+ All Categories
Home > Documents > 01-Dist Part 1_new

01-Dist Part 1_new

Date post: 08-Apr-2018
Category:
Upload: kjan8899
View: 223 times
Download: 1 times
Share this document with a friend

of 12

Transcript
  • 8/7/2019 01-Dist Part 1_new

    1/22

    Siemens AG 2006

    Distance Protection for transmissionlines: part 1

    Power Transmissionand Distribution

  • 8/7/2019 01-Dist Part 1_new

    2/22

    Page 2 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Why impedance protection?

    Situation: Meshed network and two infeedsDirectional overcurrent time relays

    0,6s

    0,6s

    0,3s

    0,3s

    0,6s

    0,6s

    0,3s

    0,3s

    non-selective trip

  • 8/7/2019 01-Dist Part 1_new

    3/22

    Page 3 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Localization of short-circuits by means of an impedance measurement:

    - fault on the protected line

    - fault outside the protected line

    Z1

    relay A

    selectivity

    relay A

    Z2

    Basic principle of impedance protection

  • 8/7/2019 01-Dist Part 1_new

    4/22

    Page 4 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Distance measurement (principle)

    6 loops: 3 phase- phase loops and 3 phase- ground loops

    phase- phase -loop:

    The same applies to the remaining loops

    U L1-L2 = Z L ( I L1 - I L2 )

    Measured current measured voltage

    Z L = R L + j XL

    Z E = R E +j X E

    IL1

    IL2

    IL3

    IE

    ZL

    ZE

    UL1 UL2 UL3

  • 8/7/2019 01-Dist Part 1_new

    5/22

    Page 5 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    phase-ground-loop: U L1 = - L1 ( R L + j XL )- - E ( R E +j X E)

    - L1, - E measured current U L1 measured voltage

    The same applies to the remaining loops

    Distance measurement (principle)

    IL1

    IL2

    IL3

    IE

    ZL

    ZE

    UL1 UL2 UL3

    Z L = R L + j XL

    Z E = R E +j X E

  • 8/7/2019 01-Dist Part 1_new

    6/22

    Page 6 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Load and short-circuit impedances

    ZLZLF1ZLF2

    R F R FZLoadD

    F1 F2X

    R

    ZL

    ZLF2

    NSC 1NSC 2

    NL

    RR

    ZF1

    ZF2

    RR

    ZLoad

    ZLF1

    Fault area

    distance relayoperatingcharacteristic

    Fault inreverse

    direction Load area

    Minimum Load Impedance:M inimum voltage 0,9 UnM aximum current 1,1 InM aximum angle s 30

    Phase - Phase Fault

    RR } RF / 2

    Phase - Earth Fault

    RR } RF /(1 + R E/R L)

  • 8/7/2019 01-Dist Part 1_new

    7/22

    Page 7 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Principle of ( analog ) distance relayingISC

    E

    comparator

    ZL

    ZSC

    ZReplica (line replica impedance)(corresponds to the set zone reach)

    U1= k 1 USC = k 1 ISC ZSC.

    U2=k 2 ISC ZReplica

    ZS

    R elay design:operation if

    U1< U2i.e . ZSC < ZReplica

    ZReplicaX

    R

    Ext . fault

    Internal fault

    A B

  • 8/7/2019 01-Dist Part 1_new

    8/22

    Page 8 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Typical distance zone-characteristic

    MHO-circle shifted circle

    polarisedMHO-circle quadrilateral

    ZR

    ZSC

    ZSC '

    externalfault

    internalfault

    X

    RN5

    X

    R

    ZS = 0

    ZS small

    ZS high ZS

    RF

    ZL

    X

    R

    centre

    ZSC '

    ZSC

    setta le arccom ensati on

    X

    X

    ZSC -L Rarc

    RR

  • 8/7/2019 01-Dist Part 1_new

    9/22

    Page 9 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Graded distance zones

    time

    D1 D2 D3

    t1

    t2

    t3

    Z1

    Z2

    Z3

    distance

    ( t = grading time

    A CB D

    Z1 = 0,85 Z ABZ2 = 0,85 (Z AB + 0,85 Z BC )Z3 = 0,85 (Z AB + 0,85 (Z BC + 0,85 Z C D))

    Safety margin is 15 %:- line error - C T, VT error - measuring error

    Grading rules :

  • 8/7/2019 01-Dist Part 1_new

    10/22

    Page 10 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    2nd Zone: It must initially allow the 1st zone on the neighbouring feeder(s) to clear the fault .The grading time therefore results from the addition of the following times:

    operating time of the neighbouring feeder mechanical 25 - 80 msstatic: 15 - 40digital: 15 - 30

    + circuit breaker operating time HV / EHV: 60 ms (3 cycles) / 40 ms (2 cycles)M V up to about 80 ms (4 cycles)

    + distance relay reset time mechanical: approx . 60-100 msstatic: approx . 30 msdigital: approx . 20 ms .

    + errors of the distance relay internal timers mechanical: 5% of the set time, minimum 60-100 msstatic: 3% of the set time, minimum 10 msdigital: 1% of the set time, minimum 10 ms

    + distance protection starting time *) mechanical: O/ C starter: 10 ms, impedance starter: 25 ms

    static: O/ C stater: 5 ms, impedance starter: 25 msdigital: generally 15 ms

    + safety margin (ca.) grading; mechanical-mechanical: 100 msstatic/digital-mechanical or vice versa: 75 msdigital-digital or static-static 50 ms

    *) only relevant if the set relay times relate to the instant of fault detection / zone pick-up . This is the case with all S iemens relays . There areother relays where the time is adapted by software to relate to the instant of fault inception . In the latter case the starting time has to bedropped .

    Determination of grading times(With numerical relays 250 ms is possible)

  • 8/7/2019 01-Dist Part 1_new

    11/22

    Page 11 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    NSC

    Cu rr t a r a f or f or a r d f a u lts

    - SCCu rr t a r a f or r rs f a u lts

    - SC

    USC

    R

    ZSC

    Z 'SC

    I dan c a r a f o r f o r a r d f a u lts

    I dan c a r a f o r r rs f a u lts

    NSC

    D t r i na tion of f a u lt d ir ction

    cu rr n t / o lta g dia gr am impedan ce d ia gr am

    Fa u lt loca tion Wh e r e is th e f a u lt ?

    Th e impedan ce a lso sh ow s th e d ir e ction , b u t ....

  • 8/7/2019 01-Dist Part 1_new

    12/22

    Page 12 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    direction may be determined together with the impedance measurementbut: problems may arise in certain cases (e .g . close-in faults)

    separate directional determination required!

    Why impedance measurement and directional determination separately ?

    line characteristic

    fault with arc resistancein forward direction

    fault in forward direction

    fault in reversedirection

    close-in fault

    X

    R

    A B

    Impedance measurement and directional determination

  • 8/7/2019 01-Dist Part 1_new

    13/22

    Page 13 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Alternatives for the directional measurement

    faulty phase voltage

    V f

    I f

    V L2

    V L3

    voltage memory(pre-fault voltage )

    I f

    V L2V L3

    V L1

    healthy-phase voltage(phase to phase voltage )

    I f

    V f

    V L2-L3 V L2V L3

    ~

    ~

    ~

    ~

    ~

    ~

    ~

    ~

    ~

    Z lineZ grid relay

    fault L1-E

    Method 1 Method 2

    V L1

    V L1 V f

  • 8/7/2019 01-Dist Part 1_new

    14/22

    Page 14 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Directional measurementSummery of all 3 methods

    uRI = uL2-L3

    u f = uL1

    Distance measurement

    Direction measurementwith voltage memory

    Direction measurementwith unfaulted voltage

    i f (t)uL1

    if

    if

    if

    uL2-L3

    uL1Measuringwindow

  • 8/7/2019 01-Dist Part 1_new

    15/22

    Page 15 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Fault detection techniques

    Over-current fault detectionVoltage dependantover-current fault detection

    Voltage andangle dependantover-currentfault detection

    I

    U

    I >>I > I N >

    R

    X

    Impedancefaultdetection

    Not in 7SA522

  • 8/7/2019 01-Dist Part 1_new

    16/22

    Page 16 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    110 knet SCC ( )" 1 00 M

    40 MuSC 120 k

    400/1

    l

    I >st a rt 1 , I ND

    OH -line95 /15 l/S tZ 'L , ; /km

    ' l)

    10 20 30 40 50 60

    I > start = 600 A

    0,5

    1,0

    1,5

    2,0

    2,5

    I SC (2) [kA]

    l [km]

    I SC(2) =U

    N 1,1

    2 ( Z S + Z S + Z L

    reach of O C starter approx . 32 km

    N T

    Reach of over-current fault detection

    ph-ph fault as an example

    There is a limitationto the reach

  • 8/7/2019 01-Dist Part 1_new

    17/22

    Page 17 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    I I >>I >

    UI >>

    UI >

    U

    Udigital

    electro-mechanical

    Power system

    Relay

    line

    E

    E

    ZSUSC

    ZSCI SC

    USC

    - SC

    USC

    G

    G

    Voltage controlled overcurrent fault detection

  • 8/7/2019 01-Dist Part 1_new

    18/22

    Page 18 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Voltage and angle controlled overcurrent fault detection(U-I-N-starting)

    50 %

    100 %

    U/U N

    I /I 1 2 3

    I > I N > I >>

    U( I N >) U( I >>)

    X X

    R R

    N2

    N1N1

    N2

    This method is used in Germany

  • 8/7/2019 01-Dist Part 1_new

    19/22

    Page 19 TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    X

    R

    N LoadLoad

    Z1

    Z2

    Z4

    Z3

    Z1B

    Z5

    Line

    E

    Impedance zones of digital relays (7 S A6 and 7 S A52)

    Distance zones

    Inclined with line angle NAngle E prevents overreach of Z1

    on faults with fault resistancethat are fed from both line ends

    Fault detection

    no fault detection polygon: thelargest zone determines thefault detection characteristic

    simple setting of loadencroachment area withRmin and NLoad

  • 8/7/2019 01-Dist Part 1_new

    20/22

  • 8/7/2019 01-Dist Part 1_new

    21/22

    Page 21TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Ring feeder: with grading against opposite end

    0.6

    0.3

    grading time(s)

    The same grading from both sides

  • 8/7/2019 01-Dist Part 1_new

    22/22

    Page 22TLQ 2004 Distance Protection Part1

    Siemens AG 2006

    Power Transmission and Distribution

    Grading in a branched radial system

    L2

    L3

    L4

    L1Z2

    Z1

    Z3

    The impedances of the Z2 and Z3 must be grading with the shortest impedance


Recommended