+ All Categories
Home > Documents > 01(2*0,3(/-(( 4.56.-3(1,07((...

01(2*0,3(/-(( 4.56.-3(1,07((...

Date post: 27-May-2018
Category:
Upload: vuongdiep
View: 222 times
Download: 0 times
Share this document with a friend
37
9/17/11 1 !"#"$%&' )*+,"-./+ 01 2"*0,3 "/- 4.56.-3 1,07 8%,0$%3.3 01 9.07"33 :"/.;$ <= >;3"3'0 !"#$"% '(% )*(+,-- ."/*#*#0 123((4 (' !3"+*2,45 )*(4(0*2,4 ,#6 7,$"%*,4- 8#0*#""%*#05 9#*:"%-*$; (' <=4,3(+,5 >(%+,#5 <? @ABCD5 91E http://www.eia.gov Eq. 46 MM bpd of oil 17 MM bpd U.S. Energy Consumption, 2010
Transcript

9/17/11

1

!"#"$%&'()*+,"-./+((01(2"*0,3("/-((4.56.-3(1,07((

8%,0$%3.3(01(9.07"33(

:"/.;$(<=(>;3"3'0(!"#$"%&'(%&)*(+,--&."/*#*#0&123((4&('&!3"+*2,45&)*(4(0*2,4&,#6&7,$"%*,4-&8#0*#""%*#05&&9#*:"%-*$;&('&<=4,3(+,5&&>(%+,#5&<?&@ABCD5&91E!!

http://www.eia.gov

Eq. 46 MM bpd of oil

17 MM bpd

U.S. Energy Consumption, 2010

9/17/11

2

Supply Sources and Demand Sectors

9.07"33(

!"#$%&&'

(')*+,'(''

-.#/("0'1234'

(')*+(''

CO or CO2

< Yield

H2O

+ H2

Supply Sources and Demand Sectors

9/17/11

3

Huber, G. W.; Dumesic, J. A. !Catal. Today 2006, 111, 119. !

Lignocellulosic Biomass Conversion

9.07"33(

?"3.@'"&0/' A%/+"3( •  B.3'C;,DE,0*3'C(•  F8>(

•  Drop-in •  H2

8%,0$%3.3( 9.0D0.$( •  Drop-in •  !"#"$%&'()*+,"-./+(

4.+/./(

G%-,0$%3.3(

A6+",3(•  B;,7;/#"&0/(•  :;C%-,"&0/(•  F5=8C"3;(>;1='

•  Alcohols •  Drop-in

Gases: CO2 , CO, lights and

water vapor

Char + Ash Liquid

Biomass

Switchgrass

Fast Pyrolysis Products

10-15 %

15-20 % 50-70 %

6

9/17/11

4

>;"'#0,(0*;,"&/+('0/-.&0/3((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((H.07"33(#%*;I ( (3J.#'C+,"33 ( ( ( ( (B$6.-.K;-(H;-(7"#;,."$ ( (+,06/-(+$"33((H;-(*",&'$;(3.K;( ( (LMN(DOPQ(R7 ( ( ( (B$6.-.K./+(+"3 ( ( (SM(?"3(T0J(,"#; ( (U=LV(W+XC,( ( ( ( ( (>;"'#0,(#;7*;,"#6,;( ( (NQQ(Y!(

( ( ( (Z(UQ4X7./[(MN(Y! ( ( ( (9.07"33(1;;-(,"#;( ( (Q=N(W+XC,(

OU Pyrolysis Pilot Unit ( Kg-scale ) 7

>;"'#0,(0*;,"&/+('0/-.&0/3((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((H.07"33(#%*;I ( (3J.#'C+,"33 ( ( ( ( (B$6.-.K;-(H;-(7"#;,."$ ( (+,06/-(+$"33((H;-(*",&'$;(3.K;( ( (LMN(DOPQ(R7 ( ( ( (B$6.-.K./+(+"3 ( ( (SM(?"3(T0J(,"#; ( (U=LV(W+XC,( ( ( ( ( (>;"'#0,(#;7*;,"#6,;( ( (NQQ(Y!(

( ( ( (Z(UQ4X7./[(MN(Y! ( ( ( (9.07"33(1;;-(,"#;( ( (Q=N(W+XC,(

OU Pyrolysis Pilot Unit ( Kg-scale ) GC-FID FID-GC: HP 6890

Column: HP-5

Phenolics

Furfurals and dehydrated sugars

Small Oxygenates

8

TYPICAL PRODUCT DISTRIBUTION

9/17/11

5

Biomass !!-  Cellulose!-  Hemicellulose!-  Lignin!!

Biomass!!

• ((A7"$$(0\%+;/"#;3(('5'%4637863&9'%4:#7#4&9';3<#03&9'%:"6&'=''

• ((A6+",D-;,.];-('07*06/-3('5'43>#?42:#&%09'@2.@2.%4&'='

• ((4.+/./D-;,.];-(*C;/0$.'3('5'?2%"%:#49'>%0"44"09'%0"&#439'3<:A'='

'

Challenges: •  eliminate excess O •  maximize C retention •  minimize H2 consumption •  optimize fuel properties

(from varying feedstocks) •  Catalyst deactivation

Concept: catalytic cascade to upgrade/refine pyrolysis oil liquids

Concept: catalytic cascade connected to a multi-stage pyrolysis

250-275°C

300-350°C

550-600°C

9/17/11

6

Concept: catalytic cascade connected to a multi-stage pyrolysis

250-275°C

300-350°C

550-600°C

Light oxygenates: Acetic acid,

Acetol, Acetaldehyde,

Water

Acetone

Sugar derived compounds:

Furfurals

Aldol

Condensation

Lignin derived compounds:

Phenolics

C8-C13 Oxygenates

Iso-propanol H2

Alkylation

Alkylation C10-C13

Phenolics

C6-C8 Phenolics Hydro-

deoxygenation

To Gasoline or Diesel

pool

B46#4'')#0630&%C#0'D3<#0"E%C#0'F&<3."G:%C#0'B.#$%CE%C#0'

!"#$%&"'(&)%$($%&*+,-$.+#&/&0$1+(&21$(+#&Applied Catalysis A, 379 (2010) 172 and 385 (2010) 80

HIJ'

• (((4.+/./D-;,.];-(*C;/0$.'3'

-3#K8?30%C#0'B4;84%C#09'I.%0&%4;84%C#0'

0+."-#&"'(&&)%$($%&*+,-$.+#&

Journal of Catalysis 271 (2010) 88–98

Model Compound Studies

!"#+#&

3(4&5$&67&

9/17/11

7

Strategy No. 1 “Building up C-C chains”

Acid-Catalyzed Condensation

and Aromatization of Small Oxygenates

13

Initial Concept:

•  Oxygenates to Olefins

•  Olefins to Oligomers •  Oligomers to

Aromatics

Aromatization of Propanal on H-ZSM5

9/17/11

8

Initial Concept: 1. Oxygenates to Olefins

2. Olefins to Oligomers

3. Oligomers to Aromatics

•  Aldol Dimerization •  Dehydration •  Aldol Trimerization •  Dehydration •  Enol and

Rearrangement •  Aromatization •  Dehydration )L'B.#$%C:'

Aromatization of Propanal on H-ZSM5

15

Feed Propanal Propylene

Conditions W/F =0.13 h HZSM-5 (45)

400 oC

W/F =4 h HZSM-5 (45)

400oC

W/F =4h HZSM-5 (25)

500oC

Conversion 76 42 66 Gas (C1-C3) 32 - 38 isoalkenes

(C4-C9) 3 42 10 Aromatics 41 1 17

M.#62:<'N"346'-"&<."!2C#0'%O3.'PQ'$"0'#0'&<.3%$'"0'%'GK36'!36'.3%:<#.'

Journal of Catalysis 271 (2010) 201–208

Aromatization of Propanal on H-ZSM5

16

9/17/11

9

M24&3&'

LQQ(!( UQQ(!(

Journal of Catalysis 271 (2010) 201–208 M24&3&'

Pulses of Propanal on H-ZSM5 produce C9 Aromatics

17

Journal of Catalysis 271 (2010) 201–208 M24&3&'

LQQ(!(

''''''''''''''''''''''''''''''''''M24&3&'''''''''''''''''''''''''''''''''

NQQ(!(

Pulses of Propylene on H-ZSM5 produce C6-C7 Aromatics

18

9/17/11

10

H-ZSM-5 Si/Al = 45 Crystallite Size ~ < 100 nm From Sud Chemie

H-ZSM-5 Si/Al = 45 Crystallite Size ~ >1,000 nm Synthesized In-House

Catalysis Communications 11 (2010) 977–981

Varying Crystallite Size

19

H-ZSM-5 Si/Al = 45 Crystallite Size ~ < 100 nm From Sud Chemie

H-ZSM-5 Si/Al = 45 Crystallite Size ~ >1,000 nm Synthesized In-House

Varying Crystallite Size

20

9/17/11

11

H-ZSM-5 Si/Al = 45 Crystallite Size ~ < 100 nm From Sud Chemie

H-ZSM-5 Si/Al = 45 Crystallite Size ~ >1,000 nm Synthesized In-House

Catalysis Communications 11 (2010) 977–981

More C9 ARO (less secondary reactions)

Varying Crystallite Size

21

Journal of Catalysis 271 (2010) 88–98

HZSM-5 catalysts

with controlled

mesoporosity generated by desilication

SEM

Varying Mesoporous Structure 22

9/17/11

12

As the degree

of desilication increases,

the mesoporosity

increases.

BET

J. Catalysis 271 (2010) 88–98

Varying Mesoporous Structure 23

As mesoporosity increases: a)  Less C1-C3 b)  More isoparafins and

C4-C9 olefins c)  Slightly less

aromatics

Due to reduced residence time inside microcrystalline structure

Product Distribution

J. Catalysis 271 (2010) 88–98

Varying Mesoporous Structure 24

9/17/11

13

Strategy No. 2 “Breaking C-O bonds instead of

C-C bonds”

Hydro-deoxygenation of Furfural

25

Decarbonylation

Hydrogenation

Hydrogenolysis

Ring Opening

Furfural Conversion on Metal Catalysts 26

9/17/11

14

FAL FOL MF

!  Langmuir-Hinshelwood model

VFOLFOLMF

VFOLFOLVFOLFOLFALFALFOL

VFOLFOLVFALFALFAL

PKkr

PKkPKKkPKkr

PKKkPKkr

!

!!

!!

22

21

1

11

=

"#

$%&

' +(=

+(=

(

2/12/122

11

HHMFMFFOLFOLFALFALV PKPKPKPK ++++=!

Kinetics. Furfural over Cu/SiO2

Sitthisa , Balbuena, Resasco J. Catalysis, 277 (2011) 1-13

27

Heat of adsorption, !Hads (kcal.mol-1)

12.3 6.9 3.7

Furfural more strongly adsorbed than furfuryl alcohol and MF.

Kinetics. Furfural over Cu/SiO2

28

Sitthisa , Balbuena, Resasco J. Catalysis, 277 (2011) 1-13

9/17/11

15

!Hads < 0

!1-aldehyde

!  Carbonyl perpendicular mode is preferred !  Parallel adsorption modes are not favored ( endothermic !)

!  Interaction between carbonyl O and surface is main contributor to adsorption strength

Cu

!Hads > 0

DFT. Furfural over Cu (111)

29

Sitthisa , Balbuena, Resasco J. Catalysis, 277 (2011) 1-13

Furan Ring !  Furan ring bands do not change position

30

1675 cm-1 !  C=O stretching band in adsorbed furfural appears downshifted from the wavenumber observed for gas-phase furfural.

!1-aldehyde

Gas phase

1720 cm-1

!  Gas phase furfural shows the C=O stretching vibration mode at 1,720 cm-1.

DRIFTS. Furfural over Cu

9/17/11

16

FAL FOL MF

230oC

!  The reaction of furfural (FAL) on Cu/SiO2 gives mainly furfuryl alcohol (FOL), with MF as a minor product, which is significant only above 230˚C.

Furfural Conversion over Cu/SiO2

31

!2-aldehyde

OO

?

Cu

O

O

H

O

OH

H

Cu/SiO2

H2

O

?

!  preferred mode on Group VIII metals !2 –aldehyde

! !2 configuration can convert to acyl

"-adsorption

RC O

H

#2(C-O)-aldehyde

RC O

H

H

#1(C)-acyl

RCO

R-H -CO

M.A. Barteau J. Phys. Chem. 101 (1997) 7939

1405 cm-1

Intermediates on Group VIII Metals 32

9/17/11

17

#2(C-O)-aldehyde

RC O

H

"-adsorption

RC O

H

H

#1(C)-acyl

RCO

C O

RC

O

HH

Alkoxide species

RC

O

HH

H

RH

Alcohol

Sel

ectiv

ity (%

) Temperature (°C)

Decarbonylation

Hydrogenation

11 kcal/mol 43 kcal/mol

The acyl intermediate becomes dominant at high temperatures

Intermediates on Pd 33

Activated

!  The main reaction product at every W/F is furan, while furfuryl alcohol is observed as a minor product.

Furfural Conversion over Pd/SiO2

34

T = 230C; H2/feed ratio = 25; TOS 15 min

At T = 230°C

!  Terahydrofuran (THF) and tetrahydro furfuryl alcohol (HFOL), formed as secondary products, are observed in smaller amounts, and mostly at high W/F.

9/17/11

18

Decarbonylation of Other Aldehydes

R H

O

R-H CO + Pd/SiO2

R

0

10

20

30

40

FAL MPEL MPAL TMA

DeC

O a

ctiv

ity (m

olg-1

s-1x1

06 )

O

O

HO

H

O

H

O

H

0.006 mole/h of aldehydes, 1%Pd/SiO2, 250oC, 1 atm, 62.4 ml/min of hydrogen

DE

CA

RB

ON

YLA

TIO

N

What is the role of the ring ?

O

O

H

O

H

O

H

O

H

Aldehydes #1(C)-Acyl (DFT) !Hads (kcal.mol-1)

Activity (µmol. g-1.s-1)

CO

CO

CO

O

O

16.3

22.0

27.5

33.4

27.0

33.2

14.0

4.7

Decarbonylation of Other Aldehydes

9/17/11

19

0.5Pd/SiO2

0.25Cu-0.5Pd/SiO2

0.5Cu-0.5Pd/SiO2

2Cu-0.5Pd/SiO2

2Cu/SiO2

H2 c

onsu

mpt

ion

(a.u

.)

Temperature (°C)

Bimetallic Pd-Cu/Silica

(a)

(b)

(c)

(e)

(d)

2118 cm-1 2083 cm-1

1967 cm-1

Abs

orba

nce

Wavenumber (cm-1)

2 Cu

2Cu-0.5Pd

0.5Cu-0.5Pd

0.25Cu-0.5Pd

0.5Pd

M=PV(M=UO(P=M^( M=VQ(U=QO( P=ML( M=N_(U=Q_( P=MU(

P=MU(

M=NL(M=^_(

F%6&'R''+SAQ';TU$#4' F%6&'R''V+AW';TU$#4' F%6&'R''VQAQ';TU$#4' F%6&'R''LAX';TU$#4'(b) (c) (d) (e)

(a)

DFT optimized structures of 2-methylpentanal (MPAL) in gas phase (a), and its adsorption on Pd(111) (b) and PdCu(111) (c-e) slabs.

Red, gray, white, blue, and yellow spheres represent O, C, H, Pd and Cu atoms, respectively.

DFT of 2-methyl pentanal (MPAL) on Pd-Cu

Sitthisa, Pham, Prasomsri, Sooknoi, Mallinson, Resasco, J. Catalysis, 280 (2011) 17-27

9/17/11

20

M=PV(M=UO(P=M^( M=VQ(U=QO( P=ML( M=N_(U=Q_( P=MU(

P=MU(

M=NL(M=^_(

F%6&'R''+SAQ';TU$#4' F%6&'R''V+AW';TU$#4' F%6&'R''VQAQ';TU$#4' F%6&'R''LAX';TU$#4'(b) (c) (d) (e)

(a)

DFT optimized structures of 2-methylpentanal (MPAL) in gas phase (a), and its adsorption on Pd(111) (b) and PdCu(111) (c-e) slabs.

Red, gray, white, blue, and yellow spheres represent O, C, H, Pd and Cu atoms, respectively.

DFT of 2-methyl pentanal (MPAL) on Pd-Cu

Sitthisa, Pham, Prasomsri, Sooknoi, Mallinson, Resasco, J. Catalysis, 280 (2011) 17-27

!"#$%#"&$%

F%6&'R''YYAW';TU$#4' F%6&'R''LAP';TU$#4' F%6&'R''SAW';TU$#4' F%6&'R''WAQ';TU$#4'(b) (c) (d) (e)

6V'6+'

6X'6W'

6Y'

6P'

6S'

$M=PN( $M=MQ($M=_^( $M=O_($M=MP(

DFT optimized structures of furfural (FAL) in gas phase (a), and its adsorption on Pd(111) (b) and PdCu(111) (c-e) slabs.

Red, gray, white, blue, and yellow spheres represent O, C, H, Pd and Cu atoms, respectively.

DFT of furfural (FAL) on Pd-Cu

Sitthisa, Pham, Prasomsri, Sooknoi, Mallinson, Resasco, J. Catalysis, 280 (2011) 17-27

9/17/11

21

W/F = 0.1 h, Temp = 230°C, H2/Feed ratio = 25, H2 pressure = 1 atm, TOS = 15 min

a)

Yiel

ds (%

)

Cu loading (wt.%)

Conversion

Furan FOL

THF HFOL

Sele

ctiv

ity (%

)

b)

Cu loading (wt.%)

THF

HFOL

Decarbonylation

Hydrogenatio

n

!  The total activity for FAL is decreased when the Cu metal was incorporated !  The yield of the decarbonylation products, furan, is greatly reduced while the yield of hydrogenated products (FOL) significantly increases as a function of Cu loading

Furfural on Pd/SiO2 and Pd-Cu/SiO2

41

W/F = 0.2 h, Temp = 250oC, H2/Feed ratio = 25, Pressure = 1atm,

TOS = 15 min.

Hyd

roge

natio

n yi

eld

(%)

Furfural on Pd/SiO2 and Pd-Cu/SiO2

Sitthisa, Pham, Prasomsri, Sooknoi, Mallinson, Resasco, J. Catalysis, 280 (2011) 17-27

Dramatic increase in yield of furfuryl alcohol on the Pd-Cu catalyst with high selectivity.

9/17/11

22

#2(C-O)-aldehyde

RC O

H

Pd Fe

Furfural on Pd/SiO2 and Pd-Fe/SiO2

43

0

20

40

60

80

100

0 2 4 6 8 10W/F (g.cat/mol.h)

MF

yiel

d (%

)

O

Pd/SiO2

Pd-Fe/SiO2

O

0

20

40

60

80

100

0 2 4 6 8 10

W/F (g.cat/mol.h)

Fura

n yi

eld

(%)

O

Pd/SiO2

Pd-Fe/SiO2

O

O

O

O

O

H

!  Decarbonylation dramatically decreased when Fe was added to Pd. !  2-methyl furan became the main product over Pd-Fe catalyst.

C-C breaking

C-O breaking

Pd

Pd-Fe

200 400 600 800

Temperature, oC

5Ni

5Fe

5Ni-0.5Fe

5Ni-1Fe

5Ni-2Fe

5Ni-5Fe

H 2 u

ptak

e (a

.u.)

TPR

40 42 44 46 48 50

Ni

2!/degree

Inte

nsity

(a.u

.)

5Ni

5Fe

5Ni-0.5Fe

5Ni-1Fe

5Ni-2Fe

5Ni-5Fe

Ni0.5Fe0.5

Fe

XRD

Catalysts lattice

constant (Å)

XRD DFT

5Ni 3.53 3.52

5Ni-5Fe 3.58 3.55

5Fe 2.87 2.87

Furfural on Ni/SiO2 and Ni-Fe/SiO2

9/17/11

23

Similar behavior is observed

in the conversion of Benzaldehyde:

* Ni " only Benzene

* Ni-Fe " only Toluene

0

10

20

30

40

50

60

70

1 2 3 4

Sele

ctiv

ity (%

)

FuranC4 productsFOLMF

5Ni/SiO2

0

10

20

30

40

50

60

70

1 2 3 4

Sele

ctiv

ity (%

)

FuranC4 productsFOLMF

5Fe/SiO2 5Ni-5Fe/SiO2

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5Fe loading (wt%)

Yie

ld (%

)

Benzene

Toluene

Furfural on Ni/SiO2 and Ni-Fe/SiO2

Ni (decarbonylation) " Ni-Fe (hydrogenolysis)

MF

MF

Furfural Conversion on Metal Catalysts

O

O

OO

H

OOH

OOH

O

46

Hydrogenation

RON = 134 2 Ox

Cu

Pd-Cu

O Decarbonylation

RON = 109 1 Ox 1 C loss

Pd, Ni

C4 products

Ring opening Ni

RON = 131 1 Ox No C loss Hydrogenolysis

Pd-Fe or Ni-Fe

Pd-Fe or Ni-Fe

9/17/11

24

Strategy No. 3

Multi-functional Catalysis in Bi-Phasic Liquid Systems Stabilized by Nanoparticles

47

Conversion in Liquid Phase (biphasic)

48

Advanced Synthesis and Catalysis 2010, 352, 2359 – 2364

9/17/11

25

a.  Mass transport limitations (changes in local

chemical potential) b.  Competitive adsorption c.  Solvation of kinetically relevant

intermediates

R. J. Madon, E. Iglesia, J. Molecular Catalysis A: Chemical 163 (2000) 189

Rates only depend on thermodynamic activities of reactants and products

Therefore, phase selectivity in emulsions only due to a, b, c

pA

CA

µAg

=µAL

Reactions on surfaces do not detect the presence of contacting fluid, unless:

Semi-batch reactor at T=100ºC

continuous flow of H2 110 sccm

through liquid at P= 200 psi;

0.03 g catalyst , reaction time 3 h.

OO

University of Oklahoma!

University of Oklahoma!

Advanced Synthesis and Catalysis 2010, 352, 2359 – 2364

Conversion in Liquid Phase (biphasic)

9/17/11

26

!0/-;/3"&0/(01(`\%+;/"#;3(0/(a+`X!SEX8-(

STEP 1: Based- catalyzed aldol condensation: - MgO nanoparticles - Na(OH) homogeneous

Need to hydrogenate in oil phase

ONLY

OH

OCH3

+ H2+ H2

OH

CH3CH3

+ H2+ H2

Low T

+ H2

Pd Only on Oil side STEP 2:

Temperature Staged Hydrogenation

High T

Importance of Phase Selectivity To Maximize Yield

Crossley, Sen, Faria, Resasco SCIENCE, 327,

68-72 (2010)

Strategy No. 4 “Eliminate O while keeping C

in the fuel range”

Selective Hydro-Deoxygenation of Phenolic Compounds

52

9/17/11

27

Lignin-derived Phenolics

Oxygenated aromatics

• ((!0D*,0';33./+(./(B!!(6/.#3(• ((A;];,;(G:E'

b/-63#,."$((F**,0"'C;3'

'!"#$%&'()*%+!!!!!!!!!!!!!!!!,-#.!/0.&1$&%()'2!3&%41*%!56!7%%8!9:!

!"! !"# !"$ !"% !"& '"! '"#!

#!

$!

%!

&!

'!!

(

(

)*+,-

./(0

-*1/

2,+-*(34

5

6 78 (395

Effect of space time (W/F) on anisole conversion over amorphous SILICA-ALUMINA

Reaction conditions: T = 300 oC, P = 1 atm, TOS = 10 min.

!"! !"# !"$ !"% !"& '"! '"#!

(

'!

'(

#!

#(

)!

)(

$!

$(

(!

Yie

ld (%

)

W/F (h)

*+ ,-./0*1/./21-+ ,*3 421-+ ,*5 6421-+ ,*5 -768 21-+ ,*1-9: ;

OCH3

Conversion of Anisole - Acid Catalyst

PHENOL

CRESOL

9/17/11

28

OCH3

kA,1+

OCH3 O

CH3

CH3

OH

+

OCH3

CH3 +

OH

kA,3

OH

CH3

OH

CH3+

OCH3

+

OH

CH3kA,4

OH OH

(CH3)2+

OCH3

+kA,5

OH

+

OH

(CH3)2

OH

(CH3)3

OCH3

kA,2

+

OH

+

OH OH

CH3

OCH3

kA,1+

OCH3 O

CH3

CH3

OH

+

OCH3

CH3 +

OH

kA,3

OH

CH3

OH

CH3+

OCH3

+

OH

CH3kA,4

OH OH

(CH3)2+

OCH3

+kA,5

OH

+

OH

(CH3)2

OH

(CH3)3

OCH3

kA,2

+

OH

+

OH OH

CH3

Trans-Alkylation of Anisole

Dominant products are Phenol and

Cresol

!"! !"# !"$ !"% !"& '"! '"# '"$ '"% '"& #"! #"#!

#!

$!

%!

&!

'!!

(

(

Gua

iaco

l Con

vers

ion

(%)

W/F (h) !"! !"# !"$ %"& %"' &"!!

%!

&!

(!

#!

)!

**

Yie

ld (%

)

W/F (h)

*+ , -./012*3.-042*+ , -./012*5 678.-042*+ , -./012*9 :678.-042*+ , -./012*9 .-:, 78.-042*+ , -./012*;+ 1<.=*>678.-01?4*@ .AB .A.*3.-042753@*3.-042*C D, 6,/12

OCH3

OH

Conversion of Guaiacol - Acid Catalyst

Effect of space time (W/F) on guaiacol conversion over amorphous SILICA-ALUMINA

Reaction conditions: T = 300 oC, P = 1 atm, TOS = 10 min.

CATECHOL

M-CATECHOL

9/17/11

29

ANI on B-acid -22.8 kcal/mol

GUA on L-acid -30.5 kcal/mol

GUA on B/L-acid -49.3 kcal/mol

GUA on B-acid -27.8 kcal/mol

ANI on L-acid -27.7 kcal/mol

Catalyst site Heat of Adsorption (kcal/mol)

Anisole Guaiacol

Bronsted -22.8 -27.8

Lewis -27.7 -30.5

Bronsted and Lewis N/A -49.3

DFT - Anisole and Guaiacol Adsorption (Brønsted/Lewis Acid Sites)

TPO after the TPD of Anisole and Guaiacol chemisorbed at room

temperature.

TPD Anisole and Guaiacol after chemisorption at room

temperature.

OCH3

OCH3

OH

Temperature Programmed Desorption

9/17/11

30

Effect of space time (W/F) on conversion of anisole and guaiacol over amorphous SILICA-ALUMINA

Reaction conditions: Temp = 300 oC, P = 1 atm, TOS = 10 min.

!"! !"# !"$ !"% !"& '"! '"# '"$ '"% '"& #"! #"#!

#!

$!

%!

&!

'!!

Con

vers

ion

(%)

W/F (hr)

() *+ ,+ -./(0 1,2 ./3(

OCH3

OCH3

OH

Anisole Vs. Guaiacol

Guaiacol should be more reactive. Faster deactivation ?

GUA

ANI

! "! #$! #%! $&!!

$!

&!

"!

%!

#!!

'

'

Con

vers

ion

(%)

Time on Stream (min)

'( )*+ ',-./ 01+',2 3'45 .*/ 67'8 9, '4: +;0-<7',2 3'4= >.*<7

! "! #$! #%! $&!

#!

$!

'!

&!

(!

"!)

)

Con

vers

ion

(%)

Time on Stream (min)

)* +,- ). +/ 0/ 123). 45 )67 0,8 9:)5; <)6= -12>?:). 45 )6@ A0,?:

Guaiacol # Anisole # Guaiacol Anisole #Guaiacol # Anisole

Anisole Vs. Guaiacol

Effect of switching anisole and guaiacol feeds over amorphous SILICA-ALUMINA – W/F = 1

Reaction conditions: Temp = 300 oC, P = 1 atm

9/17/11

31

(((<c;'#(01('0D1;;-./+(C%-,0'",H0/3(

Oxygenates: Anisole (Bio-oil model compound) Co-feeds: Tetralin (good H-donor)

n-Decane Benzene Propylene

Fig. 4. Relative hydrogen transfer ability at different locations of the donor molecules.

(0.750) (0.693)

(0.751)

(0.779) (0.716)

(0.868)

(0.880)

(0.879)(0.867)Methyltetralin

(0.719)

(0.762)

(0.762) (0.719)

(0.872)

(0.872) (0.882)

(0.882)

Tetralin(0.774)

(0.725)(0.774)

(0.774)

(0.774)

(0.727)

(0.727)(0.727)

(0.727)

Decalin

(0.725)

(0.826)n-Decane

(0.826)

(0.786)

(0.781)

(0.779)(0.786)

(0.781)

(0.779)(0.778)

(0.778)

')%<%48&<&Z'*N'E3#4"<3&'5["UB4RVY'%06'WQ='I3$/Z' '''WQQ'\)''M.3&&2.3Z' ''V'%<$'*3'

T. Prasomsri, R. E. Galiasso, W. E. Alvarez, T. Sooknoi, D. E. Resasco, Appl. Catal. A, 389, 140-146, 2010

Q(

MQ(

LQ(

VQ(

^Q(

PQQ(

Q( P( M( U(

dPe(F/fGgDPN(

E`A(dCe(

F/.30$;('0/];,3.0/

(dJ#h

e(

(((!0/];,3.0/(01(86,;(F/.30$;(

5289:&8;+<="-&%,'>+<#$,'&,?&&)'@8+.&$#&'+A-$A$B-+&

>;"'&0/(!0/-.&0/3I(• ]U1'R'QAWVL'7'• I3$/'R'WQQ')'• M.3&&2.3'R'V'%<$'• *3'^#_'R'WQ'::U$"0'

C"#.&%"."-D#.&(+"%E>"E,'&

“Catalytic conversion of anisole over HY and HZSM-5 zeolites in the presence of

different hydrocarbon mixtures,” T. Prasomsri, Anh T. To, S. Crossley, W. E.

Alvarez, D. E. Resasco, Appl. Catal. B: 106, 204-211, 2011

9/17/11

32

Q(

MQ(

LQ(

VQ(

^Q(

PQQ(

Q( P( M( U(

>;"'&0/(!0/-.&0/3I(• ]U1'_.<A'B0"&#43'R'QAWVL'7'• I3$/'R'WQQ')'• M.3&&2.3'R'V'%<$'• *3'^#_'R'WQ'::U$"0'

F/iE;#fGgDPN(

F/fGgDPN(

E`A(dCe(

d_e(F/iE;#fGgDLQ(

(((!0/];,3.0/(01(F/.30$;(./(a.\;-(B;;-3(

FG.<"'#?+<&

F/.30$;('0/];,3.0/

(dJ#h

e(

F/iE;#f<D!FE(

F/(<D!FE(

5289:&8;+<="-&%,'>+<#$,'&,?&&)'@8+.&$#&'+A-$A$B-+&

“Catalytic conversion of anisole over HY and HZSM-5 zeolites in the presence of

different hydrocarbon mixtures,” T. Prasomsri, Anh T. To, S. Crossley, W. E.

Alvarez, D. E. Resasco, Appl. Catal. B: 106, 204-211, 2011

(((F/.30$;('0/];,3.0/(0];,(GD9;#"(

•  N"346'#@'786.#:%.!#0&'"&'>3.8'&$%44A'

•  I73'$%`#.'.3%:C#0'"&'<.%0&%4;84%C#0A'

PW'

M*Fa,b')cF[,b''Ba-'JNbFa,b''BcF'-,deaBaI'

Mc,-f)I['

IRWQQ'\)9''MRV'%<$9'*+UB0"&#43'R'YQ'9'I,[R'QAY'7A''

Bifunctional transalkylation and hydrodeoxygenation of anisole

over a Pt/HBeta catalyst X. Zhu, L. Lobban, R.G.

Mallinson, D.E. Resasco J. Catalysis, 281, 21-29, 2011

9/17/11

33

c3%:C#0':#06"C#0&Z'IRWQQ'\)9'MRV'%<$9'*+UB0"&#43RYQ9'I,[R'QAY'7A''

(((F/.30$;('0/];,3.0/(0];,(Ph(8#XA.`M(

•  ,03':%.!#0'"&'4#&<'!8'$3<7%03'@#.$%C#0A'

•  M730#4&'"&'<73'/."$%.8'/.#62:<9'%06':%0'!3'786.#63#K8?30%<36'<#'!30E303A'

•  H30E303':%0'!3'@2.<73.'786.#?30%<36'<#':8:4#73K%03'_7":7'"&'2063&".%!43A'

Bifunctional transalkylation and hydrodeoxygenation of anisole

over a Pt/HBeta catalyst X. Zhu, L. Lobban, R.G.

Mallinson, D.E. Resasco J. Catalysis, 281, 21-29, 2011

IRWQQ'\)9'MRV'%<$9'*+UB0"&#43RYQ9'I,[R'QAY'7A''

(((F/.30$;('0/];,3.0/(0];,(Ph(8#XGD9;#"(

•  I.%0&%4;84%C#0'%06'786.#63#K8?30%C#0'<%;3'/4%:3'#>3.'%:"6'%06'$3<%4'&"<3&9'.3&/3:C>348A'

•  N"346&'#@'786.#:%.!#0&'"&'

307%0:36'&"?0"G:%0<48'

•  I73':%.!#0'02$!3.'"&'/.3&3.>36A'

9/17/11

34

Summary

•  Upgrading of bio-oil with maximum yield and minimum oxygen is a challenging task >> It needs multi-stage solution.

•  Studies with model compounds are valuable to identify different catalytic strategies

•  Oxygen functionalities (-OH, -OCH3, C=O) can be used to enlarge C-C backbone chain

•  Oxygen functionalities are highly deactivating of catalysts. Hydrogen usage is important.

•  Liquid-phase processes (biphasic) offer promise for operating at milder conditions and minimize hydrogen consumption

68

Acknowledgements

Faculty: R. G. Mallinson; T. Sooknoi; L. L. Lobban; F. Jentoft; R. Jentoft; P. Balbuena

Students and Post-docs:

Trung Hoang, Xinli Zhu, Surapas Sitthisa, Ming Sen, Teerawit Prasmosri, Sunya Boonyasuwat, Tu Pham, Jimmy Faria, Pilar Ruiz, Paula Zapata.

Funding -  Department of Energy - National Science Foundation / EPSCOR -

Oklahoma Bioenergy Center - State Grant

9/17/11

35

PL'

Phase 1 Phase 2

University of Oklahoma!

University of Oklahoma!

The rates should be the same no matter the location of the reactants !.. UNLESS

21AA rr =

111 )( AAA ckr != 222 )( AAA ckr !=

21AA ff =21AA aa =2211 cc AA !! =

21AA µµ =

2AA kar =1

AA kar =

Is Phase Selectivity (thermodynamically) possible ?

Stagnant Layer of Liquid B !

µiSA

!

µiSB

University of Oklahoma!

University of Oklahoma!

University of Oklahoma!

!

JiA = "

DCiA

RT#µi

#x!

µiA

!

µiB

!

JiB = "

DCiB

RT#µi

#x

CiA is the Solubility of i in Phase A

CiB is the Solubility of i in Phase B

Phase A Phase B

!

µiPA

!

µiPB

!

CiA

!

CiB

If the Solubility

!

JiA

!

JiB

Then the Flux

!

RDiffusion ="xRTDCi

B

DIFUSSION RESISTANCE

Mass Transport Effects

9/17/11

36

Organic molecules from the oil droplets in the O/W emulsion to oil on the single phase

Oil Inside the Droplets: Tetralone + Decalin Oil B: Tetralin Aqueous Phase: DI Water

Oil Mixture A

LogP of Tetralone = 2.24 Log P of Decalin = 3.88 Log P of Tetralin = 3.15

Mass Transport Effects

LogP of Tetralone = 2.24 Log P of Decalin = 3.88 Log P of Tetralin = 3.15

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!" (!!" $!!!" $(!!" %!!!"

*+,-.,

/012

+,34

1564

74"

-+,-.,

/012

+,"

864."946,:"

!;/./01<+,.""

=.-1<6,"

Stagnant System

20 µm

!"# $"#

20µm

20 µm

%"# &"#

20 µm 20 µm

!"# $"#

20µm

20 µm

%"# &"#

20 µm Under Stirring (200rpm)

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

!" $!" %!" &!" '!" (!" )!" *!"

-./01/

2345

./67

4897

:7"

0./01/

2345

./"

;971"<79/="

!>21234?./1"

Crossley S, Faria J, Shen M, Resasco D.E, SCIENCE, 327, 68-72 (2010)

Mass Transport Effects

9/17/11

37

a"(13'M7%&3'-"%?.%$'

SX'


Recommended