+ All Categories
Home > Documents > 0.15in ECE 18-898G: Special Topics in Signal Processing:...

0.15in ECE 18-898G: Special Topics in Signal Processing:...

Date post: 25-May-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
27
1/25 ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference High-dimensional graphical models Yuejie Chi Department of Electrical and Computer Engineering Spring 2018
Transcript
Page 1: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

1/25

ECE 18-898G: Special Topics in Signal Processing:Sparsity, Structure, and Inference

High-dimensional graphical models

Yuejie Chi

Department of Electrical and Computer Engineering

Spring 2018

Page 2: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

2/25

Identifying Interactions in Data

Given n data samples, xi ∼ x =

x1x2...xp

∈ Rp, how to identity

interactions between xi and xj?

=⇒

Page 3: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

3/25

Multivariate Gaussians

Consider a random vector x ∼ N (0,Σ) with pdf

f(x) = 1(2π)p/2 det (Σ)1/2 exp

{−1

2x>Σ−1x

}∝ det (Θ)1/2 exp

{−1

2x>Θx

}where Σ = E[xx>] � 0 is p× p covariance matrix, and Θ = Σ−1 isinverse covariance matrix / precision matrix

Page 4: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

4/25

Likelihood function for Gaussian models

Draw n i.i.d. samples x1, · · · ,xn ∼ N (0,Σ), then log-likelihood (upto additive constant) is

` (Θ) = 1n

n∑i=1

log f(xi) = 12 log det (Θ)− 1

2n

n∑i=1x>i Θxi

= 12 log det (Θ)− 1

2tr(SΘ),

where S := 1n

∑ni=1 xix

>i is sample covariance matrix (SCM).

Maximum likelihood estimation (MLE)

Θ̂ = argmaxΘ�0 log det (Θ)− tr(SΘ)

Page 5: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

5/25

The sample-rich regime

Fact 9.1If the SCM S is invertible, the MLE is given as

Θ̂ = S−1.

When n� p, the SCM is invertible and classical theory says MLEconverges to the truth as sample size n→∞ (consistency).

Page 6: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

6/25

High-dimensional / sample-starved regime

Practically, we are often in the regime where sample size n is small,with n < p. Why?

• Our assumption may only hold for a small window of datacollection;

• Our ability may only allow us to collect a few samples;

• The number of features/variables we care is much higher.

In this regime, S is rank-deficient, and MLE does not even exist.

Strategy: impose low-dimensional structures.

Page 7: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

6/25

High-dimensional / sample-starved regime

Practically, we are often in the regime where sample size n is small,with n < p. Why?

• Our assumption may only hold for a small window of datacollection;

• Our ability may only allow us to collect a few samples;

• The number of features/variables we care is much higher.

In this regime, S is rank-deficient, and MLE does not even exist.

Strategy: impose low-dimensional structures.

Page 8: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

7/25

Gaussian Graphical Model with Sparsity

Page 9: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

8/25

Undirected graphical models

x1 ⊥⊥ x4 | {x2, x3, x5, x6, x7, x8}

• Represent a collection of variables x = [x1, · · · , xp]> by a vertexset V = {1, · · · , p}• Encode conditional independence by a set E of edges

◦ For any pair of vertices u and v,

(u, v) /∈ E ⇐⇒ xu ⊥⊥ xv | xV\{u,v}

Page 10: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

9/25

Gaussian graphical models

Lemma 9.2Consider a Gaussian vector x ∼ N (0,Σ). For any u and v,

xu ⊥⊥ xv | xV\{u,v}

iff Θu,v = 0, where Θ = Σ−1.

Many pairs of variables are conditionally independent⇐⇒ many missing links in the graphical model (sparsity)

Page 11: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

10/25

Gaussian graphical models

∗ ∗ 0 0 ∗ 0 0 0∗ ∗ 0 0 0 ∗ ∗ 00 0 ∗ 0 ∗ 0 0 ∗0 0 0 ∗ 0 0 ∗ 0∗ 0 ∗ 0 ∗ 0 0 ∗0 ∗ 0 0 0 ∗ 0 00 ∗ 0 ∗ 0 0 ∗ 00 0 ∗ 0 ∗ 0 0 ∗

︸ ︷︷ ︸

Θ

Inverse covariance matrix Θ is often (approximately) sparse

Page 12: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

11/25

Sparse inverse covariance estimation

Problem definition: Given n i.i.d. samples, xi ∼ N (0,Σ), estimatethe sparse inverse covariance matrix Θ = Σ−1.

Two approaches:• Graphical Lasso• CLIME

Page 13: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

12/25

Graphical lasso

Key idea: regularizing the MLE by imposing `1 regularization (Yuan& Lin’07; Friedman, Hastie, &Tibshirani ’08).

Graphical Lasso (GLasso)

maximizeΘ�0 log det (Θ)− tr(SΘ)− λ‖Θ‖1︸ ︷︷ ︸lasso penalty

• It is a convex program! (homework)• First-order optimality condition

Θ−1 − S − λ ∂‖Θ‖1︸ ︷︷ ︸subgradient

= 0 (9.1)

=⇒ (Θ−1)i,i = Si,i + λ, 1 ≤ i ≤ p

Page 14: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

13/25

Blockwise coordinate descent

Idea: repeatedly cycle through all columns/rows and, in each step,optimize only a single column/row

Notation: use W to denote working version of Θ−1. Partition allmatrices into 1 column/row vs. the rest

Θ =[

Θ11 θ12θ>12 θ22

]S =

[S11 s12s>12 s22

]W =

[W11 w12w>12 w22

]

Page 15: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

14/25

Blockwise coordinate descent

Blockwise step: suppose we fix all but the last row / column. Itfollows from (9.1) that

0 ∈W11β − s12 + λ∂‖θ12‖1 = W11β − s12 + λ∂‖β12‖1 (9.2)

where β = −θ12 · w22 (by matrix inverse formula)

This coincides with optimality condition for

minimizeβ12‖W

1/211 β −W

−1/211 s12‖2 + λ‖β‖1 (9.3)

Page 16: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

15/25

Blockwise coordinate descent

Algorithm 9.1 Block coordinate descent for graphical lassoInitialize W = S + λI and fix its diagonals {wi,i}.Repeat until covergence:

for t = 1, · · · p:(i) Partition W (resp. S) into 4 parts, where the upper-left part

consists of all but the jth row / column(ii) Solve

minimizeβ12‖W

1/211 β −W

−1/211 s12‖2 + λ‖β‖1

(iii) Update w12 = W11β

Set θ̂12 = −θ̂22β with θ̂22 = 1/(w22 −w>12β)

Page 17: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

16/25

Blockwise coordinate descent

The only remaining thing is to ensure W � 0. This is automaticallysatisfied:

Lemma 9.3 (Mazumder & Hastie, ’12)

If we start with W � 0 satisfying ‖W − S‖∞ ≤ λ, then everyrow/column update maintains positive definiteness of W .

• If we start with W (0) = S + λI, then W (t) will always bepositive definite

Page 18: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

17/25

Proof of Lemma 9.3

A key observation for the proof of Lemma 9.3

Fact 9.4 (Lemma 2, Mazumder & Hastie, ’12)

Solving (9.3) is equivalent to solving

minimizeγ (s12 + γ)>W−111 (s12 + γ) s.t. ‖γ‖∞ ≤ λ (9.4)

where solutions to 2 problems are related by β̂ = W−111 (s12 + γ̂)

• Check that optimality condition of (9.3) and that of (9.4) match

Page 19: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

18/25

Proof of Lemma 9.3

Suppose in tth iteration one has ‖W (t) − S‖∞ ≤ λ and

W (t) � 0

⇐⇒ W(t)11 � 0; w22−w(t)>

12

(W

(t)11

)−1w

(t)12 > 0 (Schur complement)

We only update w12, so it suffices to show

w22 −w(t+1)>12

(W

(t)11

)−1w

(t+1)12 > 0 (9.5)

Recall that w(t+1)12 = W t

11βt+1. It follows from Fact 9.4 that and

‖w(t+1)12 − s12‖∞ ≤ λ;

w(t+1)>12

(W

(t)11)−1w

(t+1)12 ≤ w(t)>

12(W

(t)11)−1w

(t)12 .

Since w22 = s22 + λ remains unchanged, we establish (9.5).

Page 20: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

19/25

CLIME

Key idea: Utilize two facts:• Σ ·Θ = I.• The SCM S can be used as a surrogate of Σ.

CLIME (Cai, Liu & Luo, 2011)

minimizeΘ ‖Θ‖1 s.t. ‖SΘ− I‖∞ ≤ λn.

• Note: ‖A‖∞ = maxi,j |Ai,j |.• Parallelizable for each column of Θ, thus very efficient.• Post-processing step needed to guarantee symmetry and PSD.

Page 21: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

20/25

Comparison with GLasso

Figure credit: Cai, Liu & Luo, 2011.

Page 22: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

21/25

Gaussian Graphical Model with Latent Variables

Page 23: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

22/25

Latent variables in graphical models

Motivation: some of the variables are not directly observable.

medical/biological economy

We call the unobserved/missing variables the latent variables.

Page 24: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

23/25

Graphical models with latent variables

What if one only observes a subset of variables?

[xoxh

](observed variables)(hidden variables)

xo = [x1, · · · , x6]>,xh = [x7, x8]>

Covariance and precision matrices can be partitioned as

Σ =

observed part︷︸︸︷Σo Σo,h

Σ>o,h Σh

=[

Θo Θo,hΘ>o,h Θh

]−1

Θo = Σ−1o︸︷︷︸

observed

= Θo︸︷︷︸sparse

− Θo,hΘ−1h Θh,o︸ ︷︷ ︸

low-rank if # latent vars is small

sparse + low-rank decomposition

Page 25: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

23/25

Graphical models with latent variables

What if one only observes a subset of variables?

[xoxh

](observed variables)(hidden variables)

xo = [x1, · · · , x6]>,xh = [x7, x8]>

Covariance and precision matrices can be partitioned as

Σ =

observed part︷︸︸︷Σo Σo,h

Σ>o,h Σh

=[

Θo Θo,hΘ>o,h Θh

]−1

Θo = Σ−1o︸︷︷︸

observed

= Θo︸︷︷︸sparse

− Θo,hΘ−1h Θh,o︸ ︷︷ ︸

low-rank if # latent vars is small

sparse + low-rank decomposition

Page 26: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

24/25

Inverse covariance estimation for LVGGM

Problem definition: Given n i.i.d. samples, xi ∼ N (0,Σ), estimatethe sparse - low-rank inverse covariance matrix Θ = Σ−1.

First writeΘ = Ψ−L

where Ψ � 0, L � 0.

LVGGM (Chandrasekaran, Parrilo, Willsky, 2012)

maximizeΦ,L log det (Θ)− tr(S(Φ−L))︸ ︷︷ ︸log-likelihood

−λn (‖Ψ‖1 + ηtr(L))

s.t. Φ−L � 0, L � 0.

Page 27: 0.15in ECE 18-898G: Special Topics in Signal Processing: Sparsity…yuejiec/ece18898G_notes/ece... · 2018-04-02 · [1]”Sparse inverse covariance estimation with the graphical

25/25

Reference

[1] ”Sparse inverse covariance estimation with the graphical lasso,”J. Friedman, T. Hastie, and R. Tibshirani, Biostatistics, 2008.

[2] ”The graphical lasso: new insights and alternatives,” R. Mazumder andT. Hastie, Electronic journal of statistics, 2012.

[3] ”Statistical learning with sparsity: the Lasso and generalizations,”T. Hastie, R. Tibshirani, and M. Wainwright, 2015.

[4] ”A constrained `1 minimization approach to sparse precision matrixestimation,” T. T. Cai, W. Liu, and X. Luo, JASA, 2011.

[5] ”Latent variable graphical model selection via convex optimization,”V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, The Annals ofStatistics, 2012.


Recommended