+ All Categories
Home > Documents > 05.Kim Rheology

05.Kim Rheology

Date post: 12-Mar-2015
Category:
Upload: sebanka
View: 121 times
Download: 4 times
Share this document with a friend
20
CPGE Polymer Rheology/Transport Reseach Do Hoon Kim Gary A. Pope, Chun Huh Seungjun Lee, David Levitt, Will Slaughter Role of Polymers in Chemical EOR Processes Chemical EOR Research Program Annual Workshop The University of Texas at Austin April 23-24, 2009
Transcript
Page 1: 05.Kim Rheology

CPGE

Polymer Rheology/Transport Reseach

Do Hoon Kim

Gary A. Pope, Chun HuhSeungjun Lee, David Levitt, Will Slaughter

Role of Polymers in Chemical EOR Processes

Chemical EOR Research Program Annual WorkshopThe University of Texas at Austin ● April 23-24, 2009

Page 2: 05.Kim Rheology

CPGE

Topics of Presentation

• Rheology of EOR polymers- Structure-property relationship- Effects of different salinity with hardness

• Role of EOR polymers in chemical floods: Case Studies.- ASP/SP/Polymer Flood- Different reservoir conditions- Different salinity with hardness

• Motivation for development of comprehensive polymer rheology database

Page 3: 05.Kim Rheology

CPGE

Rheological Study of EOR Polymers• Provide polymer-solution bulk viscosity in terms

of polymer conc’n, M.W., degree of hydrolysis, salinity, pH and shear rate

• Convert the bulk viscosity to apparent viscosity in reservoir rock, for both shear-thinning and shear-thickening regimes

• More efficient polymer screening for chemical EOR applications to particular reservoirs

Page 4: 05.Kim Rheology

CPGE

Rheological Characterization of Polymers

* Synthetic brine at 30 C** 2000ppm polymer in Synthetic brine at 30 C*** Mole % of AMPS

Polymer MW Degree of Hydrolysis |η|* λ** Ωp, μm**** Description

Floppam 3630S 20M 25-30% 2046 0.063 0.58 HPAM

Hengfloc 63026 26M 30-40% 2115 0.07 HPAM, Post-hydrolyzed

Hengfloc 63020 20M 30-40% 1859 0.043 0.56 HPAM, Post-hydrolyzed

AN-125 8 M 20-30%*** 1913 0.059 0.42 AMPS/ Acrylamide

AN-125 VLM 2 M 20-30%*** AMPS/ Acrylamide

****

Page 5: 05.Kim Rheology

CPGE 10-3 10-2 10-1 100 101 102 103101

102

103

104

105Steady Shear Viscosity of EOR Polymers

5000 ppm Polymer at 0.1% NaCl (25°C)

FP 3630S (20M)

AN125 VLM (2M)FP 3230S (5M)AN125 (8M)

Page 6: 05.Kim Rheology

CPGE

Effect of Divalent Ions on Steady shear Viscosity

FP 3630S(20 MM, τ = 25-30%)

Hengfloc 63026(26 MM, τ =30-40%)Hengfloc 63020

(20 MM, τ =30-40%)

2000 ppm polymer in Synthetic brine at 30 oC

Visc

osity

(cP

@ 1

0 s-

1 )

Page 7: 05.Kim Rheology

CPGE

Oil and Reservoir dataBrine Reservoir

Hardness [ppm]#Oil

viscosity [cP]

Salinity [TDS,ppm]

EOR

Ca++ Mg++

Perm. [mD]

Temp [oC]

1 1.5 1,100 330 7 2000 85 ASP2 1.78 35,000 - - 1203 3.4 2800 60 5 2000 85 ASP4 4 200 - - 5000 100 SP5 5 200,000 16,000 2000 5~ 10 69 ASP/ AS6 7.8 65000 2700 1000 50~ 300 28 SP7 8.6 20,000 80 40 500~1000 85 ASP8 9 11,000 - - 54 ASP9 11 60,000 1200 - 50~500 36 SP

10 30 6000 300 200 1000 62 ASP

11 82 60,000 640 2605000 ~ 10000 30.6 SP/ASP

12 100 5,000 - - 2000 46 ASP13 100 38000 1700 570 500~1000 55 ASP14 5000 20,000 - - 500~1000 < 25 ASP

Page 8: 05.Kim Rheology

CPGE

Oil and Reservoir dataBrine Reservoir

Hardness [ppm]#Oil

viscosity [cP]

Salinity [TDS,ppm]

EOR

Ca++ Mg++

Perm. [mD]

Temp [oC]

1 1.5 1,100 330 7 2000 85 ASP2 1.78 35,000 - - 1203 3.4 2800 60 5 2000 85 ASP4 4 200 - - 100 SP5 5 200,000 16,000 2000 5~ 10 69 ASP/ AS6 7.8 65000 2700 1000 50~ 300 28 SP7 8.6 20,000 80 40 500~1000 85 ASP8 9 11,000 - 54 ASP9 11 60,000 1200 50~500 36 SP

10 30 6000 300 200 1000 62 ASP

11 82 60,000 640 2605000 ~ 10000 30.6 SP/ASP

12 100 5,000 - 2000 46 ASP13 100 38000 1700 570 500~1000 55 ASP14 5000 20,000 - 500~1000 <25 ASP

Page 9: 05.Kim Rheology

CPGE

Polymer Selection Criteria for Chemical Flood

• Viscosity of polymer solutions

• Salinity tolerance

• Chemical and thermal stability at reservoir temperature

• Transport characteristics in reservoir

• Sorption and retention characteristics

• Availability and cost

• Compatibility with surfactant

Page 10: 05.Kim Rheology

CPGE

Case #1. ASP flood• 100 cP Oil, 1500 mD, 46 oC• Same surfactant formulation with good solubilization ratio• Selection of adequate polymer viscosity improve the oil recovery

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0Pore Volumes

Oil

Cut

or C

umul

ativ

e O

il R

ecov

ered

(%)

μPolymer = 85 cP

μPolymer = 46 cP

Oil cut

Page 11: 05.Kim Rheology

CPGE

Comparison of Injection & Effluent Polymer viscosity in ASP flood

1

10

100

1000

0.1 1 10 100 1000

Injected Polymer

Effluent(2.02 PV)

Vis

cosi

ty, c

P

Shear Rate, s-1

2700 ppm FP 3630S1.2 um FilterF.R. = 1.11 (15psi)

• Adequate viscosity with good filterability of Polymer greatly improves oil recovery and transport in the porous media.

Page 12: 05.Kim Rheology

CPGE

Case #2. High MW Polymer in Low Permeability Rock

• 8 MM M.W. polymer causes plugging in very low permeability rock (5~ 10 mD).

0

2

4

6

8

10

12

14

0 1 2 3 4PV

Pres

sure

Dro

p (p

si)

K brine = 3.1 mD

μPolymer = 4.76 cP @ 500 s-1

1500 ppm AN-125

1.96 ft/D, 69 oCWhole

Inlet

Outlet

Page 13: 05.Kim Rheology

CPGE

Case #2. Low MW Polymer in Low Permeability Rock

0

1

2

3

4

5

6

7

8

9

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0Pore volume

Pres

sure

Dro

p (p

si)

• 2 MM M.W. polymer can be transported through very low permeability rock ( 5 ~ 10 mD).

K brine = 3.1 mD

μPolymer = 3.73 cP @ 500 s-1

2500 ppm AN-125 VLM

1.96 ft/D, 69 oC

Inlet

Outlet

Whole

Page 14: 05.Kim Rheology

CPGE

M.W. measurements by GPC does not show any significant degradation/chromatograph separation

Injected

Effluent

M.W.

Page 15: 05.Kim Rheology

CPGE

Case #3. Apparent Viscosity from Core Flood

K brine = 6.6 D

μPolymer = 60 cP @ 10 s-1

3000 ppm FP 3630S

1,2,4,8 ft/D, 30 oC

• High M.W. polymer (20 M) need to propagate into high permeability sand (~ 6.6 D).

Page 16: 05.Kim Rheology

CPGE

Apparent viscosity can be predicted from bulk viscosity

Calculated from core flood

Apparent shear rate:

Carreau-Model :( 1)/22( ) 1 ( )n

oη η η η λγ−

∞ ∞ ⎡ ⎤− = − +⎣ ⎦

Page 17: 05.Kim Rheology

CPGE

Summary

• Selection of adequate polymer viscosity improve the oil recovery in chemical flood.

• Low M.W. polymer can be transported through very low permeability rock (3mD).

• Apparent viscosity can be predicted from bulk viscosity in both shear-thinning and shear-thickening regimes.

• For a wide range of reservoir conditions, optimum polymer can be selected from rheologydata and corefloods.

Page 18: 05.Kim Rheology

CPGE

For a wide range of reservoir conditions, optimum polymer can be selected from rheology data and

corefloods

• Salinity (TDS, ppm) : 200 ~ 200,000 ppm• Hardness (Ca++, ppm) : 0 ~ 16,000 ppm• Temperature (oC) : 25 ~ 120 oC• Oil viscosity (cP) : 3 ~ 100 cP, 5000 ~ Million cP

for Heavy oil• Reservoir type: unconsolidated sandstone,

Dolomite, High-k sand• Permeability (mD) : few mD ~ thousands mD

Page 19: 05.Kim Rheology

CPGEReservoir simulation input (UTCHEM)

Limited Corefloods for Rheology correlation in porous media (γeff , τ  

Motivation for Development of Polymer Rheology Database

Comprehensive bulk Rheology database

• Comprehensive rheology database for currently employed polymers is not available.

• Database for comprehensive rheology model parameters for process simulations are needed.

Page 20: 05.Kim Rheology

CPGE

Variables Studiedfor Database Development

Planned : up to 10%

Rheological properties

Viscosity

Relaxation timeVarious EOR

polymers


Recommended