+ All Categories
Home > Documents > 02 Tt2510eu01al

02 Tt2510eu01al

Date post: 03-Apr-2018
Category:
Upload: aizatmarican
View: 212 times
Download: 0 times
Share this document with a friend

of 36

Transcript
  • 7/29/2019 02 Tt2510eu01al

    1/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_011

    Contents

    1 Basic Methods of Multiplexing 3

    2 Synchronization between Transmitting End and Receiving End 9

    2.1 Recovery of Frame Alignment 12

    2.2 Loss of Frame Alignment 123 Definition of Plesiochronous Digital Signals 13

    4 Clock Alignment of Plesiochronous Signals 21

    5 Basic Pulse Frame Structure 25

    6 Realization of the Positive Justification Method 29

    6.1 The Elastic Store (Multiplex-Side) 30

    6.2 The Elastic Store (Demultiplex-Side) 34

    6.3 Jitter caused by Multiplexers 36

    Time-Division Multiplexing of DigitalSignals

  • 7/29/2019 02 Tt2510eu01al

    2/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_012

  • 7/29/2019 02 Tt2510eu01al

    3/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_013

    1 Basic Methods of Multiplexing

  • 7/29/2019 02 Tt2510eu01al

    4/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_014

    For the generation of the sum signal out of the individual separate signals thefollowing two methods may be used:

    Code word interleavingWith this method code words of the individual separate signals (i.e. bit combinationshaving some kind of relation between each other) are arranged one after the other ina time sequence. Such is the case for the generation of a 2-Mbit/s-signal, where the8 bit binary words of the coded PCM-voice channels are transmitted sequentially in a

    125 ms cycle.

    This figure shows the code word interleaving of two separate signals with a wordlength of four bits.

  • 7/29/2019 02 Tt2510eu01al

    5/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_015

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    0 1 1 1 0 1 0 11

    0 1 1 0 1 0 1 011

    05 1 10 10 01 11 10 01 01

    Code word interleaving

    Fig. 1

  • 7/29/2019 02 Tt2510eu01al

    6/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_016

    Bit-by-bit interleaving

    This method is used for all systems beyond the 2 Mbit/s hierarchy. Here a cyclic

    transmission sequence is applied, where only one bit of each separate signal istransmitted. This means that the signal of a certain multiplexer input appears only inevery fourth bit of the sum signal.

    The figure shows the bit-by-bit interleaving of two separate signals.

  • 7/29/2019 02 Tt2510eu01al

    7/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_017

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    1

    0 1 1 0 1 0 1 111

    05 1 11 10 00 11 01 11 10

    Bit-by-bit interleaving

    1 1 0 0 1 1 1 0 1

    Fig. 2

  • 7/29/2019 02 Tt2510eu01al

    8/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_018

    Two basic cases can be distinguished with multiplexing:

    1. the original signals are synchronous, i.e. their clocks are exactly the same. Thisis valid for a PCM30 system, where the clocks of the individual 64-kbit/s-signals

    and the 2 Mbit/s-clock are derived from a central system clock. In this case themultiplexing process is restricted to a simple parallel-to-serial conversion of the 8bit code words.

    2. the original signals are not synchronous, i.e. their clocks come from differentsources. This is valid for the multiplexing of output signals, originating fromvarious PCM30 systems their clocks being generated in each system in anautonomous way. Here it is necessary to take appropriate measures in order tocompensate the occurring clock differences.

    This case will be dealt with in the following chapters.

  • 7/29/2019 02 Tt2510eu01al

    9/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_019

    2 Synchronization between Transmitting Endand Receiving End

  • 7/29/2019 02 Tt2510eu01al

    10/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0110

    For each type of multiplexing it has to be ensured that the sum signal can beresolved into the individual original signals (demultiplexing process). The receiver ofthe sum signal thus has to know which bits are assigned to the individual

    subsystems. To allow for this, a fixed bit combination, the so-called frame alignmentword (FAW) is inserted by the transmitting system in periodically recurring intervalsinto the sum signal.

    If the receiver detects the frame alignment word in the received signal it is possible toperform the assignment of the following bits to the subsystems by means of theregenerated receiving clock (see also chapter 6).

    The time intervals between the beginning of a FAW and the beginning of thefollowing FAW are called pulse frames.

  • 7/29/2019 02 Tt2510eu01al

    11/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0111

    X

    F

    A

    W

    Y

    F

    A

    W

    F

    A

    W

    F

    A

    W

    a b a b b

    frame N frame N+1 frame N+2

    a) continous searching of the FAS position

    b) periodical check of the FAW positionFAW Frame alignment word

    X Bit combination pretending the FAW

    Y any bit combination one frame length after X

    a) continuous searching of the FAS positionb) periodical check of the FAW positionFAW Frame alignment wordX Bit combination pretending the FAWY any bit combination one frame length after X

    Fig. 3

  • 7/29/2019 02 Tt2510eu01al

    12/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0112

    2.1 Recovery of Frame AlignmentDuring recovery of frame alignment (e.g. during initial commissioning of a system) thereceiver continuously examines the incoming signal upon occurrence of the FAW. Ifthis FAW is detected for the first time, the receiver expects a renewed occurrenceonly after the specified pulse frame period has elapsed (counting of the receivingsignal clocks). In this case the process will be repeated; the synchronization isestablished. Otherwise, the system takes the continuous searching up again. Thisprocedure ensures that a synchronization to a bit combination, which accidentally hasthe same content as the FAW, is excluded.

    2.2 Loss of Frame AlignmentOnly if the FAW does not appear in the expected positions for several consecutivetimes (e.g. four) the frame alignment is supposed to be lost. This guarantees that incase of transmission errors the system does not perform an immediatedesynchronization.For each faulty frame alignment word a pulse is produced, which can be used for theestimation of the bit error rate (see also chapter 6, in-service measurement of biterror rates).

  • 7/29/2019 02 Tt2510eu01al

    13/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0113

    3 Definition of Plesiochronous Digital Signals

  • 7/29/2019 02 Tt2510eu01al

    14/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0114

    Supposed a data source (S) transmits a digital signal with a bitrate fS to a data drain(D). The data drain decides with the aid of an internally generated clock frequency fR

    whether the incoming signal is zero or one in the moment of the clock pulse. The two

    clock signals fS and fR are thus generated in different places and although they dohave the same nominal frequency, they will always differ from each other to a certainextent.

    Definition:

    Data signals are termed plesiochronous if their clock rates have the same nominalvalue, but may differ from each other within certain tolerance ranges.

  • 7/29/2019 02 Tt2510eu01al

    15/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0115

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    S D

    data signal with

    bitrate fS

    read in data

    with clock rate fR

    Fig. 4

  • 7/29/2019 02 Tt2510eu01al

    16/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0116

    The effects of these clock deviations are represented in the two figures below:

    Sampling clock fR > transmission clock fS

    Two sampling instants are within one bit interval of the transmitting signal. The datadrain (D) interprets this situation as double transmission of bit a5.

    double bit transmission

    fS

    a1 a2 a3 a4 a5 a6 a7

    D

    a1 a2 a3 a4 a5 a6 a7a5

    fR

    Fig. 5

  • 7/29/2019 02 Tt2510eu01al

    17/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0117

    Sampling clock fR < transmission clock fS

    One transmitted bit is between two sampling instants. Bit b5 not detected by the datadrain (D).

    no bit transmission

    fS

    b1 b2 b3 b4 b5 b6 b7

    D

    b1 b2 b3 b4 b6 b7

    fR

    Fig. 6

  • 7/29/2019 02 Tt2510eu01al

    18/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0118

    Plesiochronism during Multiplexing Process

    The multiplexing process may be represented with the aid of the following figure.

    A rotating pointer samples the feeder links (tributaries) for the separate signals with afrequency which is four times higher than the nominal bitrate fS (fR = 4 X fS), i.e. eachdigital signal is sampled with a nominal fS. As both, the digital signal sources(S1...S4) as well as the sampling frequency (fR) are generated by different clocksources, the result is a plesichronous state of operation for every feeder link.

    Example:

    The signal sources (S1...S4) are PCM30 devices transmitting with their individualtransmission clock a 2 Mbit/s-signal with clock tolerances to the inputs of a 2/8multiplexer.

  • 7/29/2019 02 Tt2510eu01al

    19/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0119

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    S1

    S2

    S3

    S4

    fSDf1

    fSDf

    2

    fSDf3

    fSDf4

    D

    fRDf

    fR

    = 4x fS

    Fig. 7

  • 7/29/2019 02 Tt2510eu01al

    20/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0120

  • 7/29/2019 02 Tt2510eu01al

    21/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0121

    4 Clock Alignment of Plesiochronous Signals

  • 7/29/2019 02 Tt2510eu01al

    22/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0122

    During multiplexing of plesiochronous digital signals the so-called positive justificationmethod is applied, which is based on the following principles:

    l a bitrate for each subsystem is provided in the multiplex signal, which is somewhat

    higher than the subsystems nominal bitrate. This means that the transmissioncapacity is systematically higher than actually needed.

    l the difference between the bitrate of the subsystem and the multiplex bitrate persystem is compensated for each channel by the justification bitrate, which doesnot contain any information and serves only for the compensation mentionedabove.

    l the justification bitrate is thus always adjusted to the difference between the bitrateof the subsystem and the multiplex system and thereby compensates for eachchannel the tolerance between the tributary signal bitrates and multiplex signalbitrates.

    Example:

  • 7/29/2019 02 Tt2510eu01al

    23/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0123

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    S1

    S2

    S3

    S4

    fS1

    fS2

    fS3

    fS4

    D

    4 x fR

    +

    +

    +

    +

    fR - fS1

    fR

    fR

    - fS2

    fR

    fR

    - fS3

    fR

    fR - fS4

    fR

    Fig. 8

  • 7/29/2019 02 Tt2510eu01al

    24/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0124

    l The signal sources S1..S4 emit signals with a nominal value of 2048 kbit/s

    l The sampling pointer rotates with a frequency of fR = 2052 kHz, i.e. thetransmission capacity per channel is 4 kbit/s higher than the nominal bitrate of

    the subsystem.

    l Supposed the signal sources transmit the following actual bitrates:

    S1 : f S1 = 2048.1 kbit/s

    S2 : f S2 = 2048.05 kbit/s

    S3 : f S3 = 2048.0 kbit/s

    S4 : f S4 = 2047.9 kbit/s

    This results in the following justification bitrates:

    for channel 1 : 2052 kbit/s - 2048.10 kbit/s = 3.90 kbit/s

    channel 2 : 2052 kbit/s - 2048.05 kbit/s = 3.95 kbit/s

    channel 3 : 2052 kbit/s - 2048.00 kbit/s = 4.00 kbit/s

    channel 4 : 2052 kbit/s - 2047.90 kbit/s = 4.10 kbit/s

    Thus, the resulting signals at the rotating pointers sampling points are synchronous.The multiplexing procedure can be performed without the former discussed problemsof omission or double sampling of individual bits.

  • 7/29/2019 02 Tt2510eu01al

    25/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0125

    5 Basic Pulse Frame Structure

  • 7/29/2019 02 Tt2510eu01al

    26/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0126

    How is a variable justification bitrate realized

    The signals of higher hierarchy levels are transmitted within a predetermined framestructure, the same as for the 2 Mbit/s signal of the first hierarchy level. This frame

    begins with a frame alignment word of fixed length and content in order to allow onthe demultiplex side of the system an allocation of the following bit-interleavedtributary bits to the appropriate channels. In addition, the frames of theplesiochronous hierarchy contain one bit position per individual signal, which is eitherused for the transmission of a tributary bit, or not used at all. This bit position is called

    justification bit. By alternate use/non-use of this bit position, the transmission capacityfor the individual signals may be varied to some extent.

    This process is called positive pulse justification; thus, the non-use of the justificationbit position corresponds to an increase in the justification bitrate (= decrease in thetransmission capacity), whereas the use of the justification bit position has the

    opposite effect.

  • 7/29/2019 02 Tt2510eu01al

    27/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0127

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    FAW TB 1...4JS

    1

    JS

    2

    JS

    3

    JS

    4TB 1...4

    JB

    1

    JB

    2

    JB

    3

    JB

    4TB 1...4

    FAW Frame alignment wordJS1..4 Justification service bit position for channels 1..4JB1..4 Justification bit position for channels 1..4TB1..4 Tributary bits for channels 1..4; here the tributary signals are transmitted

    bit-by-bit interleaved

    Fig. 9

  • 7/29/2019 02 Tt2510eu01al

    28/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0128

    The receiving end of such signals requires an information on how the justification bitposition has been used (non-information bit or tributary bit). To allow for this, thereare justification service bits arranged before the justification bits in the time

    sequence. The content of the justification service bits indicates how the followingjustification bit position has to be interpreted. If, for example, the content of thejustification service bit for channel 3 is a binary one, the receiver ignores the followingjustification bit positions of channel 3. The other way round (JS3 = 0), the positionJB3 is interpreted as tributary bit.

    Example:

    The frame structure in a 8 Mbit/s pulse frame:

    frame duration: 100.38 ms

    overall number of bits in blocks TB1:200 bit, TB2:208 bit, TB3:208 bit, TB4:204 bit or208 bit.

    This results is an actual bitrate/channel

    of: sMbits

    bitBR

    T/04224,2

    438.100

    820=

    =

    m

    This is the bitrate /channel if the justification bit position is always unused.

    If every justification bit position is used for a tributary bit of the separate signal thefollowing actual bitrate/channel is calculated:

    sMbits

    bit

    BRT /05220,2438.100

    824=

    =

    m

    By alternate use/non-use of the justification bit position in the frames the transmissioncapacity for the individual channels in this examples may be varied within a range of9.962 kbit/s.

  • 7/29/2019 02 Tt2510eu01al

    29/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0129

    6 Realization of the Positive JustificationMethod

  • 7/29/2019 02 Tt2510eu01al

    30/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0130

    6.1 The Elastic Store (Multiplex-Side)How can the justification process be realized?

    An elastic store consists of a number of 1 bit memory cells (typ. 12) which can bewritten in and read out independently of each other (i.e. at the same time it ispossible to write in one cell, while another is read out). The incoming separate signal

    with its own clock is written in the cells 1...8, 1...8 etc. in a cyclic way. The store isread out with a clock, generated in the multiplexer; a clock which is systematicallyhigher than the bitrate of the separate signal. The difference between write addressand read address is monitored by an address comparator. It goes without saying thatthe write address always has to be ahead of the read address. Due to the greaterread out velocity the read address continually approaches the write address. If thedifference between the two becomes < 3 memory cells, the comparator releases asignal.

    Then the following procedures are started:

    If the justification service bit position in the frame is reached, the bit is set to one.

    On reaching the justification bit position, the read address is maintained for one clockperiod and the actual memory cell is read out once more. This is the justification bit

    which is ignored at the receiving end. By maintaining the read address during oneclock cycle the difference between the addresses increases and the whole procedureis repeated in the same way. Thus, the plesiochronous clock rate of the channel ismatched to the multiplex bitrate.

    Between the initiation of the justification process (comparison of addresses) and itsexecution there may be an interval of max. 1 frame period, within which the readaddress approaches the write address more and more. That is why the justificationprocess is initiated already when the address spacing is smaller than 3, in order toensure a reserve against memory overflow, e.g. an empty memory.

    Each channel is assigned an elastic store. As the read out clock for all channelscome from the same clock supply (in the multiplexer), the output bitrates of the elasticstores are synchronous. The actual multiplexing procedure is thereby continued toa simple parallel-to-serial conversion of the output signals of the elastic stores for thefour separate signals.

  • 7/29/2019 02 Tt2510eu01al

    31/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0131

    TR

    AC

    TG

    ch 2 . . 4

    GAP

    T2

    T1

    ch

    2 . . 4

    P/S

    D2

    LOGIC

    D1

    JS

    TR : Timing regenerator input signal (= write in timing)AC : Address comparatorTG : Timing generation of read out t iming channels 1..4GAP : Timing gap for justification procedureJS : Insertion of justification service bitLOGIC : Control of the justification service bit and of the timing gapP/S : Parallel-to-serial converter D1 : Tributary input data with independent of the system clock

    D2 : Stuffed output data, synchronous to the system clockT1 : Retrieved clock from tributary input data for write inT2 : Read out clock from central clock supply

    Fig. 10 Principle of an elastic store

  • 7/29/2019 02 Tt2510eu01al

    32/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0132

    ES JS

    ch

    2 ... 4

    LOG TG

    CTRCTR

    AC

    TR

    ch 2 ... 4

    T1 T2

    D2

    D1

    P/S

    TR : Timing regenerator input signalCTR : Counter for the generation of write in/read out addressES : Elastic store

    AC : Address comparatorJS : Insertion of justification service bitLOG : Logic circuit - controls the insertion of the justification service bits, removes one clock period

    depending on the output signal of the ACTG : Generation of timing signals for the complete multiplexer sideD1 : Plesiochronous tributaryD2 : Stuffed tributary, synchronized to system clockT1 : Recovered clock from tributary input for write in

    T2 : Read out clock, derived from central clock supplyFig. 11 Block diagram of an elastic store

  • 7/29/2019 02 Tt2510eu01al

    33/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0133

    Realization of the positive justification method

    positive justification method : f2 > f1

    Input

    signalf1

    Output of

    the elastic

    store

    f2

    Multiplex

    signal

    Justification bit (non-information bit)

    Fig. 12

  • 7/29/2019 02 Tt2510eu01al

    34/36

    Siemens Time-Division Multiplexing of Digital Signals

    TT2510EU01AL_0134

    Example (see also fig.12):

    l the bitrate of the input signal shall be f1 = 2048 kbit/s.

    l the pulse frame of the multiplex signal shall be 100,38 ms and contains 1justification bit per channel

    l the read out timing rate shall be 2052 kbit/s.

    The reading pointer would overpass the writing pointer (2052 kHz-2048 kHz =

    4 kHz) 4000 times per second. That is why on average one justification bit is

    inserted every 250 ms (1/4 kHz = 250 ms). For a pulse frame of 100,38 ms, this

    means that one justification is effected on average in every 2,5th frame (250 ms/

    100,38 ms) (2 in 5 frames).

    lthe bitrate of the input signal shall now be T1 = 2047,90 kbit/s.Now the justification must be effected every 243,90 ms, i.e. in every 2,4 pulseframe.

    l the bitrate of the incoming signal shall be T1 = 2048,10 kbit/s.

    A justification is required every 256,40 ms, i.e. in every 2,56 frame.

    6.2 The Elastic Store (Demultiplex-Side)The task of the demultiplexer is to distribute the sum signal in the right sequence tothe output of the separate signals. Therefore, the incoming multiplex signal is dividedinto 4 separate signals by means of parallel-to-serial conversion. By control of theframe alignment signal the 4 separate signals can be assigned to the right channels.Besides, the justification service bits and justification bits can be identified (bycounting the bits transmitted since the beginning of the frame). By means of thisinformation the justification process is canceled, i.e. all bits which do not come fromthe original signal are removed from the separate signals.

    Thus, a signal with timing gaps instead of the removed bit positions is generated. In

    order to guarantee a continuous signal at the outputs, elastic stores are used on thedemux-side to smooth the signal.

    For this, the incoming datas signal is written into the store with the gap timing andread out of the store with a continuous timing which corresponds to the averagevalue of the gap timing; thus the signal is forwarded in a smoothed condition to theoutgoing subsystem interface.

  • 7/29/2019 02 Tt2510eu01al

    35/36

    Time-Division Multiplexing of Digital Signals Siemens

    TT2510EU01AL_0135

    ES

    CTR CTR

    data signal

    with gaps

    data signal

    continuous

    CTR

    gap timing continuous timing

    phiU

    ES - Elastic store

    CTR - Counter VCO - Voltage controlled oscillatorphi/U - Phase comparator

    Fig. 13 Principle of an elastic store (demultiplex-side)

  • 7/29/2019 02 Tt2510eu01al

    36/36

    Siemens Time-Division Multiplexing of Digital Signals

    A continuous timing is generated from the gap timing by means of a phase-lockedloop (PLL). For this, a voltage-controlled oscillator is synchronized to the gap timingfrequency. If the critical frequency of the control loop is selected sufficiently low (low-

    pass filter) it is ensured that the voltage-controlled oscillator adjusts itself to theaverage value of the gap timing frequency.

    6.3 Jitter caused by MultiplexersThe gap in the write clock of the elastic store result in phase shifts on the input-sideof the PLLs phase comparator, which are converted to voltage shifts. These voltageshifts are smoothed by the low pass filter of the PLL, but they can never be smoothed

    perfectly.

    That is why the smoothed clock of the control voltage will vary accordingly also at theoutput of the PLL circuit, i.e. jitter is generated. The jitter in the output signal dependson the system. The highest jitter frequency is determined by the limit frequency valueof the PLL low-pass filter.


Recommended