+ All Categories
Home > Documents > 02_StateEstimation_R3.pdf

02_StateEstimation_R3.pdf

Date post: 04-Apr-2018
Category:
Upload: superkeko
View: 215 times
Download: 0 times
Share this document with a friend
137
1 State Estimation  A. J. Conejo Univ. Castilla La Mancha 2011
Transcript
Page 1: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 1/137

1

State Estimation

 A. J. Conejo

Univ. Castilla – La Mancha

2011

Page 2: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 2/137

2

0. References

1. Introduction

2. Example

3. Formulation and solution

3.1 Linear case

3.2 Nonlinear case

4. Observability

5. Detection and identification of bad measurements

State Estimation

Page 3: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 3/137

3

State Estimation0. Referencias

 A. Gómez Expósito, A. J. Conejo, C. Cañizares.

“Electric Energy Systems. Analysis and Operation ”.

CRC Press, Boca Raton, Florida, 2008.

 A. Abur, A. Gómez Expósito.

“Power System State Estimation. Theory and Implementation ”.Dekker, New York, 2004.

Page 4: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 4/137

4

• SCADA (Supervisory Contron Adn Data Adquisition):

Data Adquisition

Data base maintenance

Issue warning

• EMS (Energy Management System)

State Estimation1. Introduction

Page 5: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 5/137

5

Estimate the state variables using a redundant set of 

measurements that include measurement errors.

Statica problem: all measurements are symultaneous.

State Estimation1. Introduction

Page 6: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 6/137

6

• Reduncancy in measurements to improve theestimation

• Measurements:

1. P and Q flows.

2. P and Q injections.

3. Voltage magnitudes.

4. Current magnitues (uncommon).

5. Voltage and current angles (if PMUs)

• Other measurements: virstual (no error) and pseudo-

measurements (inexacts).

State Estimation1. Introduction

Page 7: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 7/137

7

1. Measurement filtering

2. Topology checking

3. Observability analysis

4. Estimation

5. Detection and identification of bad measurements

Functions:

State Estimation1. Introduction

Page 8: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 8/137

8

 

Online data

MeasurementFiltering

Topological Analysis

StateEstimation

Bad MeasurementDetection

Bad MeasurementSuppression

Man-machine interface

Fixed data

Observability Analysis

System state

Warning:Measurement errors

Unobserv

able

areas

Breaker status

urements

State Estimation1. Introduction

Page 9: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 9/137

9

25.0X

4.0X

 0.2X

MVA)100(Base

23

13

12

reference

Estimate voltage angles

Reactances in pu

State Estimation2. Example

Page 10: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 10/137

10

Power flow meters: 321312 M,M ,M

One meter isredundant

State Estimation2. Example

Page 11: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 11/137

11

Only two measurements (exact):

2 state variables:

2 meters:

)reference,0δ(,δ,δ 321

3213 M,M

3213 M,M

pu40.0Mδδx

1P

pu05.0Mδδx1P

pu4.0MW40M,pu05.0MW5M

3223

23

32

1331

13

13

3213

State Estimation2. Example

Page 12: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 12/137

12

Exact solution:

0.02δ1 0.1δ2

0δ3

State Estimation2. Example

Page 13: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 13/137

13

Solution using measurements:

0.024δ1 0.0925δ2

pu.370M,pu0.06M 3213

MW60MW25.58=M12

0δ3

 M13

13 M 

32M

State Estimation2. Example

Page 14: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 14/137

14

0.0315δ1 0.0925δ2

pu.370M,pu0.62M 3212

MW5MW875.7M13

0δ3

 M12 32M

State Estimation2. Example

Solution using measurements:

Page 15: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 15/137

15

ηzz r m

Measurement

True value

Measurement error 

Erroneous measurements:

ηh(x)zm

State vector is x, thus

State Estimation3. Formulation

Page 16: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 16/137

16

• True values are unknown: they need to be estimated.

• Weighted least squares is a common approach for 

estimation.

State Estimation3. Formulation

Page 17: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 17/137

17

Quadratic errors

Weights

Weight for measurement i

Measurement number 

Objective function

iiw

m

J(x)

N

1i

2

i

m

iii

x

(x)hzwJ(x)

J(x)Minimizar 

Weighted least squares (WLS):

State Estimation3. Formulation

Page 18: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 18/137

18

mm

22

11

mm

w

w

w

W

xhzWxhzJ(x)T

Measurement verctor 

Functions to compute measurement

Weighting matrix

State variable (n)

mz

h(x)

W

x

1m

mm

1m

State Estimation3. Formulation

Page 19: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 19/137

19

• is a measure of the measurement involved

• higher involves higher precision

21 21

2

m

2

2

2

1

1-

σ1

σ1

σ1

RW

State Estimation3. Formulation

Page 20: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 20/137

20

First order optimality conditions:

 

x

xhxH :where

0xhzWx2H 0x

xJ mT

State Estimation3. Formulation

Page 21: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 21/137

21

)E1( )x(h-zWxH ΔxxG kkTkk

WH(x)xHxG T

where the gain matrix is

State Estimation3. Formulation

Newton solution at iteration k

Page 22: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 22/137

22

If H has full rank then G is definite positive an (E1) has a

single solution

kk1k  Δxxx

1. Initialize x0 (flat start) (k=0).

2. Compute H(xk) and calculate G(xk).

3. Solve .

4. Update

5. Is Dx is small enough stot, otherwise go to 2

)h(x-zWxH ΔxxG kkTkk

State Estimation3. Formulation

Page 23: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 23/137

23

• If h(x) is linear, everything is easier.

• Just one iteration:

observablenot :mnIf -

tsmeasuremenneeded jus t,zHx̂ :mnIf -

estimationOK,WzHGx̂ :mnIf -m1

mT1

mT1mT zWHGx0HxzW2H 0x

xJ

State Estimation3. Formulation

Page 24: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 24/137

24

444

m

321312

101010w

0.370.060.62z

MMM

2 estate variables:

3 measurements:

21 δ,δ

321312 M,M,Mn < m

State EstimationExample

Page 25: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 25/137

25

0,1

0,02δ

0,0943

0,0286δˆ

WzHGδˆ

0,37

0,060,62

z,

1000

01000010

W

WHH)x(G

40

02,555

H,

δ4

δ2,5δ5δ5

δh

REAL

mT1

m

4

4

4

T

2

1

21

State EstimationExample

S

Page 26: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 26/137

26

464

m

321312

101010w

0.370.060.62z

MMM

Better meter 

mT1

REAL

4

6

4

WzHGδ̂

0,1

0,02

δ0,0970

0,0241

δˆ

10000100

0010

W

State EstimationExample

S E i i

Page 27: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 27/137

27

Optimization problem with no contraints

N

1i

2i

miii

x(x)hzwMinimize

1. P measurement

2. Q measurement

3. Voltage measurement

ijmij pp

ijmij qq

imi vv

-

(·)q-q(·)pp

i

m

i

i

m

i4. P, Q injections

State EstimationExample

St t E ti ti

Page 28: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 28/137

28

 Active Power flow:

 jiijij

 ji

ijij

2i

ij

δδθcosz

vvcosθ

z

vp

Reactive Power flow:

 jiijij

 ji

ijij

2i

ij δδθsenz

vvsenθ

z

vq

State EstimationExample

St t E ti ti

Page 29: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 29/137

29

Estimation problem

2m

ijijiΩ jΩi

q

ij

2mijijiΩ jΩi

pij

2

Ωi

mii

vi

iδ,

iv

qqw

ppw

vvwMinimizar 

State EstimationExample

St t E ti ti

Page 30: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 30/137

30

2 buses, 1line with reactance x = 0.15 pu

Voltage measurements at buses 1 y 2 are,

respectively, 1.07 y 1.01 puV Active power flow measurements (1-2) are 0.83 y 0.81

puW

Reactive power flow measurements (1-2) are 0.73 y

0.58 puVar 

Reference bus is 2

State EstimationExample

St t E ti ti

Page 31: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 31/137

31

Optimization problem:

2

m

21

2

2121

2

m

21121

2

m

12121

2

1

2

m

12121

2m

22

2m

11δ,v,v

qvx

1cosδvvx

1psenδvvx

1

qcosδvvx

1v

x

1psenδvv

x

1vvvveMinimize121

 

  

  

  

 

 

  

   

  

 

State EstimationExample

St t E ti ti

Page 32: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 32/137

32

20,582

2v

0.15

1

1cosδ

2v

1v

0.15

1-20.81

1senδ

2v

1v

0.15

1-

20,73

1cosδ

2v

1v

0.15

121

v0.15

120.83

1senδ

2v

1v

0.15

1

21.01

2v

21.07

1ve

Minimize1δ,

2v,

1v

---

--

 Also

State EstimationExample

St t E ti ti

Page 33: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 33/137

33

scalars

x Reactancia de la linea /0.15/*mediciones

v1m Tension medida en el nudo 1 /1.07/

v2m Tension medida en el nudo 2 /1.01/

 p12m Potencia activa medida en el nudo 1 /0.83/

q12m Potencia reactiva medida en el nudo 1 /0.73/

 p21m Potencia activa medida en el nudo 2 /0.81/

q21m Potencia reactiva medida en el nudo 2 /0.58/;

variablesv1 Modulo de la tension en el nudo 1. Valor exacto: 1.0966

v2 Modulo de la tension en el nudo 2. Valor exacto: 1.0000

d1 Argumento de la tension en el nudo 2. Valor exacto: 0.1097

e Error cuadratico medio;

equations

error Ecuacion del error cuadratico medio;

*Definicion de la ecuacion del error cuadratico medio

error .. e =e= sqr(v1-v1m) + sqr(v2-v2m) +

sqr((1/x)*v1*v2*sin(d1)-p12m) +

sqr((1/x)*(sqr(v1)-v1*v2*cos(d1))-q12m) +

sqr((1/x)*v1*v2*sin(d1)-p21m) +

sqr((1/x)*(-sqr(v2)+v1*v2*cos(d1))-q21m);

 model estimo /all/;

solve estimo using nlp minimizing e;

State EstimationExample

St t E ti ti

Page 34: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 34/137

34

LOWER LEVEL UPPER MARGINAL

---- VAR v1 -INF 1.088 +INF -1.185E-8

---- VAR v2 -INF 0.994 +INF 7.6054E-9

---- VAR d1 -INF 0.114 +INF -1.043E-8

---- VAR e -INF 7.9359E-4 +INF .

v1 Modulo de la tension en el nudo 1. Valor exacto: 1.0966

v2 Modulo de la tension en el nudo 2. Valor exacto: 1.0000

d1 Argumento de la tension en el nudo 1. Valor exacto: 0.1097

e Error cuadratico medio

State EstimationExample

St t E ti ti

Page 35: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 35/137

35

Wood & Wollenberg, pg. 4776-bus network:

State EstimationExample

State Estimation

Page 36: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 36/137

36

Wood & Wollenberg, pg. 478

Measurements

State EstimationExample

State Estimation

Page 37: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 37/137

37

Wood & Wollenberg, pg. 480

Estimation:

State EstimationExample

State Estimation

Page 38: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 38/137

38

Network

1

2

3

State EstimationExample

State Estimation

Page 39: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 39/137

39

Data:

Measurement Value p.u. Variance

V1 0.95 10-3

V2 1.02 10-3

V3 1.03 10-3

P12 1 10-2

Q21 -0.4 10-2

P13 0.8 10-2

Q31 -0.2 10-2

X12 = X13 = X23 = 0.1j

State EstimationExample

State Estimation

Page 40: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 40/137

40

Solution 

• State vertor:

3

2

3

2

1

5

4

3

2

1

δ

δ

V

V

V

x

x

x

x

x

x

ii δV0δslack

State EstimationExample

State Estimation

Page 41: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 41/137

41

• Measurements:

2.0

80.040.0

00.1

03.1

02.1

95.0

Q

PQ

P

V

V

V

z

31

13

21

12

3

2

1

State EstimationExample

State Estimation

Page 42: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 42/137

42

• Weighting matrix

100000000

010000000001000000

000100000

0000100000

0000010000

000001000

W

State EstimationExample

State Estimation

Page 43: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 43/137

43

• Functional measurement vector 

1

2

3

1 2

4

2

1 4 2

1 3

5

3

3 1 5

sin( )

( )

cos( )

sin( )

cos( )

 x

 x

 x

 x x x

 X 

h x  x

 x x x X 

 x x x

 X 

 x x x x

 X 

State EstimationExample

State Estimation

Page 44: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 44/137

44

• Jacobian matrix, : j

iij

x

hH

)x(senX

xx0

X

x2xcosx0)xcos(

X

x

)xcos(X

xx0)x(sen

X

x0)x(sen

X

x0)x(senX

xx

0X

x2xcosx

)xcos(X

x

0)xcos(X

xx0)x(sen

X

x)x(sen

X

x00100

0001000001

)x(H

531351

53

531

51

53

4

21241

4

2

421

41

42

State EstimationExample

State Estimation

Page 45: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 45/137

45

1. Initialization x0 :

2. Compute H(xk) and calculate G(xk).

-Funcitonal vector:

T0  00111x

T0 0000111)x(h

State EstimationExample

State Estimation

Page 46: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 46/137

46

- Jacobian matrix:

0010010

100000

0001010

010000

00100

00010

00001

)x(H 0

State EstimationExample

State Estimation

Page 47: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 47/137

47

- Gain matrix:

100000

010000

0011010

0001110

00101021

10WHH)x(G 3T0

State EstimationExample

State Estimation

Page 48: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 48/137

48

- Residual vector :

2000.0

8000.0

4000.00000.1

0300.0

0200.0

0500.0

)x(hz)x(r 

h(x)-zr(x)

00

State EstimationExample

State Estimation

Page 49: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 49/137

49

3. Solution of the system of equations

Thus

D

0800.0

1000.0

0007.00184.0

0177.0

Wr HGx T10

)x(hzW)x(Hx)x(G kKTkk D

State EstimationExample

State Estimation

Page 50: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 50/137

50

4. Update the state vector:

kk1k xxx D

D

0800.0

1000.0

0007.19816.0

0177.1

xxx 001

State EstimationExample

State Estimation

Page 51: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 51/137

51

5. Repeat until residuals below 0.001

State EstimationExample

State Estimation

Page 52: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 52/137

52

Solution:

J(x) V1 V2 V3

Matlab 7.8062 1.0216 0.9800 1.0013 -0.0996 -0.0781

State EstimationExample

State Estimation

Page 53: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 53/137

53

Matlab solution:

1.0215 ; 0.9800 ; 1.0014 ; -0.0996 ; -0.0781x=

Residuals:

r 1 2 3 4

V1 -0.0500 -0.0677 -0.0714 -0.0715

V2 0.0200 0.0384 0.0401 0.0400

V3 0.0300 0.0293 0.0287 0.0286

P12 1.0000 0.0027 0.0043 0.0043

Q21 -0.4000 -0.0950 -0.0427 -0.0428

P13 0.8000 -0.0139 0.0024 0.0023

Q31 -0.2000 -0.0615 -0.0293 -0.0293

State EstimationExample

State Estimation

Page 54: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 54/137

54

GAMS solution:scalars

x reactancias de todas las lineas /0.1/

*mediciones

v1m tension medida del nudo 1 /0.95/

v2m tension medida del nudo 2 /1.02/

v3m tension medida del nudo 3 /1.03/

 p12m potencia activa medida en el nudo 1 /1.00/

q21m potencia reactiva medida en el nudo 2 /0.4/

 p13m potencia activa medida en el nudo 1 /0.8/

q31m potencia reactiva medida en el nudo 3 /0.2/

sg1 varianza 1 /0.001/

sg2 varianza 2 /0.01/;

variables

v1 modulo de la tension en el nudo 1. Valor exacto:1.0216

v2 modulo de la tension en el nudo 2. Valor exacto:0.9800

v3 modulo de la tension en el nudo 3. Valor exacto:1.0013

d2 argumento de la tension en el nudo 2. Valor exacto:-0.0996

d3 argumneto de la tension en el nudo 3. Valor exacto:-0.0781

e error cuadratico medio;

State EstimationExample

State Estimation

Page 55: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 55/137

55

equations

error ecuacion del error cuadratico medio;

error.. e =e= 1/sg1*(sqr(v1-v1m))+1/sg1*(sqr(v2-v2m))+

1/sg1*(sqr(v3-v3m))+

1/sg2*(sqr((1/x)*v1*v2*sin(d2)-p12m))+

1/sg2*(sqr((1/x)*v1*v3*sin(d3)-p13m))+

1/sg2*(sqr((1/x)*(-sqr(v2)+v1*v2*cos(d2))-q21m))+

1/sg2*(sqr((1/x)*(-sqr(v3)+v1*v3*cos(d3))-q31m));

 model estimo /all/;

solve estimo using nlp minimizing e;

State EstimationExample

State Estimation

Page 56: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 56/137

56

LOWER LEVEL UPPER MARGINAL

---- VAR v1 -INF 1.022 +INF 8.2392E-9---- VAR v2 -INF 0.980 +INF -3.839E-9

---- VAR v3 -INF 1.001 +INF -4.782E-9

---- VAR d2 -INF -0.100 +INF -2.068E-9

---- VAR d3 -INF -0.078 +INF -2.375E-9

---- VAR e -INF 7.806 +INF .

GAMS actual solution:

State EstimationExample

State Estimation

Page 57: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 57/137

57

Comparison:

Variable Matlab GAMS Error

V1 1.0215p.u. 1.022p.u. 0.04%

V2 0.9800p.u. 0.980p.u. 0.00%

V3 1.0014p.u. 1.001p.u. 0.04%

δ2 -0.0996 -0.100 0.40%

δ3 -0.0781 -0.078 0.13%

State EstimationExample

State Estimation

Page 58: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 58/137

58

Two alternatives:

1. Zero injections

modeled using largeweights.

2. Zero injection

equalities explicitly

modeled

Variable Value p.u Variance

V1 1.05 10-3

V2 1 10-3

V3 0.95 10-3

P3 1 10-2

Q3 0.2 10-2

One Two Three

State EstimationExample

State Estimation

Page 59: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 59/137

59

• Matlab solution (case 1):

Matrix W:

2

2

6

6

3

3

3

10000000

01000000

00100000

00010000

00001000

0000010000000010

W

State EstimationExample

State Estimation

Page 60: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 60/137

60

Z is:

P2 y Q2 are zero (exact!)

0.2

1

0

0

0.95

1

1.05

Q

P

Q

P

V

V

V

Z

3

3

2

2

3

2

1

State EstimationExample

State Estimation

Page 61: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 61/137

61

Vector h(x):

x1

x2

x3

( )h x

 

-10((x1 x2 sin(x4))+(x2 x3 sin(x4-x5)))

10 x2((x1 cos(x4)-x2)-(x2-x3 cos(x4-x5)))

10x2 x3 sin(x4-x5)10x3 (x2 cos(x4-x5)-x3)

 

State EstimationExample

State Estimation

Page 62: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 62/137

62

• Iteration:

• Tolerance for  Δx below |0.00001|

kk1kT1k

k

T

xxxWr HGx)x(hz)x(r 

WHHG

DD

State EstimationExample

State Estimation

Page 63: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 63/137

63

Values per iteration:

Iteration 1 2 3 4

V1 1.025000 1.035781 1.035794 1.035793

V2 0.999999 0.996133 0.996001 0.995999

V3 0.974999 0.966660 0.966443 0.966440

2 -0.099999 -0.097648 -0.0977013 -0.097702

3 -0.199999 -0.202269 -0.202438 -0.202440

State EstimationExample

State Estimation

Page 64: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 64/137

64

• Solution in 4 iterations

• Results (Caso 1):

Estimate Residual

V1 1.035794 0.014205

V2 0.996001 0.003998

V3 0.966443 -0.016443

2 -0.0977013 -0.006335

3-0.202438 -0.032906

State st at oExample

State Estimation

Page 65: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 65/137

65

• GAMS (case 1) (NO weights):

scalars

x Reactancia de la linea /0.1/

*mediciones

v1m Tension medida en el nudo 1 /1.05/

v2m Tension medida en el nudo 2 /1/

v3m Tension medida en el nudo 2 /0.95/

 p2m Potencia activa medida en el nudo 2 /0/

q2m Potencia reactiva medida en el nudo 2 /0/

 p3m Potencia activa medida en el nudo 3 /1/

q3m Potencia reactiva medida en el nudo 3 /0.2/;

variables

v1 Modulo de la tension en el nudo 1. Valor exacto: 1.0000

v2 Modulo de la tension en el nudo 2. Valor exacto: 1.0000v3 Modulo de la tension en el nudo 3. Valor exacto: 1.0000

d2 Argumento de la tension en el nudo 2. Valor exacto: -0.0100

d3 Argumento de la tension en el nudo 3. Valor exacto: -0.0100

Example

State Estimation

Page 66: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 66/137

66

e Error cuadratico medio;

equations

error Ecuacion del error cuadratico medio;

*Definicion de la ecuacion del error cuadratico medio

error .. e =e= sqr(v1-v1m) + sqr(v2-v2m) + sqr(v3-v3m) +

sqr(((-1/x)*v1*v2*sin(d2)+(-1/x)*v2*v3*sin(d2-d3))-p2m) +sqr(((1/x)*v2*(v1*cos(d2)-v2)-((1/x)*v2*(v2-v3*cos(d2-d3))))-q2m) +

sqr((1/x)*v2*v3*sin(d2-d3)-p3m) +

sqr((1/x)*v3*(v2*cos(d2-d3)-v3)-q3m);

 model estimo /all/;

SOLVE estimo USING nlp MINIMIZING e;

display v1.L,v2.L,v3.L,d2.L,d3.L;

Example

State Estimation

Page 67: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 67/137

67

• GAMS (caso 1):

Solution is:

error Ecuación del error cuadrático medio

LOWER LEVEL UPPER MARGINAL

---- VAR v1 -INF 1.033 +INF EPS

---- VAR v2 -INF 0.996 +INF 1.8628E-8

---- VAR v3 -INF 0.970 +INF -1.837E-8

---- VAR d2 -INF -0.097 +INF -1.350E-8

---- VAR d3 -INF -0.201 +INF 9.2908E-9

Example

State Estimation

Page 68: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 68/137

68

• Comparison case 1:

Matlab GAMSV1 1.035794 1.033

V2 0.996001 0.996

V3 0.966443 0.970

2-0.0977013 -0.097

3-0.202438 -0.201

Example

State Estimation

Page 69: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 69/137

69

• Case 2

• Zero injections explicitly modeled as equalities.

• This generally avoid numerical issues.

Example

State Estimation

Page 70: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 70/137

70

Vector h(x) is:

2.0

1

95.0

1

05.1

Q

P

V

V

V

Z

3

3

3

2

1

x3)-x5)-cosx4(x210x3

x5)-sin(x4x310x2x3

x2

x1

)x(h

Example

State Estimation

Page 71: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 71/137

71

Constraint vector:

x5)))-cos(x4x3-(x2-x2)-cos(x4)((x1x210

x5)))-sin(x4x3(x2+sin(x4))x2((x110-c

Example

State Estimation

Page 72: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 72/137

72

• System to be solved:

• C is the Jacobian matrix of the constraints and λ  the

multipied vector of the constraints

D

)x(c

Wr Hx

0C

CWHHk

kTkTT

Example

State Estimation

Page 73: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 73/137

73

• Values per iteration:

Iteration 1 2 3 4

V1 1.025000 1.035781 1.035794 1.035793

V2 1 0.996133 0.996001 0.995999

V3 0.975 0.966660 0.966443 0.966440

2 -0.1 -0.097648 -0.0977013 -0.097702

3 -0.2 -0.202269 -0.202438 -0.202440

Example

State Estimation

Page 74: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 74/137

74

• Solution in 4 iterations

• Final results (Case 2):

Variable Estimate Residual

V1 1.035794 0.014205

V2 0.996001 0.003998

V3 0.966443 -0.016443

2 -0.0977013 -0.006335

3 -0.202438 -0.032906

Example

State Estimation

Page 75: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 75/137

75

• GAMS (Cas2 2) (NO weights):scalars

x Reactancia de la linea /0.1/

*mediciones

v1m Tension medida en el nudo 1 /1.05/

v2m Tension medida en el nudo 2 /1/

v3m Tension medida en el nudo 2 /0.95/

 p2m Potencia activa medida en el nudo 2 /0/q2m Potencia reactiva medida en el nudo 2 /0/

 p3m Potencia activa medida en el nudo 3 /1/

q3m Potencia reactiva medida en el nudo 3 /0.2/;

 Variables

v1 Modulo de la tension en el nudo 1. Valor exacto: 1.0000

v2 Modulo de la tension en el nudo 2. Valor exacto: 1.0000

v3 Modulo de la tension en el nudo 3. Valor exacto: 1.0000

d2 Argumento de la tension en el nudo 2. Valor exacto: -0.0100

d3 Argumento de la tension en el nudo 3. Valor exacto: -0.0100

e Error cuadratico medio;

Example

State Estimation

Page 76: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 76/137

76

equations

error Ecuacion del error cuadratico medio

R1 Restriccion 1

R2 Restriccion 2;

*Definicion de la ecuacion del error cuadratico medio

error .. e =e= sqr(v1-v1m) + sqr(v2-v2m) + sqr(v3-v3m) +

sqr((1/x)*v2*v3*sin(d2-d3)-p3m) +sqr((1/x)*v3*(v2*cos(d2-d3)-v3)-q3m);

R1 .. ((-1/x)*v1*v2*sin(d2)+(-1/x)*v2*v3*sin(d2-d3)-p2m)=E=0;

R2 .. ((1/x)*v2*(v1*cos(d2)-v2)-((1/x)*v2*(v2-v3*cos(d2-d3)))-q2m)=E=0;

 model estimo /all/;

SOLVE estimo USING nlp MINIMIZING e;

display v1.L,v2.L,v3.L,d2.L,d3.L;

Example

State Estimation

Page 77: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 77/137

77

• GAMS solution (caso 2):

error objective function

R1 Constraint 1

R2 Constraint 2

LOWER LEVEL UPPER MARGINAL

---- VAR v1 -INF 1.032 +INF -1.290E-8

---- VAR v2 -INF 0.996 +INF .---- VAR v3 -INF 0.970 +INF 1.3559E-8

---- VAR d2 -INF -0.097 +INF .

---- VAR d3 -INF -0.201 +INF -4.461E-9

Example

State Estimation

Page 78: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 78/137

78

• Comparison:

CASE 1 CASE 2

Matlab GAMS Matlab GAMS

V1 1.035794 1.033 1.035794 1.032

V2 0.996001 0.996 0.996001 0.996

V3 0.966443 0.970 0.966443 0.970

2 -0.097701 -0.097 -0.097701 -0.097

3 -0.202438 -0.201 -0.202438 -0.201

Example

State Estimation

Page 79: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 79/137

79

Do we have enough measurement to estimate

the state?

4. Observability

State Estimation

Page 80: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 80/137

80

If the system as al whole is not observable, some

“islands” would be observable.

4. Observability

State Estimation

Page 81: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 81/137

81

State variables: n

Measurements: M

1) m<n unboservable;

2) m=n no redundancy;

3) m>n generally observable.

Measurements have to be properly distributed.

4. Observability

State Estimation

Page 82: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 82/137

82

It the system is unobservable, we use pseudo-

measurements

1) Reasonable values.

2) Previous estimates.

4. Observability

State Estimation

Page 83: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 83/137

83

N bus network: n=2N-1 state variables, and m

measurements:

)x(h)x(H; 

)x...,x,x(h

)x...,x,x(h

)x...,x,x(h

)x(h; 

z

z

z

z x

n21m

n212

n211

m

2

1

4. Observability

State Estimation

Page 84: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 84/137

84

For obervability purposes:

We also linearize. If the linear system is observable,the nonlinear system is observable too:

zH·x

z)x(h

4. Observability

State Estimation

Page 85: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 85/137

85

H

zx·H

m

measurements

N

State variables

H

Linear system of 

equations

4. Observability

State EstimationO

Page 86: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 86/137

86

General solution:

·Nxxzx·H Par 

where,

- xPar  is a particular solution

- N is the null space of the system

- ρ is a coefficient vector 

4. Observability

State Estimation4 Ob bili

Page 87: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 87/137

87

For a single solution, the null space needs to be null:

 j,i;0Nx ijSINGLEi

If so, the system is observable

4. Observability

State Estimation4 Ob bilit

Page 88: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 88/137

88

Observability algorithm:

1) Compute H.

)x...,x,x(h

)x...,x,x(h

)x...,x,x(h

)x(h

n21m

n212

n211

4. Observability

State Estimation4 Ob bilit

Page 89: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 89/137

89

To compute the Jacobian

a) Flat start:

b) Typical values:

i0,1V ii d

i0],,[]05.1,95.0[V iii dd

4. Observability

State Estimation4 Ob bilit

Page 90: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 90/137

90

2) Compute the null space of H,

using MatLab N=null(H);

3) Chech NT columnwise A) Null column variable is observable.

B) No null column variable not observable.

C) Null matrix system observable.

4. Observability

State Estimation4 Ob bilit E l

Page 91: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 91/137

91

System

V1

P13

2

V21

Q31

Q21

V33

Xij=0.1j j,i

4. Observability – Example

State Estimation4 Obser abilit E ample

Page 92: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 92/137

92

Measurements:

Variable Value p.u. Variance

V1 0.95 10-3

V2 1.02 10-3

V3 1.03 10-3

P12 1 10-2

Q21 -0.4 10-2

P13 0.8 10-2

Q31 -0.2 10-2

4. Observability – Example

State Estimation4 Observability Example

Page 93: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 93/137

93

State variables 33322211 δVU,δVU,0VU

3

2

3

2

1

5

4

3

2

1

δ

δ

V

V

V

x

x

x

x

x

x

)xx(cos[xX

x

)xsen(X

xx

)xx(cos[xX

x

)xsen(X

xx

x

x

x

h(x)

35113

3

513

31

241

12

2

412

213

2

1

4. Observability – Example

State Estimation4 Observability Example

Page 94: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 94/137

94

Jacobian matrix h(x): Hij=

 j

i

xh

)x(senX

xx0

X

]x2)xcos(x[0)xcos(

X

x

)xcos(X

xx

0)x(senX

x

0)x(senX

x

0)x(senX

xx0

X

]x2)xcos(x[)xcos(

X

x

0)xcos(X

xx0)x(sen

X

x)x(sen

X

x00100

00010

00001

)x(H

5

13

31

13

3515

13

3

513

21

513

1

513

3

412

21

12

2414

12

2

4

12

214

12

14

12

2

4. Observability – Example

State Estimation4 Observability Example

Page 95: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 95/137

95

1) H evaluated as a typical woring point and at the flat

start

Tfun ]3.02.098.098.001.1[x

T0 ]00111[x

4. Observability – Example

State Estimation4 Observability Example

Page 96: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 96/137

96

Results:

Significant differences

0010010

100000

0001010

01000000100

00010

00001

)x(H 0

95.2086.9036.9

55.9001.3089.2

099.1060.961.9

080.9003.295.100100

00010

00001

)x(H fun

4. Observability – Example

State Estimation4 Observability Example

Page 97: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 97/137

97

2) Compte the null space H(xfun) N

3) Check columnwise NT

MatLab

» N_t=null(H)'

N_t =

Empty matrix: 0-by-5

»

Null space is null.

4. Observability – Example

State Estimation4 Observability Example

Page 98: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 98/137

98

Two redundant measurements

- We eliminate Q31

- State still observableV1

1

V3

V22

P13

P12

Q21

Q31TN Empty matrix: 0-by-5

4. Observability – Example

State Estimation4 Observability Example

Page 99: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 99/137

99

- We eliminate P13

θ3 is no longer observable

This is consistent because the only

Information availbe at bus 3 is the voltage

magnitude.

V1

1

V3

2

P13

P12

Q21

Q31TN [ 0 0 0 0 1 ]

V2

4. Observability – Example

State Estimation4 Observability Example

Page 100: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 100/137

100

Once observability is guarenteed we estimate the

state

4. Observability – Example

State Estimation4 Observability Example

Page 101: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 101/137

101

)]x(hz[W)x(Hx)x(G kkTkk D

)x(WH)x(H)x(G kkTk

xxx k1k D

4. Observability – Example

State Estimation4 Observability Example

Page 102: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 102/137

102

Tolerance is 10-3xD

Iteration 1 2 3 4

V1 1 1.0177 1.0214 1.0214 0.1005

V2 1 0.9816 0.9799 0.9799 0.1173

V3 1 1.0007 1.0013 1.0013 0.0995

Θ2 0 -0.1000 -0.0966 -0.0996 0.0209

Θ3 0 -0.0800 -0.0781 -0.0781 0.0014

34 10·x D

4. Observability – Example

State Estimation4 Observability Example

Page 103: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 103/137

103

GAMS

4. Observability – Example

State Estimation4 Observability Example

Page 104: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 104/137

104

Solution:

4. Observability – Example

State Estimation4 Observability Example

Page 105: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 105/137

105

Comparison

Solution V1 V2 V3 Delta2(rad) Delta3(rad)

MatLab 1.0214 0.9799 1.0013 -0.0966 -0.0781

GAMS 1.022 0.980 1.001 -0.103 -0.078

4. Observability – Example

State Estimation4 Observability Example

Page 106: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 106/137

106

Flat start

Flat start is good to copute the Jacobian because such Jacobian

involves teh minumum amount of “non-natural” couplings.

)x(H]00111[x 0T

0

4. Observability – Example

State Estimation4 Observability Example

Page 107: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 107/137

107

V1

P13

2V2

1

Q31

Q21

V3 3

Xij=0.1j j,i

4. Observability – Example

State Estimation4 Observability – Example

Page 108: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 108/137

108

Natural coupling:

If P13 is eliminated, info pertaining to bus 3 is:

VQδP

313 QV

4. Observability – Example

State Estimation4 Observability – Example

Page 109: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 109/137

109

Jacobians

0010010

100000

0001010

010000

00100

00010

00001

)x(H0

7976.0084.9098.9

19.10079.0078.0

099.0043.975.9

095.9002.198.0

00100

00010

00001

)x(H fun

Row 5 not used (P13)

4. Observability – Example

State Estimation4 Observability – Example

Page 110: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 110/137

110

Null space is obtaine for both matrices

Flat start: [ 0 0 0 0 1 ]

variable θ3 NOT observable

Estimate: Empty matrix: 0-by-5

variable θ3 is observable

What do we do?

4. Observability – Example

State Estimation4 Observability – Example

Page 111: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 111/137

111

Using GAMS:

Phase of bus 3 is null no flow through line 1-3

Inconsistent result.

4. Observability – Example

State Estimation4 Observability – Example

Page 112: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 112/137

112

- System analytically observable since δ3 is computedusing Q13 y V3, which are measurements looselyrelated to δ3. The outcome is thus unreliable.

- Flat start result is more appropriate from a practicalviewpoint.

4. Observability  Example

State Estimation5 Bad measurements

Page 113: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 113/137

113

• Some bad measurements may scape the initial

screening.

• Bad measurement detection: Test x 2 .

• Bad measurement identification: Largest normalized

residual test.

5. Bad measurements

State Estimation5 Bad measurements

Page 114: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 114/137

114

Chi-square with K degrees of freedom. :xJ

:nNK Number of measurement minus number of 

state variables.

:KxJ

:2Kσ xJ

If J(x) large enough, bad measurement likely.

 Average value.

Standard deviation.

5. Bad measurements

State Estimation5 Bad measurements

Page 115: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 115/137

115

Specifically:

• If we fix α (e.g. 0.01), since J(x) is x 2  with K

degrees of freedom, we can compute t j

• If the value for J(x) from the optimization problme

is smaller than t j no bad measurements within a

confidence level of 1α

αtxJP  j

5. Bad measurements

State Estimation5 Bad measurements

Page 116: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 116/137

116

5. Bad measurements

State Estimation5 Bad measurements

Page 117: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 117/137

117

1. Compute J(x’), where x’ is the state estimate

2. Considering a x 2  with K degrees of freedom and a

confidence level, compute t j

3. If  J(x’) t j , bad measurments are present with a degree

of certitude of 1-α.

 Algorithm:

αtx'JP  j

5. Bad measurements

State Estimation5 Bad measurements

Page 118: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 118/137

118

51K11n

62N

76.6t0.01α  j

If no bad measurement with

donfidence 99 % 40.33x̂J

If bad measurements are detected, they need to

be identified.

If bad measurement present with

confidence 99 %

207.94x̂J

Six-bus case:

5. Bad measurements

State Estimation5. Bad measurements

Page 119: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 119/137

119

5. Bad measurements

State Estimation5. Bad measurements

Page 120: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 120/137

120

Identification:

1. Residuals, r = z-h(x ), are distributes following a

N(0,Ω), where Ω is the covariance matrix:

2. Normalized residual follow a N(0,1).

T11T HHRHHRΩ

ii

iNi

Ω

r r 

5. Bad measurements

State Estimation5. Bad measurements

Page 121: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 121/137

121

nir 

nir PDF

ri

esti

min

hzr 

Valor real

5. Bad measurements

Largest normalized residual test:

State Estimation5. Bad measurements

Page 122: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 122/137

122

If r iN is N(0,1), for a condidence level of 95%:

• If |r iN| >1.6449 zi

m erroneous

• If |r iN| <1.6449 zi

m OK

5. Bad measurements

State Estimation5. Bad measurements - example

Page 123: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 123/137

123

Convariance matrix:

6400.00501.0-3260.0-0326.06260.0-3043.03218.0

0501.0-0039.00255.00025.0-0490.00238.0-0252.0-3260.0-0255.06808.00680.0-3188.06355.0-3431.0

0326.00025.0-0680.0-0068.00319.0-0635.00343.0-

6260.0-0490.03188.00319.0-6124.02976.0-3148.0-

3043.00238.0-6355.0-0635.02976.0-5933.03203.0-3218.00252.0-3431.00343.0-3148.0-3203.0-6612.0

10Ω3

p

State Estimation5. Bad measurements - example

Page 124: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 124/137

124

Residual and normalized residual verctor:

Since |r 1N| >1.6449, voltage measumrent at bus 1 is

erroneous.

0.0299-

0.0023

0.0433-

0.00430.0286

0.0400

0.0715-

 r 

1806.1-

1733.1

6599.1-

6611.11557.1

6406.1

7806.2-

Ω

r r 

ii

iN

p

State Estimation5. Bad measurements - example

Page 125: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 125/137

125

• Measuremnt V1 eliminated:

X12,X13,X23 = 0.1

 V1

 V3

 V2

M13

M12

tres

dos

Magnitud Valor p.u. Varianza

V2 1.02 10-3

V3 1.03 10-3

P12 1 10-2

Q21 -0.4 10-2

P13 0.8 10-2

Q31 -0.2 10-2

p

State Estimation5. Bad measurements - example

Page 126: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 126/137

126

3

2

3

2

1

5

4

3

2

1

δ

δ

V

V

V

x

x

x

x

x

x

p

State Estimation5. Bad measurements - example

Page 127: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 127/137

127

• Measurement vector:

• Measurement V1 not used.

2.0

80.0

40.0

00.1

03.1

02.1

Q

P

Q

P

V

V

z

31

13

21

12

3

2

p

State Estimation5. Bad measurements - example

Page 128: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 128/137

128

• Weighting matrix:

• Measurements as a function of state variables:

10000000

01000000

00100000

00010000

000010000

000001000

W

2

3

1 2

4

2

1 4 2

1 3

5

3

3 1 5

sin( )

( ) cos( )

sin( )

cos( )

 x

 x

 x x x

 X 

 xh x x x x

 X 

 x x x

 X 

 x x x x

 X 

State Estimation5. Bad measurements - example

Page 129: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 129/137

129

• Jacobian: j

iij

x

hH

)x(senX

xx0

X

x2xcosx0)xcos(

X

x

)xcos(X

xx0)x(senXx0)x(sen

Xx

0)x(senX

xx0

X

x2xcosx)xcos(

X

x

0)xcos(X

xx0)x(sen

X

x)x(sen

X

x00100

00010

)x(H

531351

53

531

51

53

421241

42

421

41

42

State Estimation5. Bad measurements - example

Page 130: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 130/137

130

1. Initialization:

2. H(xk) and G(xk):

T0  00111x

T0  000011)x(h

State Estimation5. Bad measurements - example

Page 131: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 131/137

131

- Jacobian:

- Gain matriz:

0010010100000

0001010

010000

00100

00010

)x(H 0

100000

010000

00110100001110

00101020

10WHH)x(G 3T0

State Estimation5. Bad measurements - example

Page 132: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 132/137

132

- Residual vector:

2000.0

8000.0

4000.0

0000.1

0300.0

0200.0

)x(hz)x(r 

h(x)-zr(x)

00

State Estimation5. Bad measurements - example

Page 133: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 133/137

133

3. Solving

4. New state:

D

0800.0

1000.0

0345.0

0155.0

0550.0

Wr HGx T10

)x(hzW)x(Hx)x(GkKTkk

D

kk1k xxx D

D

0800.0

1000.0

0345.1

0155.1

0550.1

xxx 001

State Estimation5. Bad measurements - example

Page 134: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 134/137

134

5. We iterate until Dx is smaller than 0.001.

State Estimation5. Bad measurements - example

Page 135: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 135/137

135

Solution:

J(x) V1

V2

V3

Matlab 0.0644 1.0581 1.0147 1.0355 -0.0932 -0.0731

Gams 0.0645 1.0581 1.0147 1.0355 -0.0932 -0.0731

State Estimation5. Bad measurements - example

Page 136: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 136/137

136

Checking again:

J(x) = 0.0645 < 3.8415, no bad measurements within

a confidence level of 95%.

8415.3t95.0α105.0α

State Estimation5. Bad measurements - example

Page 137: 02_StateEstimation_R3.pdf

7/29/2019 02_StateEstimation_R3.pdf

http://slidepdf.com/reader/full/02stateestimationr3pdf 137/137

• Residual and normalized residual vectors:

Since |r iN| <1.6449, no bad measurements.

0.0052

0.0001-

0.0058-

0.0007

0.0055-

0.0053

2432.0 

0814.0-

2650.0-

3616.0 

2536.0-

2540.0 

Ω

r r 

ii

iN


Recommended