technology, 55(1), 98-109.

Jafari, R., Tatoulian, M., Morscheidt, W., and Arefi-Khonsari, F. (2006). Stable plasma polymerized acrylic acid coating deposited on polyethylene (PE) films in a low frequency discharge (70kHz). Reactive and functional polymers,66(12), 1757-1765.

Janajreh, L and Suwwan, D. (2014). Numerical Simulation of Direct Contact Membrane Desalination in Conjugate Heat Transfer Configuration: Role of Membrane Conductivity. International Journal of Sustainable Water and Environmental Systems, 6(2), 81-87.

Jeong, S., Lee, K., Kim, H. S., and Lee, S. (2016). Modification of hi-composite membrane support layer by macro puncture for membrane distillation application. Desalination, 385, 106-116.

Jonsson, A. S.,Wimmerstedt, R. and Harrysson, A. C.(1985). Membrane distillation-A theoretical study of evaporation through microporous membranes. Desalination,56, 237-249.

Karakulski, K., Gryta, M. and Morawski, A. (2002). Membrane processes used for potable water quality improvement. Desalination, 145(1), 315-319.

Karanikola, V., Corral, A. F., Jiang, H., Saez, A. E., Ela, W. P. and Arnold, R. G. (2015). Sweeping gas membrane distillation: Numerical simulation of mass and heat transfer in a hollow :fiber membrane module. Journal of Membrane Science, 483, 15-24.

Kawakami, M., lwanaga, H., Hara, Y., Iwamoto, M., and Kagawa, S. (1982). Gas permeabilities of cellulose nitrate/poly (ethylene glycol) blend membranes. Journal of Applied Polymer Science,27(7), 2387-2393.

Khayet, M. (2011). Membranes and theoretical modeling of membrane distillation: A review. Advances in colloid and interface science, 164(1), 56"'88.

145

Page 34: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

-------------------------- -- --- -- ---- ------------------------------------------- ---·- ---~--- ·-· --------- - --

Khayet, M. (2013). Treatment of radioactive wastewater solutions by direct contact membrane distillation using surface modified membranes. Desalination,321, 60-66.

Khayet, M. and Matsuura, T. (2004). Per\raporation and vacuum membrane distillation processes: modeling and experiments. A!ChEjourna/,50(8), 1697-1712.

Khayet, M., Chowdhury, G., and Matsuura, T. (2002). Surface modification of polyvinylidene fluoride pervaporation membranes. A!ChEjournal, 48(12), 2833-2843.

Khayet, M., Cojocaru, C., and Garcia-Payo, C. (2007). Application of response surface methodology and experimental design in direct contact membrane distillation. Industrial and engineering chemistry research,46(17), 5673-5685.

Khayet, M., Cojocaru, C., and Garda-Payo, M. D. C. (2010). Experimental design and opti~ization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation. Journal of membrane science,351(1), 234-245.

Khayet, M., Feng, C. Y., Khulbe, K. C., and Matsuura, T. (2002). Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration. Polymer, 43(14), 3879-3890.

Khayet, M., Feng, C. Y.and Matsuura, T. (2003). Morphological study of fluorinated asymmetric polyetheriinide ultrafiltration membranes by surface modifying macromolecules. Journal of membrane science, 213(1), 159-180.

Khayet, M., Garcia-Payo, M. C., Qusay, F. A., Khulbe, K. C., Feng, C. Y.annd Matsuura, T. (2008). Effects of gas gap type on structural morphology and performance of hollow fibers. Journal of Membrane Science, 311(1), 259-269.

Khayet, M., Matsuura, T ., Mengual, J. I. and Qtaishat, M. (2006). Design of novel direct contact membrane distillation membranes. Desalination, 192(1 ), 105-111.

Khayet, M., Mengual, J. 1., and Zakrzewska-Trznadel, G. (2005). Direct contact membrane distillation for nuclear. desalination. Part 1: Review of membranes used in membrane distillation and methods for their characterization. International journal of nuclear desalination,1(4), 435-449.

Khayet, M., Mengual, J. Land Matsuura, T. (2005).·Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation. Journal ofMernbrane Science, 252(1), 101-113.

146

Page 35: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

====-=----~~-----~-----~----~-- ----- ~=-:::.-"~-~~~-~--~- ,_-,_ ,~,_-:_cc ~-- -- -- -~ -----~ --- -~~-~----~--~ -----------------

Khayet, M., Velazquez, A.and Mengual, J. I. (2004). Direct contact membrane distillation of humic acid solutions. Journal of Membrane Science,240(1), 123-128.

Khayet, M., Velazquez, A.and Mengual, J. I. (2004). Modelling mass transport through a porous partition: effect of pore size distribution. Journal ofNon-Equilibrium Thermodynamics, 29(3), 279-299.

Khayet, M.and Matsuura, T. (2011). Membrane distillation: principles and applications.1 st .ed. Elsevier.

Khayet, M.and Mengual, J. I. (2004 ). Effect of salt concentration during the treatment of humic acid solutions by membrane distillation. Desalination,168, 373-381.

Khulbe, K. C., Feng, C. Y., Hamad, F., Matsuura, T.and Khayet, M. (20040. Structural and performance study of micro porous polyetherimide hollow fiber membranes prepared at different air-gap. Journal of membrane science.,245(1), 191-198.

Ki, C. S,, Baek, D. H., Gang, K. D., Lee, K. H., Urn, I. C., and Park, Y. H. (2005). Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer, 46(14), 5094-5102.

Kim, A. S. (2013). A two-interface transport model with pore-size distribution for predicting the performance of direct contact membrane distillation (DCMD).Journal of Membrane Science, 428,410-424.

Kim, J.and Van der Bruggen, B. (2010).The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environmental Pollution, 158(7), 2335-2349.

Kimura, S., Nakao, S. I. and Shimatani, S. I. (1987). Transport phenomena in membrane distillation. Journal of membrane science,33(3), 285-298.

Koeman-Stein, N. E., Creusen, R. J. M., Zijlstra, M., Groot, C; K., & van den Broek, W. B. P. (2016). Membrane distillation of industrial cooling tower blowdown water. Water Resources and Industry, 14, 11-17

Kullab, A. and Martin, A. (20 11 ). Membrane distillation and applications for water purification in thermal cogeneration plants. Separation and Purification Technolog, 76(3), 231-237.

147

Page 36: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Kumar, S. S., Ashish, M.and Jyoti, J. (2013). Concentration of Fruit Juices by Vacuum Membrane Distillation: A Review. International Journal of Chemistry and Chemical Engineering, 3(2), 49-54.

Kurdian, A. R., Bahreini, M., Montazeri, G. H.and Sadeghi, S. (2013). Modeling of direct contact membrane distillation process: Flux prediction of sodium sulfate and sodium chloride solutions. Desalination, 323, 75-82.

Lagana, F., Barbieri, G.and Drioli, E. (2000). Direct contact membrane distillation: modelling and concentration experiments. Journal of Membrane Science, 166 (1 ), 1-11.

Lalia, B. S., Guillen-Burrieza, E., Arafat, H. A., and Hashaikeh, R. (2013). Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. Journal of Membrane

Science,428, 104-115.

Lalia, B. S., Kochkodan, V., Hashaikeh, R.and Hilal, N. (2013). A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 326, 77-

95.

Lawai, D. U.and Khalifa, A. E. (2014). Flux prediction in direct contact membrane distillation. Int. J. Mater., Mech. Manuf, 2, 302-308.

Lawson, K. W.and Loyd, D. R. (1997). Membrane distillation. Journal of membrane

Science,124(1), 1-25.

Lee, H. J., and Park, J. H. (2016). Effect of hydrophobic modification on carbon dioxide absorption using porous alumina (Ah03) hollow fiber membrane contactor. Journal of Membrane Science, 518, 79-87.

Lee, J. G., Kim, Y. D., Kim, W. S., Francis, L., Amy, G.and Ghaffour, N. (2015). Performance

modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane.Journal of Membrane Science,478, 85-95.

Li, H. B., Shi, W. Y., Zhang, Y. F., Liu, D. Q., and Liu, X. F. (2014). Effects of Additives on the Morphology and Performance of PPT A/PVDF in Situ Blend UF Membrane. Polymers, 6 (6), 1846-1861.

148

Page 37: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

------------------------------------------------- ---- - -- -- -- -- --------- ----------- ---------- ---- ------ ----------------------

Li, J., Guan, Y., Cheng, F., and Liu, Y. (2015). Treatmentofhigh salinity brines by direct contact membrane distillation: effect of membrane characteristics and salinity. Chemosphere,J40, 143-149.

Li, L., Cheng, C., Xiang, T., Tang, M., Zhao, W., Sun, S., and Zhao, C. (2012). Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. Journal of membrane science,405, 261-274.

Li, M. S., Zhao, Z. P., Li, N.and Zhang, Y. (2013). Controllable modification of polymer membranes by long-distance and dynamic low-temperature plasma flow: Treatment of PE hollow fiber membranes in a module scale. Journal of Membrane Science, 427, 431-442.

Liao, Y., Wang, R., Tian, M., Qiu, C.and Fane, A. G. (2013). Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. Journal of Membrane Science,425, 30-39.

Lin, D. J., Chang, C. L., Huang, F. M. and Cheng, L. P. (2003). Effect of salt additive on the formation of microporous poly (vinylidene fluoride) membranes by phase inversion from LiClO 4/water/DMF/PVDF system. Polymer,44(2), 413-422.

Liu, F., Hashim, N. A., Liu, Y., Abed, M. M.and Li, K. (2011). Progress in the production and modification ofPVDF membranes. Journal of Membrane Science, 375(1), 1-27.

Liu, Z. M., Xu, Z. K., Wang, J. Q., Yang, Q., Wu, J., and Seta, P. (2003). Surface modification of microporous polypropylene membranes by the grafting of poly (y-stearyl-1-glutamate). European polymer journal,39(12), 2291-2299.

Loh, C. H.and Wang, R. (2012). Effects of additives and coagulant temperature on fabrication of high performance PVDF/pluronic Fl27 blend hollow fiber membranes via non solvent induced phase separation. Chinese Journal of Chemical Engineering, 20(1), 71-79.

Lu, Xuemei, Yuelian Peng, Lei Ge, Rijia Lin, Zhonghua Zhu, and Shaomin Liu. (2016). Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation Journal of Membrane Science, 505, 61-69.

Manawi, Y. M., Khraisheh, M., Fard, A. K., Benyahia, F.and Adham, S. (2014). Effect of operational parameters on distillate flux in direct contact membrane distillation (DCMD): Comparison between experimental and model predicted performance. Desalination, 336, 110-120.

149

Page 38: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Mansourizadeh, A., and Ismail, A. F. (2010). Effect of additives on the structure and performance of polysulfone hollow fiber membranes for CO 2 absorption. Journal of Membrane Science,348(1), 260-267.

Martinez, L. (2004). Comparison of membrane distillation performance using different feeds. Desalination,168, 359-365.

Martinez, L. and Florido-Diaz, F. J. (2001). Theoretical and experimental studies on desalination using membrane distillation. Desalination,139(1), 373-379.

Martinez, L., Florido-Diaz, F. J., Hernandez, A., and Pnidanos, P. (2002). Characterisation of three hydrophobic porous membranes used in membrane distillation: modelling and evaluation of their water vapour permeabilities. Journal of membrane science, 203( 1 ), 15-27.

Martinez, L.and Rodriguez-Maroto, J. M. (2006). Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers. Journal of Membrane Science, 274(1), 123-137.

Martinez, L.and Rodriguez-Maroto, J. M. (2007). On transport resistances in direct contact membrane distillation. Journal of membrane science, 295(1), 28-39.

Martinez-Diez, L., Florido-Diaz, F. J., and Vazquez-Gonzalez, M. I. (1999). Study of evaporation efficiency in membrane distillation. Desalination,l26(1), 193,.198.

Martinez-Diez, L.and Vazquez-Gonzalez, M. I. (1999). Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of membrane science,l56(2), 265-273.

Matsuyama, H., Maki, T., Teramoto, M., and Kobayashi, K. (2003). Effect ofPVP additive on porous polysulfone membrane formation by immersion precipitation method.

Separation science and technology, 38(14), 3449-3458.

Meng, S., Mansouri, J., Ye, Y., and Chen, V. (2014). Effect of templating agents on the properties and membrane distillation performance of TiOz-coated PVDF membranes. Journal of Membrane Science, 450, 48-59.

Mengual, J. I., Khayet, M., and Godino, M. P. (2004). Heat and mass transfer in vacuum membrane distillation. International journal of heat and mass transfer,47( 4), 865-875.

150

Page 39: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

--------- ------------------------ ----~~------ ---- ---- ------------------------- ------------- --------~-~=

Moharnmadi T. and Safavi M., (2009). Application of Taguchi method in optimization of desalination by vacuum membrane distillation, Desalination,249, 83-89.

Naidu, G., Jeong, S., and Vigneswaran, S. (2014). Influence of feed/permeate velocity on scaling development in a direct contact membrane distillation. Separation and Purification Technology,125, 291-300.

Nakajima, A., Hashimoto, K., and Watanabe, T. (2001). Recent studies on super-hydrophobic films. Monatshefte for Chemie/Chemical Monthly, 132(1 ), 31-41.

Nguyen, T., Roddick, F. A., and Fan, L. (2012). Biofouling of water treatment membranes:a review of the underlying causes, monitoring techniques and control measures. Membranes;2(4), 804-840. Journal of Membrane Science,442, 149-159.

Noble, R. D. and Stem, S. A. (Eds.). (1995). Membrane separations technology: principles and applications.! st .ed. membrane science and technology series. 2,2. Elsevier.

Omole, I. C. (2008). Crosslinked polyimide hollow fiber membranes for aggressive natural gas feed streams.PhD Thesis. Georgia Institute of Technology USA.

Omole, I. C., Bhandari, D. A., Miller, S. J. and Koros, W. J. (2011). Toluene impurity effects on CO 2 separation using a hollow fiber membrane for natural gas. Journal of Membrane Science,369(1), 490-498.

Onsekizoglu, P. (2012). Membrane distillation: principle, advances, limitations and future prospects in food industry. Distillation Advances from Modeling to Applications,1,233-266

Or:fi, J., Loussif, N. and Davies, P. A. (2016). Heat and mass transfer in membrane distillation used for desalination with slip flow. Desalination.,381, 135-142.

Pabby, A. K., Rizvi, S. S.and Requena, A. M. S. (Eds.). (2015). Handbook of membrane separations: chemical, pharmaceutical food and biotechnological applications.2nd .ed. CRCpress.

Peng, W. (2013). Hollow Fiber Membrane Design for Membrane Distillation (MD) and MD based Hybrid processes. Doctoral dissertation. NUS. Singapore.

151

Page 40: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

- -------- ----- --------- -=-:--=-=-=-=-=-::_~:::___-:_::_-:_::__-=--_::_::_--=--_c:::--:_c:--=-=-=-=-=--=---=- -- - - -- -- -- -- - --- -- -- -------------=

Phattaranawik, J., Jiraratananon, Rand Fane, A. G. (2003). Heat transport and membrane distillation coefficients in direct contact membrane distillation; Journal of Membrane Science,212(1), 177-193.

Poling, B. E., Prausnitz, J. M.and O'connell, J. P. (2001 ). The properties of gases and liquids 5th .ed .. New York: McGraw-Hill.

Qtaishat, M., Khayet, M.and Matsuura, T. (2009). Novel porous composite hydrophobic/hydrophilic polysulfone membranes for desalination by direct contact membrane distillation. Journal of Membrane science,34l(l), 139-148.

Qtaishat, M., Matsuura, T., Kruczek, B.and Khayet, M. (2008). Heat and mass transfer analysis in direct contact membrane distillation. Desalination,219 (1), 272-292.

Quist-Jensen, C. A., Macedonio, F., Conidi, C., Cassano, A., Aljlil, S., Alharbi, 0. A., and Drioli, E. (2016). Direct contact membrane distillation for the concentration of clarified orange juice. Journal of Food Engineering, 187,37-43.

Racz, G., Kerker, S., Kovacs, Z., Vatai, G., Ebrahimi, M., and Czermak, P. (2014). Theoretical and experimental approaches of liquid entry pressure determination in membrane distillation processes. Periodica Polytechnica. Chemical Engineering, 58(2), 81.

Racz, G., Kerker, S., Schmitz, 0., Schnabel, B., Kovacs, Z., Vatai, G., and Czermak, P. (2015). Experimental wastewaters. Membrane Water Treatment,6 (3), 237-249.

Rahbari-Sisakht, M., Ismail, A. F., Rana, D., and Matsuura, T. (2012). A novel surface modified polyvinylidene fluoride hollow fiber membrane contactor for CO 2 absorption. Journal of Membrane Science,415, 221-228.

Rastegarpanah, A. and Mortaheb, H. R. (2016). Surface treatment of polyethersulfone membranes for applying in desalination by direct contact membrane distillation. Desalination,377, 99-107.

Ren, J., Chung, T. S., Li, D., Wang, R., and Liu, Y. (2002). Development of asymmetric 6FDA-2, 6 DAT hollow fiber membranes for COiC~ separation: 1. The influence of dope composition and rheology on membrane morphology and separation performance. Journal of membrane science,207(2), 227-240.

Rivier, C. A., Garcia-Payo, M. C., Marison, I. W. and Von Stockar, U. (2002). Separation of binary mixtures by thermostatic sweeping gas membrane distillation: I. Theory and simulations. Journal of membrane science,201(1), 1-16.

152

Page 41: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

--~- --- -----

Rochd, S., Zerradi, H., Mizani, S., Dezairi, A., and Ouaskit, S. (2016). Modelisation of Membrane Distillation: Mass and Heat Transfer in Air Gap Membrane Distillation. Journal of Membrane Science & Technology,6,2-9.

Ross, G. J., Watts, J. F., Hill, M. P., and Morrissey, P. (2001). Surface modification of poly (vinylidene fluoride) by alkaline treatment Part- 2. Process modification by the use of phase transfer catalysts. Polymer,42(2), 403-413.

Sadrzadeh, M., and Bhattacharjee, S. (2013). Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives. Journal of membrane science,441, 31-44.

Sarti, G. C., Gostoli, C.and Bandini, S. (1993). Extraction of organic components from aqueous streams by vacuum membrane distillation. Journal of membrane science,80(1), 21-33.

Schofield R. W. (1989). Membrane distillation. Ph.D. Thesis. University ofNew South Wales. Australia.

Schofield, R. W., Fane, A. G.and Fell, C. J. D. (1987). Heat and mass transfer in membrane distillation. Journal of membrane Science, 33(3), 299-313.

Schofield, R. W., Fane, A. G.and Fell, C. J. D. (1990). Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition. Journal of Membrane Science,53(1), 159-171.

Selvi, S. Rand Baskaran, R. (2014). Desalination of Well water by Solar Power Membrane Distillation and Reverse Osmosis and its Efficiency Analysis. Desalination. 6 ( 5), 2628-2636.

Shao, L., and Chung, T. S. (2009). In situ fabrication of cross-linked PEO/silica reverse­selective membranes for hydrogen purification. International journal of hydrogen

energy, 34 (15), 6492-6504.

Shao, L., Lau, C. H.and Chung, T. S. (2009). A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification. International journal of hydrogen energy, 34(20), 8716-8722.

Sharqawy, M. H., Lienhard, J. H.,and Zubair, S. M. (2010). Thermophysical properties of seawater: a review of existing correlations and data. Desalination and Water Treatment, 16(1-3), 354-380.

153

Page 42: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Shi, H., Xue, L., Gao, A., Fu, Y., Zhou, Q.and Zhu, L. (2016). Fouling-resistant and adhesion­resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine. Journal of Membrane Science,498, 39-47.

Shi, L., Wang, R., Cao, Y., Feng, C., Liang, D. T., and Tay, J. H. (2007). Fabrication of poly ( viny lidene fluoride-co-hexafluropropylene )(PVDF-HFP) asymmetric micro porous hollow fiber membranes. Journal of Membrane Science,305(1), 215-225.

Shi, L., Wang, R., Cao, Y., Liang, D. T.and Tay, J. H. (2008). Effect of additives on the fabrication of poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science, 315(1 ), 195-204.

Shin, Y., Choi, J., Lee, T., Sohn, J.and Lee, S. (2015). Optimization of dewetting conditions for hollow fiber membranes in vacuum membrane distillation. Desalination and Water Treatment, 57, 1-11.

Shirazi, M. M. A., Kargari, A.and Shirazi, M. J. A. (2012). Direct contact membrane distillation for seawater desalination. Desalination and Water Treatment,49(1-3), 368-375.

Shirazi, S., Lin, C. J.and Chen, D. (2010). Inorganic fouling of pressure-driven membrane processes-a critical review. Desalination,250(1), 236-248.

Simone, S., Figoli, A., Criscuoli, A., Carnevale, M. C., Rosselli, A., and Drioli, E. (2010). Preparation of hollow fibre membranes from PVDF /PVP blends and their application in VMD. Journal of Membrane Science, 364(1), 219-232.

Singh, S., Khulbe, K. C., Matsuura, T.and Ramamurthy, P. (1998). Membrane characterization by solute transport and atomic force microscopy. Journal of Membrane Science,142(1), 111-127.

Smolders, K.and Franken, A. C. M. (1989).Terminology for membrane distillation. Desalination, 72(3), 249-262.

Song, L., Li, B., Sirkar, K. K.and Gilron, J. L. (2007). Direct contact membrane distillation­based desalination: novel membranes, devices, larger-scale studies, and a model. Industrial and engineering chemistry research.46(8), 2307-2323.

Song, L., Ma, Z., Liao, X., Kosaraju, P. B., Irish, J. R.and Sirkar, K. K. (2008). Pilot plant studies of novel membranes and devices for direct contact membrane distillation-based desalination. Journal of Membrane Science,323(2), 257-270.

154

Page 43: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Song, Z. W.and Jiang, L. Y. (2013). Optimization of morphology and performance of PVDF hollow fiber for direct contact membrane distillation using experimental design. Chemical EngineeringScience,JOJ, 130-143.

Souhaimi, M. K., and Matsuura, T. (2011). Membrane distillation: principles and applications.! st .ed. Elsevier.

Speight, J. G. (200). Lange's handbook of chemistry ,1, 242. New York: McGraw-Hill.

Srisurichan, S., Jiraratananon, Rand Fane, A. G. (2005). Humic acid fouling in the membrane distillation process. Desalination, 17 4(1 ), 63-72.

Srisurichan, S., Jiraratananon, Rand Fane, A. G. (2006). Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. Journal of Membrane Science,277(1), 186-194.

Stephan, A M., Renganathan, N. G.and Gopukumar, S. (2004). Cycling behavior of poly (vinylidene fluoride-hexafluoro propylene)(PVdF-HFP) membranes prepared by phase inversion method. Materials chemistry and physics, 85(1 ), 6-11.

Stolarska, M., Niedzicki, L., Borkowska, R., Zalewska, A.and Wieczorek, W. (2007). Structure, transport properties and interfacial stability of PVdFIHFP electrolytes containing modified inorganic filler. Electrochimica Acta, 53(4), 1512-1517.

Strathmann,H.(1981). Membrane separation processes. Journalofmembrane science,9 (1), 121-189.

Su, C. I., Shih, J. H., Huang, M. S., Wang, C. M., Shih, W. C.and Liu, Y. S. (2012). A study of hydrophobic electrospun membrane applied in seawater desalination by membrane distillation. Fibers and Polymers, 13(6), 698-702.

Sun, A. C., Kosar, W., Zhang, Y.and Feng, X. 2014. Vacuum membrane distillation for desalination of water using hollow fiber membranes. Journal of Membrane Science,455,131-142.

Sun, C. (2009). Poly (vinylidene fluoride) membranes. Preparation, modification, characterization and applications .PhD Thesis, University ofWaterloo,Canada.

Tang, Z., Li, W., Liu, L., Huang, L., Zhou, J.and Yu, H. (2009). Controlled Grafting of Poly (methyl methacrylate) Brushes on Poly (vinylidene fluoride) Powders by Surface-

155

Page 44: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

initiated Atom Transfer Radical Polymerization. Chinese Journal of Chemistry,27(2), 419-422.

Taurino, R., Fabbri, E., Messori, M., Pilati, F., Pospiech, D.and Synytska, A. (2008). Facile preparation of superhydrophobic coatings by sol-gel processes. Journal of colloid and interface science,325(1), 149-156.

Teoh, M. M., Bonyadi, S., and Chung, T. S. (2008). Investigation of different hollow fiber

module designs for flux enhancement in the membrane distillation process. Journal of membrane science, 311(1), 371-379.

Tomaszewska, M. (2000). Membrane distillation-examples of applications in technology and

environmental protection. Polish. Journal of Environmental Studies,9(l), 27-36.

Tooma, M.A., Najim, T. S., Alsalhy, Q. F., Marino, T., Criscuoli, A., Giomo, L.and Figoli, A. (2015). Modification of polyvinyl chloride (PVC) membrane for vacuum membrane

distillation (VMD) application. Desalination,373, 58-70.

Tsai, H. A., Li, L. D., Lee, K. R., Wang, Y. C., Li, C. L., Huang, J.and Lai, J. Y. (2000). Effect

of surfactant addition on the morphology and pervaporation performance of asymmetric polysulfone membranes. Journal of Membrane Science,176(l), 97-103.

Tun, C. M., Fane, A. G., Matheickal, J. T., and Sheikholeslami, R. (2005). Membrane distillation crystallization of concentrated salts-flux and crystal formation. Journal of Membrane Science,257(1), 144-155.

Villaluenga, J.P. G., Khayet, M., Godino, P., Seoane, B.and Mengual, J. I. (2005). Analysis of the membrane thickness effect on the pervaporation separation of methanol/methyl tertiary butyl ether mixtures. Separation and purification technology, 4 7(1 ), 80-87.

Vorosmarty, C. J., Mcintyre, P. B., Gessner, M. 0., Dudgeon, D., Prusevich, A., Green, P.and

Davies, P. M. (2010). Global threats to human water security and river biodiversity.

Nature,467(7315), 555-561.

Walton, J., Lu, H., Turner, C., Solis, S., and Rein, H. (2004). Solar and waste heat desalination

by membrane distillation. Desalination and water purification research and development program report, (81), 20.

Wang, D., Li, K.and Teo, W. K. (1999). Preparation and characterization of polyvinylidene

fluoride (PVDF) hollow fiber membranes. Journal of Membrane Science, 163(2), 211-

220.

156

Page 45: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Wang, H.and Lin, Y. S. 2011. Effects of synthesis conditions on MFI zeolite membrane quality and catalytic cracking deposition modification results. Microporous and Mesoporous Materials,142(2), 481-488.

Wang, K. Y., Chung, T. S., and Gryta, M. (2008). Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation. Chemical Engineering Science,63(9), 2587-2594.

Wang, K. Y., Foo, S.W.and Chung, T. S.(2009). Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation. Industrial and Engineering Chemistry Research.48(9), 4474-4483.

Wang, K. Y., Matsuura, T., Chung, T. S., and Guo, W. F.(2004). The effects of flow angle and shear rate within the spinneret on the separation performance of poly ethersulfone (PES) ultrafiltration hollow fiber membranes. Journal of membrane science,240(1), 67-79.

Wang, P., Teoh, M. M., & Chung, T. S. (2011). Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance. water research, 45(17), 5489-5500.

Wang, P.and Chung, T. S. (2015). Recent advances in membrane distillation processes: Membrane development, configuration design· and application exploring. Journal of Membrane Science. 474,39-56.

Warsinger, D. M., Swaminathan, J., Guillen-Burrieza, E., and Arafat, H. A. (2015). Scaling and fouling in membrane distillation for desalination applications: a review. Desalination, 356, 294-313.

Wavhal, D. S.and Fisher, E. R. (2003). Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein

fouling. Langmuir, 19(1), 79-85.

Wei, X., Zhao, B., Li, X. M., Wang, Z., He, B. Q., He, T.and Jiang, B. (2012). CF 4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation. Journal of Membrane Science, 407, 164-175.

Wongchitphimon, S., Wang, R., and Jiraratananon, R. (2011). Surface modification of polyvinylidene fluoride-co-hexa:fluoropropylene ·(PVDF-HFP) hollow fiber membrane for membrane gas absorption. Journal of Membrane Science,381(1), 183-191.

157

Page 46: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

Wongchitphimon, S., Wang, R., Jiraratananon, R., Shi, Land Loh, C. H. (2011). Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride­co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science,369(1), 329-338.

Woods, J., Pellegrino, J.and Burch, J. (2011). Generalized guidance for considering pore-size distribution in membrane distillation. Journal of Membrane Science,368(1), 124-133.

Wu, H. Y., Wang, Rand Field, R. W. (2014). Direct contact membrane distillation: An experimental and analytical investigation of the effect of membrane thickness upon transmembrane flux. Journal of Membrane Science, 470, 257-265.

Wu, J., Wang, Z., Yan, W., Wang, Y., Wang, J., and Wang, S. (2015). Improving the hydrophilicity and fouling resistance of RO membranes by surface immobilization of PVP based on a metal-polyphenol precursor layer. Journal of Membrane Science, 496, 58-69.

Wu, Y., Kong, Y., Lin, X., Liu, W.and Xu, J. (1992). Surface-modified hydrophilic membranes in membrane distillation. Journal of Membrane Science, 72(2), 189-196.

Xiao, Y., Wang, K. Y., Chung, T. S.and Tan, J. (2006). Evolution ofnano-particle distribution during the fabrication of mixed matrix Ti02-polyimide hollow fiber membranes. Chemical Engineering Scienc,.61(18), 6228-6233.

Xu, L., Rungta, M., Brayden, M. K., Martinez, M. V., Stears, B. A., Barbay, G. A.and Koros, W. J. (2012). Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. Journal of Membrane Science,423, 314-323.

Yang, X., Wang, R., and Fane, A. G. (2011). Novel designs for improving the performance of hollow fiber membrane distillation modules. Journal of Membrane Science,384(1), 52-62.

Yang, X., Wang, R., Shi, L., Fane, A. G., and Debowski, M. (2011). Performance improvement of PVDF hollow fiber-based membrane distillation process. Journal of Membrane

Science, 369(1), 437-447.

Yang, X., Yu, H., Wang, R., and Fane, A. G. (2012). Analysis of the effect of turbulence promoters in hollow fiber membrane distillation modules by computational fluid dynamic (CFD) simulations. Journal of Membrane Science,415, 758-769.

158

Page 47: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

------------------------------------------------- ---------------- -- --- -- ----------- --- ---- ---- ----------- --- ---------------------------------------

Yang, X., Yu, H., Wang, R., and Fane, A. G. (2012). Optimization ofmicrostructured hollow

fiber design for membrane distillation applications using CFD modeling. Journal of Membrane Science,421, 258-270.

Yang, Y., Zhang, H., Wang, P., Zheng, Q., and Li, J. (2007). The influence ofnano-sized TiO 2

fillers on the morphologies and properties of PSF UF membrane. Journal of Membrane Science.288(l), 231-238.

Yarlagadda, S., Camacho, L. M., Gude, V. G., Wei, Z., and Deng, S. (2009). Membrane distillation for desalination and other separations. Recent Patents on Chemical Engineering.,2(2), 128-158.

Yeow, M. L., Liu, Y. T., and Li, K. (2004). Morphological study of poly (vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature. Journal of Applied Polymer Scienc,.92(3), 1782-1789.

Yoo, S. H., Kim, J. H., Jho, J. Y., Won, J., and Kang, Y. S. (2004). Influence of the addition of

PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of

PVP molecular weight. Journal of membrane science, 236(1), 203-207.

Yu, H., Yang, X., Wang, R., and Fane, A. G. (2011). Numerical simulation of heat and mass

transfer in direct membrane distillation in a hollow fiber module with laminar flow. Journal of Membrane science,384 (1), 107-116.

Yu, H., Yang, X., Wang, R., and Fane, A. G .. (2012). Analysis of heat and mass transfer by CFD for performance enhancement in direct contact membrane distillation. Journal of membrane science,405, 38-47.

Yuan, Z., and Dan-Li, X.(2008). Porous PVDF!I'PU blends asymmetric hollow fiber membranes prepared with the use of hydrophilic additive PVP (K30).

Desalination,223(1), 438-447.

Yun, Y., Ma, R., Zhang, W., Fane, A. G., and Li, J. (2006). Direct contact membrane distillation mechanism for high concentration NaCl solutions. Desalination.,188(1), 251~262.

Zhang, J. (2011). Theoretical and experimental investigation of membrane distillation. PhD

Thesis ,Victoria University, Australia.

Zhang, J., and Gray, S. (2012). Modelling heat and mass transfers in DCMD using compressible membranes. Journal of Membrane Science. 387,7-16.

159

Page 48: 0 Universiti Malaysia PAHANG - Institutional Repositoryumpir.ump.edu.my/id/eprint/25223/1/Poly (vinylidene... · 2019-07-04 · The success of formic acid modification onto PVDF co-HFP

--------------------------- ----- --- ---- -- -- -- -- - --- ----- -------- ---------------------------------------------

Zhang, J., Dow, N., Duke, M., Ostarcevic, E., and Gray, S.( 2010). Identification of material and physical features of membrane distillation membranes for high performance desalination Journal of Membrane Science,349(1), 295:..303.

Zhang, J., Li, J.D., Duke, M., Xie, Z., and Gray, S. (2010). Performance of asymmetric hollow fibre membranes in membrane distillation under various configurations and vacuum enhancement. Journal of Membrane Science, 362(1), 517-528.

Zhang, Q., Lu, X., and Zhao, L. (2014). Preparation ofPolyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes. Membranes, 4(1), 81-95.

Zhao, S., Wang, Z., Wei, X., Tian, X., Wang, J., Yang, S., and Wang, S. (2011). Comparison

study of the effect of PVP and P ANI nanofibers additives on membrane formation mechanism, structure and performance. Journal of Membrane Science,385, 110-122.

Zhao, Y. H., Zhu, B. K., Ma, X. T., and Xu, Y. Y. (2007). Porous membranes modified by hyperbranched polymers: I. Preparation and characterization ofPVDF membrane using hyperbranched poly glycerol as additive. Journal of Membrane Science, 290(1 ), 222:-229.

Zheng, J. M., Dai, Z. W., Wong, F. S., and Xu, Z. K. 92005). Shell side mass transfer in a transverse flow hollow fiber membrane contactor. Journal of Membrane Science, 261(1), 114-120.

Zheng, Z., Gu, Z., Huo, R., and Luo, Z. (2010). Superhydrophobic poly (vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition. Applied Surface Science, 256(7), 2061-2065.

Zhu, J., Jiang, L., and Matsuura, T. (2015). New insights into fabrication of hydrophobic/hydrophilic composite hollow fibers for direct contact membrane distillation. Chemical Engineering Science, 137, 79-90.

160


Recommended