+ All Categories
Home > Documents > 0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/kinget_0p5V... · Peter Kinget...

0.5V Analog integrated circuits for nanoscale CMOS ...kinget/talks/kinget_0p5V... · Peter Kinget...

Date post: 19-Jul-2018
Category:
Upload: dothuy
View: 238 times
Download: 1 times
Share this document with a friend
78
Peter Kinget 0.5V Analog integrated circuits for nanoscale CMOS technologies Department of Electrical Engineering Collaborators: Shouri Chatterjee, Yannis Tsividis, K.P. Pun * [email protected] *Chinese University of Hong Kong
Transcript

Peter Kinget

0.5V Analog integrated circuits for nanoscale CMOS technologies

Department of Electrical Engineering

Collaborators: Shouri Chatterjee, Yannis Tsividis, K.P. Pun*

[email protected]

*Chinese University of Hong Kong

© Peter Kinget 2

Ultra-low voltage circuits: 0.5V

RF integratedoscillators

Ultra-widebandRF circuits

Injection lockedcircuits

RF Passives Device mismatch & its influence onAnalog & RF ICs

www.ee.columbia.edu/~kinget

© Peter Kinget 3

Outline

• Do we need Analog Integrated Circuits in nanometer CMOS?

• Design Challenges & Opportunities.

• 0.5 V Operational Transconductance Amplifiers & Biasing Circuits.

• 0.5 V Fully Integrated Active RC Filter with on-chip Automatic Tuning.

• A 0.5V 74dB SNDR 25kHz CT Σ∆ Modulator with Return-to-open DAC

• Conclusions.

© Peter Kinget 4

Analog in a Mixed Signal World

• Sounds, images, EM waves, …. are ANALOG.• Information processing & storage are DIGITAL.• System-on-chip is powerful economic paradigm.

• Digital drives technology development & choice.

Most Digital ICs need some Analog!

If Analog can be done in a digital technology, it will be done.

D & A A & D A & D

© Peter Kinget 5

CMOS trends: Supply voltage

Analog VDD

Digital VDD

Digital VT

Technology node [nm]

[ITRS'04]

–O– High Perf.

–∆– Low Standby–V– Low Power

© Peter Kinget 6

MOST biasing: CS or VCCS

• Transconductor or Current SourceVDS > 0.15V (for VGS-VT ≤ 0.2)

WeakInversion

StrongInversion

0.24µm/0.36µm nMOSin 0.18µm CMOS 5φT

© Peter Kinget 7

Switches at 0.5 V

Large VDD

Small VDD

Enough headroom

No headroom

© Peter Kinget 8

Common source amplifier

0.15 V

0.15 V

0.2 Vpp

0.5 + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

© Peter Kinget 9

Common drain buffer

0.15 V

0.15 V

0.2 Vpp

0.5 + 0.15 + 0.1 + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

© Peter Kinget 10

Common gate amplifier / Cascode

0.15 V

0.15 V0.5 + 0.15 +

x + 0.15 V

0.5 V

VT= 0.5 V VDS,sat= 0.15 V

0.15 V

© Peter Kinget 11

Differential OTA design challenges

0.15 V

0.5 V

0.65 V

0.8 V

-0.15 V

0.15 V

0.15 V

0.3 - 0.35 V

0.5 V

0.1 V

0.4 V0.4 V

0.1 V

0.15 - 0.35 V

0.4 V

0.25 V

VT= 0.5 V VDS,sat= 0.15 V

© Peter Kinget 12

CMFB for fully differential OTAs

Common Mode Feedback requires ‘fast’ amplifier operating from Vout,CM= VDD/2 !?

VDD

VDD/2

© Peter Kinget 13

Challenges at 0.5 V

• VDS,sat related challenges:– Independent of region of operation!– Independent of VT!– Signal swings are limited:

• Use differential circuits.

– Avoid transistor stacks:• No tail current source: How to achieve CM rejection?• No cascodes: How to increase DC gain?

• VGS related challenges:– Depend on region of operation & (VGS-VT).– Depend on VT!– Avoid signal swing on gate:

• How to do overall CMFB?• How to achieve strong inversion operation?

© Peter Kinget 14

Opportunities at 0.5 V: MOST has 4-terminals

Body

Source

Drain

Gate

G D BS Sub

n+

n+n+n+ n+

p+ p+

p

p

nMOS cross section(deep n-well process)

nMOS circuit equivalent(deep n-well process)

VDD

VDD

© Peter Kinget 15

Opportunities at 0.5 V

• Body terminal

– Signal input: [Guz87]

– VT reduction & control

[Kob94], [Von94]

– Bias control

• Latch-up not an issue

– Assuming VDD and GND are ‘well behaved’.

• Techniques can be ported to ‘double gate’ devices

VBS0.5 V

500

0

VT

mV

300

430360

0.0

VGS0.5 V0.2

3

0

IDS VBS ↑

µA

0.24µm/0.36µm nMOSin 0.18µm CMOS

0.5 V Gate-input OTA

© Peter Kinget 17

0.5 V Gate-input OTA stage

Vin+ Vin-

Vout+Vout-

VbnVNR

0.5 V

© Peter Kinget 18

Two stage OTA

• Common-mode output of first stage is 0.4 V

0.25 V

0.4 V

0.4 V

© Peter Kinget 19

Two-stage fully differential 0.5 V OTA with Miller compensation

© Peter Kinget 20

Setting common-mode voltages

0.5 V

0.4 V

0.4 V

0.5 V

Rb = 2/3 • Ri||Rf

0.25 V 0.25 V

© Peter Kinget 21

Open loop performance (meas.)G

ain

[d

B]

42 dB

GBW: 10 MHz

CL= 10pF (diff.)RL= 50kΩIDD= 150 µA

62 dB 350mV; automatic bias

Frequency [Hz]

On-chip automatic biasing circuits

© Peter Kinget 23

On-chip biasing circuits

Vbn generating circuit

Level shift biasing circuit

(Simplified OTA)

© Peter Kinget 24

Error amplifier for biasing

• 20 kHz GBW for 1 pF load

• 2 µA current• Controlled body voltage sets the amplifier threshold

VinVout

Vo

ut[V

]

Vin [V]

© Peter Kinget 25

OTA DC transfer characteristics and VNR generation

VNR generating circuit

Replica of OTA stage 1

Input differential voltage [mV]

Ou

tpu

t d

iff vo

lta

ge

[V

]

Increasing VNR

© Peter Kinget 26

Open loop performance (meas.)G

ain

[d

B]

42 dB

GBW: 10 MHz

CL= 10pF (diff.)RL= 50kΩIDD= 150 µA

62 dB 350mV; automatic bias

Frequency [Hz]

0.5 V Continuous time

tunable active RC Filter

© Peter Kinget 28

0.5 V 5th order elliptic LPF

Frequency [Hz]

Ga

in [

dB

]

280 kHz

135 kHz

© Peter Kinget 29

Filter tuning challenges at 0.5 V

• Gm-C

• MOSFET-C

• Switching banks of R’s and C’s

• Varactor-R techniques

Vtune [V]

Cg

s/C

ox

Gate (0.4 V) Source

Drain (0.25 V)

Body (Vtune)

© Peter Kinget 30

Low-voltage tunable integrator

0.25 V0.25 V

0.4 V

+

-Vin Vout

+

-

VDD

VDD

© Peter Kinget 31

Die photograph

• 0.18 µm CMOS

• MIM capacitors

• High-res resistors

• Standard VT

• Triple well devices

Filter PLL

Biasing circuits

OTAs

1mm

1m

m

S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V filter with PLL-based tuning in 0.18 um CMOS technology," in IEEE International Solid-State Circuits Conference (ISSCC), pp. 506-507, February 2005.

© Peter Kinget 32Frequency [Hz]

Ga

in [

dB

]

Measured filter response for different supply voltages

© Peter Kinget 33

Measured filter response for different chips

Frequency [Hz]

Ga

in [

dB

]

1.3 % std dev

in cut-off frequency for 20 samples

© Peter Kinget 34

Measured filter response for different tuning voltages

Frequency [Hz]

Ga

in [

dB

]

88 - 154 kHz(1.75x)

© Peter Kinget 35

Measured 3rd order inter-modulation

25 kHz

20 kHz

15 kHz

30 kHz

40 dB

Input differential rms amplitude [V]

Ou

t pu

t d

iffe

ren

tia

l rm

s a

mp

litu

de

[V

]

Effect of gain enhancement

Frequency [Hz]

Ga

in [

dB

]

Without gain-enhancement

With gain-enhancement

© Peter Kinget 37

Performance summary at 27C

727285104VCO feed-thru @280kHz [µV rms]

69.0

150.5

84.5

148.0

88.0

154.5

96.5

153.0

Tuning range [kHz] Vtune = VDD

Vtune = 0.0 V

58575755Dynamic range [dB]

5353Out-of-band IIP3 [dBV]

-3-3-3-5In-band IIP3 [dBV]

50505050Input [mV rms] (100kHz / 1% THD)

65687487Noise [µV rms]

4.33.32.21.5Total current [mA]

135.0135.0135.0135.0-3 dB cut-off frequency [kHz]

0.600.550.500.45VDD [V]

Functionality tested from 5C to 85C at 0.5 V

• Measured CMRR (10 kHz common mode tone): 65 dB• Measured PSRR (10 kHz tone on power supply): 43 dB

0.5 V Body-input OTA

© Peter Kinget 39

0.5 V Body-input OTA stage

0.5 V

Vin+ Vin-

Vout+Vout-

0.25 V

0.15 - 0.35 V

0.07 V

0.25 V

© Peter Kinget 40

Two-stage fully-differential OTA

0.18 µµµµm CMOS

Pole splitting using Miller capacitor

S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V bulk input fully differential operational transconductance amplifier," in European Solid-State Circuits Conference (ESSCIRC), pp.147-150, September 2004.

© Peter Kinget 41

Open loop frequency response

DC gain: 52 dB

GBW: 2.5 MHz

Phase Margin: 450

Frequency [Hz]

Simulation

Measurement

© Peter Kinget 42

66.711.413289.5100 η [1/V]

----Depl.MOS

Lat.BJT

-Lat.BJT

SpecialDevices

0.180.180.50.72.50.50.352Techn. [um]

DDDSSSSSSE/Diff.

101014-1220722CL [pF]

75110-4600.5-5300Power [uW]

102.541.36e-31.30.21.3GBW [MHz]

50/6252598470537049ADC [dB]

0.50.50.91.30.90.811VDD [V]

G-IB-I[Pel98]

[Fer96]

[Sto02]

[Leh01]

[Las00]

[Bla98]

S. Chatterjee, Y. Tsividis and P. Kinget, "0.5 V Analog Circuit

Techniques and Their Application in OTA and Filter Design," IEEE

Journal of Solid-State Circuits (JSSC), vol. 40, no 12, pp. 2373 -

2387, December 2005.

A 0.5V 74dB SNDR 25kHz CT Σ∆ Modulator

with Return-to-open DAC

© Peter Kinget 44

3rd order CT Σ∆ Modulator

Using Active RC integrators

© Peter Kinget 45

Ts 2Ts 3Ts 4Ts 5Ts 6Ts

Ts 2Ts 3Ts 4Ts 5Ts 6Ts

Continuous-time Σ∆ Modulator:Need of Return-to-zero DAC

NRZ DAC

RZ DACA typical active-RC

CT SDM stage

ISI exists: area for each “1”depends on its previous symbol.

No ISI: same area for all “1”s.

© Peter Kinget 46

RZ Challenge: Switches at VDD/2

RZφ⋅= QD0

RZφ⋅= QD1

0.25 V

0.25 V

0.25 V

© Peter Kinget 47

Solution: Return-to-open

Before RZ:(Q=1)

v2

v1

v1

v2

Problemswitchesremoved

© Peter Kinget 48

Solution: Return-to-open

“floats”

v2

v2

v1

Vcm,ota

v1

When RZ:(Q=1)

“floats”RZ

© Peter Kinget 49

Solution: Return-to-open

“floats”

v2

v2

v1

Vcm,ota

v1

When RZ:(Q=1)

“floats”

0.25 V

RZ

© Peter Kinget 50

RTO SDM: Inter-stage Coupling

RTO DAC

Unwanted signal paths when DAC floats

© Peter Kinget 51

Split RTO SDM Architecture

Split RTO DAC

© Peter Kinget 52

Modulator Details

50% duty cycle

BW = 25kHz, fs = 3.2MHz, Vin,max = 1Vppdiff.

10%Ts delay: to allow the comparator outputs to fully settle before the DACsbecome active.

© Peter Kinget 53

RTO DAC Circuit

ΦDAC High:

All the bodies tied to VDD/2.

© Peter Kinget 54

RTO DAC Circuit

ΦDAC Low:

Floating.

All the bodies tied to VDD/2.

© Peter Kinget 55

RTO DAC Circuit

ΦDAC Low:

Q invalid for Φ low.

Floating.

All the bodies tied to VDD/2.

© Peter Kinget 56

RTO DAC Circuit

ΦDAC Low:

Make charge-injection signal-independent.

Q invalid for Φ low.

Floating.

All the bodies tied to VDD/2.

© Peter Kinget 57

RTO DAC CircuitJust split M5-M7 for each FB path.

All the bodies tied to VDD/2.

© Peter Kinget 58

34.534.534.534.5 35353535 35.535.535.535.5 36363636-0.1-0.1-0.1-0.1

0000

0.10.10.10.1

0.20.20.20.2

0.30.30.30.3

0.40.40.40.4

0.50.50.50.5

T ime [us]T ime [us]T ime [us]T ime [us]

DA

C O

utp

ut

Vo

lta

ge

[V

]D

AC

Ou

tpu

t V

olt

ag

e [

V]

DA

C O

utp

ut

Vo

lta

ge

[V

]D

AC

Ou

tpu

t V

olt

ag

e [

V]

Waveform of RTO DAC

Simulated output waveform of 1st DAC

Same shape for all “1”s à No ISI

OTAinput

DACfloating

DACactive

© Peter Kinget 59

0.5V Body-input Gate-clocked Comparator

© Peter Kinget 60

0.5V Fully Differential OTA

• Measurements on a replica of the 1st OTA:

– ADC = 46dB, UGB = 4MHz;

– Input referred noise: 33nVrms @10kHz and 12nVrms @1MHz.

[Chatterjee ESSCIRC’05] [Chatterjee ISSCC’05]

© Peter Kinget 61

Die Photograph

• 0.18µm CMOS

• Standard VT (0.5V)

• Triple-well devices

• 0.5V operation

K.P. Pun, S. Chatterjee, and P. Kinget, "A 0.5 V 74dB SNDR 25kHz CT Delta-Sigma Modulator with Return-to-Open DAC" in IEEE International Solid-State Circuits Conference (ISSCC), pp. 72-73, February 2006.

© Peter Kinget 62

Measured Output Spectrum

@Vin = -4dB Vref, fin = 5kHz(Vref =1Vppdiff.)

101

102

103

104

105

106

−140

−120

−100

−80

−60

−40

−20

0

Frequency [Hz]

Mag

nitu

de [d

B]

No. of points = 64000

-140

-120

-100

-80

-60

-40

-20

0

10 100 1K 10K 100K 1M

FFT points = 64000Res. BW = 50 Hz

Frequency [Hz]

Po

we

r S

pe

ctr

al D

en

sity [

dB

/bin

]

2nd harmonic < 83dBc3rd harmonic < 88dBc

© Peter Kinget 63

Vin/Vref [dB]

SN

DR

[d

B]

−70 −60 −50 −40 −30 −20 −10 00

10

20

30

40

50

60

70

80

Vin/Vref [dB]

SN

DR

[dB

]

0

10

20

30

40

50

60

70

80

-70 -60 -50 -40 -30 -20 -10 0

Measured SNDR versus Vin

(Vref = 1Vppdiff.)

Peak SNDR:74dB

© Peter Kinget 64

Performance Summary at 25°°°°C

0.6 mm2Active die area

370 µµµµW

300 µµµµW

70 µµµµW

0.8V0.5V0.45VSupply Voltage

76 dB

74 dB

0.18 µm CMOS

(standard VT, triple-well, MIM, and HiRes Poly)

76 dB

71 dB

1 Vppdiff.

3.2 MHz / 64

25 kHz

1-bit, 3rd order, continuous-time

74 dB

74 dB

Technology

Power consumption (total)

Sigma Delta Modulator

(filter + comparator + DAC)

Output buffers

SNR @ Vin = 1Vppdiff.

SNDR @ Vin = 1Vppdiff.

Input range

Sampling frequency / OSR

Signal bandwidth

Modulator type

© Peter Kinget 65

SNDR versus VDD

@25°°°°C and Vin = 1Vppdiff.

Power supply voltage [V]

SN

R o

r S

ND

R [

dB

]

© Peter Kinget 66

Temperature [°°°°C]

SN

R o

r S

ND

R [

dB

]

SNDR versus Temperature

@VDD= 0.5V and Vin = 1Vppdiff.

© Peter Kinget 67

Performance Comparison

3400.180.63002574CT0.5This work

138Low VT0.352.8810002477SRC0.6Ahn 2005

580.180.08280867SO0.7Sauerbrey 2002

4100.50.85401662SO0.9Peluso 1998

3660.130.121500192050.9CT0.9Ueno 2004

13100.090.181402081SC1Yao 2004

381Gate

boost

0.350.639502585SC1Dessouky 2000

36Low VT0.52.53156019251CT1Matuya 1994

230.350.4156002078RO1Keskin 2001

1.30.80.9**15003.956*SO1Grech 1999

FOM[109/J]

CMOS [um]

Area[mm2]

Power[uW]

Bandwidth[kHz]

SNDR[dB]

TypeVDD[V]

*=SNR only; ** Estimated from die photograph;

SO = Switched Opamp; CT = Continuous Time;

SC = Switched Capacitor; RO = Reset Opamp;

SRC=Switched-RC

P

BWresolutionFOM ×=

© Peter Kinget 68

Analog design techniques at 0.5 V

• How to do CM rejection?ü Use local CM feedback & rejection

ü Use CM feedforward cancellation

ü Separate CM signal rejection and CM DC biasing

• How to increase DC gain?ü Use negative load conductance

• How to use strong inversion operation?ü Forward Body Bias to reduce VT

ü Extensive use of the body terminal

ü Extensive use of on-chip tuning & biasing

ü Architectural changes to eliminate signal path switches

Looking ahead

© Peter Kinget 70

0.5V 900MHz RF Front-end

• 0.18 µm CMOS

• Low-VT devices

• LNA/MIXER

– NF 8.8 dB

– Gain 11.5 or-7 dB

– ICP -23 dBm

– 5 mW(w/ LO Buffers)

LNA Mixer

Buffers

and

N. Stanic, P. Kinget, and Y. Tsividis,"A 0.5 V 900 MHz CMOS Receiver Front End,"IEEE Symposium on VLSI circuits, June 2006.

© Peter Kinget 71

0.5 V 1 Msps 60 dB SNDR Track&Hold

First track

and hold

Second track

and hold

Bias circuits

• 0.25 µm CMOS

• |VT|=0.6V

• MIM caps• High-res resistors• Triple well nMOS

S. Chatterjee, and P. Kinget, "A 0.5-V 1-Msample/s 60-dB SNDR Track-and-Hold

Circuit," IEEE Symposium on VLSI circuits, June 2006

© Peter Kinget 72

0.5V Analog Roadmap

2004 2005 2006

Body-input OTA

Gate-input OTA & Biasing

0.5V Varactor

THA

LPF + Tuning

∆Σ Converter

2007

RF Front-ends

DT ∆Σ Converter

Basic blocks

Full Interface

Complexity

Comparators

© Peter Kinget 73

Other Challenges in nanometer CMOS

• Gate leakage.

• Sub-threshold leakage.

• Reduced body-effect [VonAmin05]: VT Œ & tox Œ ð gmb Œ

• Many VT choices !

• Novel devices.

• Extensive Digital Calibration & Correction.

Other Opportunities in nanometer CMOS

© Peter Kinget 74

CMOS Trends: On chip Clock Speed

[ITRS'04]

Technology node [nm]

© Peter Kinget 76

Acknowledgments

• Analog Devices, Intel and Realtek for supporting parts of this work.

• Europractice and Philips Semiconductors for 0.18um and 0.25um prototypes fabrication.

© Peter Kinget 77

More details• [Cha 05] S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V filter with PLL-

based tuning in 0.18 um CMOS technology," in IEEE International Solid-State Circuits Conference (ISSCC), pp. 506-507, February 2005.

• [Cha 04] S. Chatterjee, Y. Tsividis, and P. Kinget, "A 0.5 V bulk input fully differential operational transconductance amplifier," in European Solid-State Circuits Conference (ESSCIRC), pp.147-150, Sep. 2004.

• [Cha 05] S. Chatterjee, Y. Tsividis and P. Kinget, "0.5 V Analog Circuit Techniques and Their Application in OTA and Filter Design," IEEE Journal of Solid-State Circuits (JSSC), vol. 40, no 12, pp. 2373 - 2387, December 2005.

• [Pun 06] K.P. Pun, S. Chatterjee, and P. Kinget, "A 0.5 V 74dB SNDR 25kHz CT Delta-Sigma Modulator with Return-to-Open DAC" in IEEE International Solid-State Circuits Conference (ISSCC), pp. 72-73, February 2006.

• [Abd 06] M. Abdulai and P. Kinget, "A 0.5 V Fully Differential Gate-input Operational Transconductance Amplifier with Intrinsic Common-Mode Rejection" in IEEE International Symposium on Circuits and Systems,May 2006.

• [Cha 06] S. Chatterjee, and P. Kinget, "A 0.5-V 1-Msample/s 60-dB SNDR Track-and-Hold Circuit," IEEE Symposium on VLSI circuits, June 2006.

• [Sta 06] N. Stanic, P. Kinget, and Y. Tsividis,"A 0.5 V 900 MHz CMOS Receiver Front End," IEEE Symposium on VLSI circuits, June 2006.

© Peter Kinget 78

References• [Guz 87] A. Guzinski, M. Bialko, and J. Matheau, "Body driven

differential amplifier for application in continuous-time active-C filter,''Proceedings of ECCD, pp. 315--319, 1987.

• [Bla 98] B. Blalock, P. Allen, and G. Rincon-Mora, "Designing 1-V op-amps using standard digital CMOS technology,'‘ IEEE Trans. Circuits Syst. II, vol. 45, pp. 769--780, July 1998.

• [Las 00] K. Lasanen, E. Raisanen-Ruotsalainen, and J. Kostamovaara, "A 1-V 5 µW CMOS-opamp with bulk-driven input transistors,'' 43rd IEEE Midwest Symposium on Circuits and Systems, pp. 1038--1041, 2000.

• [Leh 01] T. Lehmann and M. Cassia, "1-V power supply CMOS cascode amplifier,'' IEEE J. Solid-State Circuits, vol. 36, pp. 1082--1086, July 2001.

• [Sto 02] T. Stockstad and H. Yoshizawa, "A 0.9-V 0.5-µA rail-to-rail CMOS operational amplifier,'' IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 286--292, 2002.

• [Fer 96] G. Ferri and W. Sansen, "A 1.3V opamp in standard 0.7µmCMOS with constant gm and rail-to-rail input and output stages,''IEEE International Solid State Circuits Conference, pp. 382--383, 478, 1996.

© Peter Kinget 79

References• [Pel 98] V. Peluso, P. Vancorenland, A. M. Marques, M. Steyaert,

and W. Sansen, "A 900-mV low-power ∆Σ A/D converter with 77-dB dynamic range,'' IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1887--1897, Dec. 1998.

• [Kob94] T. Kobayashi and T. Sakurai, “Self-adjusting threshold-voltage scheme (SATS) for low-voltage high-speed operation,” in IEEE Custom Integrated Circuits Conference (CICC), May 1994, pp. 271–274.

• [Von94] V. R. Kaenel, M. D. Pardoen, E. Dijkstra, and E. A. Vittoz, “Automatic adjustment of threshold and supply voltages for minimum power consumption in CMOS digital circuits,” in IEEE Symposium on Low Power Electronics, pp. 78–79, 1994.

• [Kar00] S. Karthikeyan, S. Mortezapour, A. Tammineedi, and E. Lee, “Low-voltage analog circuit design based on biased inverting opampconfiguration,” IEEE Trans. Circuits Syst. II, vol. 47, no. 3, pp. 176–184, March 2000.

• [Bul00] K. Bult, “Analog design in deep sub-micron CMOS,” in European Solid-State Circuits Conference (ESSCIRC),September 2000, pp. 11–17.


Recommended