+ All Categories
Home > Documents > 007 Flores

007 Flores

Date post: 03-Jun-2018
Category:
Upload: gutian259
View: 220 times
Download: 0 times
Share this document with a friend

of 35

Transcript
  • 8/12/2019 007 Flores

    1/35

    Performance of Existing

    Reinforced Concrete ColumnsunderBidirectional Shear &

    Axial Loading

    Laura M. Flores

    University of California, San DiegoREU Institution: University of California, Berkeley

    REU Advisor: Dr. Jack P. Moehle

    Pacif ic Earthquake Engin eering Research Center (PEER)

    REU Symposium Kiawah Island Golf Resort - Kiawah, S.C. August 5-8, 2004

  • 8/12/2019 007 Flores

    2/35

    Outline

    Research Background & Project Objectives

    Design of Test Setup

    RC Column Specimen Material & GeometryCapacity Models

    Flexural, Shear and Axial Capacity

    MomentCurvature Response of Column

    Deformation ComponentsLateral DeformationShear Failure

    Axial Deformation

    Residual Column Capacity & Damage Progression

    Fabrication of RC Column SpecimensSensitivity Analysis

    Ongoing

    Acknowledgments

  • 8/12/2019 007 Flores

    3/35

    Research Background

    Mechanisms leading to the collapse of existing, pre-seismic codeRC frames are NOT well documented.

    Shake table tests are currently being conducted at PEER-UCB toobserve & identify the failure components & load redistributionprocesses in RC bridge columns & in RC building frames under

    seismic & gravity loading.Identifying mechanisms causing shear failure in RC columns canbe used to develop performance-based seismic design -strengthen future & existing structures against earthquake

    loadingColumn shear failure & its effect on the degradation of axialcapacity in a pre-seismic code RC column is the focus of thisproject.

  • 8/12/2019 007 Flores

    4/35

  • 8/12/2019 007 Flores

    5/35

    Simplified Model of RC Column

    One-third scale of existing, pre-seismic ACI codedesigned RC Column

    of RC column used in analysis

    Free end of column idealized as hinge connectionwith a fixed end at base of column

  • 8/12/2019 007 Flores

    6/35

    Simplified Model of RC Column (cont.)

    RC

    Coln

    RC

    Coln

    M = 0

    (hinge)

    M(x)

    M = MMAX(fixed)

  • 8/12/2019 007 Flores

    7/35

    Design of Test Setup

    RC

    Coln

    Gravity Load

    = 10 kips

    HINGEActuator / Seismic

    Load = 8.3 kips

    FIXED

  • 8/12/2019 007 Flores

    8/35

    Design of Test Setup (cont.)

    A

    A

    1'-5"

    CONCRETE

    FLOOR

    9"x8" flanged beam 70lb/ft.

    S=61.5 cu. in.

    TEST APPARTUS

    base plate 2 in. thickness

    15 in.width and 3 ft. length

    B

    1'-158"2'-9

    78"ACTUATOR

    POSITION

    FRONT VIEW

    SIDE VIEW

    (H-structure)safety frame

    3"x2" angle iron

    welded construction

    1/2" concreteanchor bolts

    ( ??2 places??)

    4'-778"

    6"x3"channel beam

    1/2" x 1/2" x 10"

    hold-in-place

    rods(check

    height&spacing?)

    4" x 5" x 1" pillow

    block - pnt.load

    4'-6"

    lead ingot-14 bars

    110 lb/bar

    total wt. 1540 lb.

    1'-4 3/8"

    (platform

    width?)

    C

    SECTION C-C

    4" (add

    spacing if

    needed)

    clamp??

    42.25"

  • 8/12/2019 007 Flores

    9/35

    RC Column Material & Geometry

  • 8/12/2019 007 Flores

    10/35

    RC Column Material & Geometry (cont.)

  • 8/12/2019 007 Flores

    11/35

    Capacity Models of RC Column

    Specimen:Axial Capacity

    Axial Capacity of undamaged RC column:

    PN= 0.85*fC*(AgASL) + fYL*ASL

    ..where fC concrete compressive strength, Ag is the grossconcrete area, ASL is the longitudinal reinforcement area,

    fYLis yield strength of longitudinal steel

    PN = 0.85*(3ksi)*[36in2-0.884in2] +

    (70ksi)*(0.884in2)

    PN = 151.43 kips

  • 8/12/2019 007 Flores

    12/35

    Capacity Models of RC Column

    Specimen: Flexural Capacity!cu = .003

    !s3

    !s2h

    !S1 = -00207

    N.A.

    .85fC

    a TS3

    TS2

    TS1

    TS2

    TS1

    TS3

    CC

    TS2

    TS1

    TS3MN

    CC

    PN

    Mh/2 = 0 @Balanced Failure (Z=-1)-TS3*[(h/2)-dS3] - CC*[(h/2)-(a/2)] + MN - TS1*[dS1-(h/2)]

    MN

    = TS3

    *[(h/2)-dS3

    ] + CC

    *[(h/2)-(a/2)] +

    TS1*[dS1-(h/2)]

    ..so, MN =153.3 kip-in

  • 8/12/2019 007 Flores

    13/35

    Capacity Models of RC Column

    Specimen: ShearCapacityTotal shear capacity of an RC column depends on the shearcapacity of the concrete, VC and the shear capacity carried bythe transverse reinforcement, VST in the column

    VN= (VC+ VST) = 2*[1+(P/2000*Ag)]*!fC*bW*d +

    [(4*AST*fYT*d)/s]

    ..where AST is the transverse reinforcement area, fYTis yield strength of transverse reinforcement,

    d is distance from compression fiber to farthest tensile reinforcement, s is transverse

    reinforcement spacing, bW is the width of column x-section, P is axial load

    VN = 2*[1+(10,000lb/(2000*35.12in2))]*!(3000psi)*(6in)(5.145in) +

    (0.01228in2

    )(70,000psi)(5.145in)

    VN = 8.283 kips

  • 8/12/2019 007 Flores

    14/35

    Interaction Diagram of RC Column Specimen

    -40

    -20

    0

    20

    40

    60

    80

    100

    120

    0 20 40 60 80 100 120 140 160

    (nominal) Moment Capacity, Mn (kip-in)

    (nom

    inal)A

    xialLoadCapacity,

    Pn

    (kips)

    Maximum

    Axial Load

    Zero stress in tensile

    reinforcement, Z=0

    Balanced

    Failure, Z= -1

    TENSION

    COMPRESSION

    The flexural and axial capacity model for RC columns is used to derive aninteraction diagram which relates the axial load column capacity with itsmoment capacity at any given time

    Moment Curvature Response ofShear Critical RC

  • 8/12/2019 007 Flores

    15/35

    Moment-Curvature Response of Shear-Critical RC

    Column under Axial & Lateral (Shear) Loading

    The flexural and axial capacity model for RC columns is used to derive an interactiondiagram which relates the axial load column capacity with its moment capacity at anygiven time

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -7.E-22

    1.E-

    04

    3.E-

    04

    4.E-

    04

    5.E-

    04

    7.E-

    04

    8.E-

    04

    9.E-

    04

    1.E-

    03

    1.E-

    03

    1.E-

    03

    1.E-

    03

    2.E-

    03

    2.E-

    03

    2.E-

    03

    2.E-

    03

    2.E-

    03

    2.E-

    03

    2.E-

    03

    3.E-

    03

    3.E-

    03

    3.E-

    03

    3.E-

    03

    3.E-

    03

    3.E-

    03

    3.E-

    03

    3.E-

    03

    4.E-

    03

    4.E-

    03

    Curvature, !(1/in)

    Moment,M(

    kip-in)

    MY=VY*l

    D f ti C t

  • 8/12/2019 007 Flores

    16/35

    Deformation Components:

    Lateral DeflectionFlexure

    M

    M !FL = [(39in)2/6]*(7.6*10-4in-1)= 0.19266 in

    DeformationComponents:

  • 8/12/2019 007 Flores

    17/35

    Deformation Components:

    Lateral DeflectionFlexure

    D f ti C t

  • 8/12/2019 007 Flores

    18/35

    Deformation Components:

    Lateral DeflectionBar (Bond) Slip

    M

    M !SL = [(39in)(0.375in)(70,000psi)(7.6*10-4

    in-1

    )] /[8*6*!3000psi]

    = 0.2959 in

    D f ti C t

  • 8/12/2019 007 Flores

    19/35

    Deformation Components:

    Lateral DeflectionShear

    V

    V !SH = [2(113,000lb-in)] / (1.53*106)(29.26in2)

    = 0.005048 in.

    DeformationComponents:

  • 8/12/2019 007 Flores

    20/35

    Deformation Components:

    Lateral DeflectionShear

    L t lYi ldD f ti fRC l

  • 8/12/2019 007 Flores

    21/35

    Lateral Yield Deformation of RC column:

    Lateral yield deformation (prior to shear failure) of longitudinalreinforcement in RC column results from 3 componentsacting in series:

    Flexure, Bar (Bond) Slip, Shear

    ("LAT)Y="Y= ("FL+"SL + "SH)

    ("LAT)Y ="Y= (0.19266 in) + (0.2959 in) + (0.005048 in)

    =0.49365 in.

    Flexural

    displacement ,

    "FL

    Slip

    displacement,

    "SL

    Shear

    displacement ,

    "SH

    Yield

    displacement ,

    "Y

    0.19266 in 0.295941 in 0.005048 in 0.49365 in

    D f ti C t

  • 8/12/2019 007 Flores

    22/35

    Deformation Components:

    Shear "Axial Failure

    ! After yielding of longitudinalreinforcement, columnsustains gravity and lateral(shear) loads until sheardemand on column exceedsultimate??? shear capacity of

    column (V>VU)shear failureoccurs

    ! After shear failure occurs incolumn, gravity loads are

    supported by shear-frictionforces along shear failureplane("LAT)AXoccurs

    #

    Shear

    Failure

    Plane

  • 8/12/2019 007 Flores

    23/35

    Deformation Components:

    Shear"

    Axial Failure (cont.)

    #

    Shear

    FailurePlane

    DeformationComponents:

  • 8/12/2019 007 Flores

    24/35

    Deformation Components:

    Shear "Axial Failure (cont.)

    ResidualAxial Capacity (after shear failure) of damaged RCcolumn:

    PN= tan#*[(AST*fYT*dC)/s]*[(1+tan#)/(tan#-)]

    ..where fYT is yield strength of transverse reinforcement, dC is distance b/wextreme longitudinal reinforcement., s is transverse reinforcement spacing, # is

    critical crack angle, is effective friction coefficient, AST is transverse

    reinforcement area

    PN= [tan65(0.01228in2)(70ksi)(4.5417in) / (4in)]*[(1+(8.28kip/10kip)*tan65) /

    (tan65-(8.28kip/10kip))]=4.4 kips

    !When gravity loads exceed shear-friction forces, axial failureoccurs in

    column (column loses ALL shear capacity)$ total collapse of structure

  • 8/12/2019 007 Flores

    25/35

    Deformation Components:

    Shear"

    Axial Failure (cont.)

    Axial Failure ofColumn

    Total Collapse ofColumn

    DamageProgression inColumn Drift

  • 8/12/2019 007 Flores

    26/35

    Damage Progression in Column Drift

    Capacity ModelProgression of damage in a shear-critical RC column can bequantified using an empirical drift capacity model based on thecolumns lateral displacement (i.e. drift)

    Drift Ratio at Yielding ofLongitudinal Reinforcement

    ("/L)Y=0.00494

    Drift Ratio at Shear Failure

    ("/L)SH=0.026248

    L LDrif t Ratio at Axial Failure

    ("/L)AX=0.035183

    DamageProgression inColumn EPP

  • 8/12/2019 007 Flores

    27/35

    Damage Progression in Column EPP

    Backbone ModelElastic-Perfectly-Plastic (EPP) backbone model approximates theshear load vs. lateral displacement behavior of shear-critical RCcolumns via. a shear-failure surface

    EPP backbone model utilizes the calculated column drift ratiosatyielding, shear & axial failure, as well as the yield moment derivedfrom the column moment-curvature response to generate thecolumns shear failure surface under lateral and gravity loading

    Shear-Critical RC column Shear Hysteretic (force-

  • 8/12/2019 007 Flores

    28/35

    y (

    displacement) Response w/ EPP shear-drift backbone

    EPP-predicted

    shear failure

    surface

    !Y

    !SH

    !AX

    FabricationofRCColumnSpecimens

  • 8/12/2019 007 Flores

    29/35

    Fabrication of RC Column Specimens

    Column Formsplywood, 2x4s

    RC

    Coln

    6

    1-1 5/8

    2-4 5/8

    1-10

  • 8/12/2019 007 Flores

    30/35

    Fabrication of RCColumn Specimens (cont )

  • 8/12/2019 007 Flores

    31/35

    Fabrication of RC Column Specimens (cont.)

    Casting ofColumn

    SpecimensfC = 3 ksi

    FabricationofRCColumnSpecimens

  • 8/12/2019 007 Flores

    32/35

    Fabrication of RC Column Specimens(cont.)Sensitivity Analysis

    Sensitivity of RC Column Moment Capacity to Increasing 28-day Compressive Strength of

    Concrete.

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    1.5 2 2.5 3 3.5 4 4.5

    Concrete Compressive Strength, fc' (ks i)

    (nomin

    al)MomentCapacity,Mn(kip-in)

    fy constant

    FabricationofRCColumnSpecimens

  • 8/12/2019 007 Flores

    33/35

    Fabrication of RC Column Specimens

    (cont.)Sensitivity AnalysisSensitivity of RC Column Axial Load Capacity to Increasing 28-day Compressive Strength of

    Concrete.

    0

    10

    20

    30

    40

    50

    60

    70

    1.5 2 2.5 3 3.5 4 4.5

    Concrete Compressive Strength, fc' (ksi)

    (nominal)AxialLoadCapacity,

    Pn(kips)

    fy constant

  • 8/12/2019 007 Flores

    34/35

    Acknowledgments

  • 8/12/2019 007 Flores

    35/35

    Acknowledgments

    Research conducted as part of the 2004 Pacific Earthquake

    Engineering Research Center (PEER) Research Experience forUndergraduates & funded by the National Science Foundation

    Special thanks to my PEER advisor, Professor Jack P. Moehle forhis guidance in the direction of my project and working hard to

    secure the funding which made this research experience possibleThanks to UC Berkeley graduate students, WassimMichaelGhannoum& Yoon Bong Shin for their assistance in every aspectof this project

    Thanks to Richmond Field StationPEER headquarters labpersonnel for their assistance in the design & fabrication of myexperimental setup


Recommended