+ All Categories
Home > Documents > 06 Transverse Righting Moment

06 Transverse Righting Moment

Date post: 03-Apr-2018
Category:
Upload: renganathan-p
View: 214 times
Download: 0 times
Share this document with a friend

of 124

Transcript
  • 7/28/2019 06 Transverse Righting Moment

    1/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    N a v a

    l A r c

    h i t e c t u r e

    & O c e a n

    E n g

    i n e e r i n g

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    - Ship Stability -

    Part.1-II Righting Force and Moment

    2009 Fall

    Prof. Kyu-Yeul Lee

    Department of Naval Architecture and Ocean Engineering,Seoul National University

  • 7/28/2019 06 Transverse Righting Moment

    2/124

    @

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Righting Moment

    Overview of Ship Stability

    Force & Moment on a Floating Body

    Newtons 2nd

    LawEuler Equation

    Stability Criteria

    Damage Stability- MARPOL regulation

    Pressure Integration Technique

    Calculation Method to find GZwith respect to IMO regulation

    sinGZ GM = , GM KB BM KG= +

    sin L LGZ GM = , L LGM KB BM KG= +

    - Overview of Ship Stability

    BF GZ Transverse RightingMoment :

    B LF GZ Longitudinal RightingMoment :

    GZ Calculation

    ( )G BGZ y y= +( ) L G BGZ x x= +

    Z

    K

    z

    O

    CL

    y

    z M

    restoring

    e

    G

    FG

    B B1

    N

    FB

    1 B y

    G y

    F B: Buoyancy force : Angle of Heel, : Angle of Trim( xG ,yG ,zG) : Center of mass in waterplane fixed frame( x B ,y B ,z B) : Center of buoyancy in waterplane fixed frame

    y' G , y' B in body fixed frame

    Rotational Transformation! yG , y B in waterplane fixed frame

    Fundamental of Ship Stability

    Properties which is related to hullform of the ship

    Hydrostatic Values

    Intact Stability- IMO Requirement (GZ)- Grain Stability- Floodable Length

    2/124

  • 7/28/2019 06 Transverse Righting Moment

    3/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    - Contents -Part.1-I Fundamentals of ship stability

    Ch.1 Overview of Ship StabilityCh.2 Physics for Ship Stability

    Ch.3 Hydrostatic Pressure, Force and Moment on a floating bodyCh.4 Concept of Righting MomentCh.5 Hydrostatic Values

    Part.1-II Righting MomentCh.6 Transverse Righting Moment

    Ch.7 Longitudinal Righting MomentCh.8 Heeling Moment caused by Fluid in Tanks

    Part.1-III Stability CriteriaCh.9 Intact StabilityCh.10 Damage Stability

    Part.1-IV Pressure Integration TechniqueCh.11 Calculation of Static Equilibrium PositionCh.12 Governing Equation of Force and Moment with Immersion, Heel and TrimCh.13 Partial derivatives of force and moments with immersion, heel, and trim

    3/124

  • 7/28/2019 06 Transverse Righting Moment

    4/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    N a v a

    l A r c

    h i t e c t u r e

    & O c e a n

    E n g

    i n e e r i n g

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    Ch.6 Transverse Righting Moment- Sec.1 Calculation of Center of Buoyancy -

    2009

    Prof. Kyu-Yeul Lee

    Department of Naval Architecture and Ocean Engineering,Seoul National University

    - Ship Stability -

  • 7/28/2019 06 Transverse Righting Moment

    5/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Sec.1 Calculation of Center of BuoyancySec.2 Calculation of BM, GZ in Wall Sided Ship

    Sec.3 Inclining TestSec.4 Transverse Stability of ship (Unstable condition)Sec.5 Transverse Righting Moment due to Movement of CargoSec.6 Calculation of Heeling Angle due to Shift of Center of Mass

    5/124

  • 7/28/2019 06 Transverse Righting Moment

    6/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Sec.1 Calculation of Center of Buoyancy- Rotational Transformation of Point and Frame- Example) Calculation of Center of Buoyancy of Ship with

    Constant SectionMethod Direct calculating center of buoyancy in waterplane fixed frameMethod Transformation center of buoyancy from body fixed frame to

    waterplane fixed frame

    -

    Calculation of Center of Buoyancy of Ship with Various Station

    Shape 6/124

  • 7/28/2019 06 Transverse Righting Moment

    7/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    (Review)Transverse Righting Moment

    Z

    K

    z

    O,O'

    y

    z

    )(+

    CL

    y

    z M

    righting

    e

    G

    FG

    B B1

    N

    FB

    1 B y

    G y

    - Overview of Ship Stability

    O'x'y'z' : Body fixed frameOxyz : Waterplane fixed frame

    Righting Moment : Moment toreturn the ship to the upright floatingposition (Righting moment, Momentof statical stability))

    BGZ F = i Transverse Righting moment

    1( )righting G B B y y F = + i

    Righting arm

    Righting Arm ( GZ )

    1G BGZ y y= +From direct calculation

    We should know yG , y B1 in waterplane fixed frame

    From geometrical figure withassumption that M does not changewithin small angle of heel (about 10 )

    sinGZ GM = GM is related to below equation bygeometrical figure

    GM KB BM KG= +

    How to calculate inwaterplane fixed frame ?

    1 1, B B y z

    x,x'

    G: Center of mass B: Center of buoyancy B1: Changed center of buoyancyK : Keel F G : Weight of ship F B : Buoyant force acting on ship

    Z : The intersection of the line of buoyant force through B1 with the transverse linethrough G

    M : The intersection of the line of buoyant force through B1 with the centerline of the ship7

    /124

  • 7/28/2019 06 Transverse Righting Moment

    8/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    B

    K

    G

    O,O'

    y

    z

    Base Line

    F B

    F G

    z

    y

    e

    External moment ( e) is applied on theship in clockwise. A ship is heeled aboutorigin O through an angle of

    - Transverse Righting Moment

    O'x'y'z' : Body fixed frameOxyz : Waterplane fixed frame

    Method 1. calculate center of the buoyancy(B 1) with respect to waterplane fixed frame

    Question : How to calculate center of the buoyancy(B 1) with respect to waterplane fixed frame?

    x,x'

    y

    z( )+

    j

    k

    8/124

  • 7/28/2019 06 Transverse Righting Moment

    9/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Method 1. calculate center of the buoyancy(B 1) with respect to waterplane fixed frame

    dydzdA = = dA A= ydA M y A, = zdA M z A,

    A, Mz, My (with respect to waterplane fixed frame)

    Integral value(area and 1 st moment of area) haveto be calculated for every position when position of ship is changed.

    Question : How to calculate center of the buoyancy(B 1) with respect to waterplane fixed frame?

    O,O'

    y

    z

    F B

    F G

    e

    B

    G

    B11 B

    y

    1 B z

    Center of buoyancy is changed from B to B1.

    External moment ( e) is applied on theship in clockwise. A ship is heeled aboutorigin O through an angle of

    How to calculate center of buoyancy B1 withrespect to waterplane fixed frame?

    Method 1. Calculate Center of buoyancy B1 withrespect to waterplane fixed frame directly

    - Transverse Righting Moment

    O'x'y'z' : Body fixed frame

    Oxyz : Waterplane fixed frame

    x,x'

    y

    z( )+

    j

    k

    9/124

  • 7/28/2019 06 Transverse Righting Moment

    10/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    Integral value(area and 1 st moment of area) haveto be calculated for every position when position of ship is changed.

    y

    z

    B

    G

    B1

    e

    1 B y

    1 B z

    position change

    y

    z

    Wetted surfaceat present

    z

    y

    Area and moment of areahave to be calculated again

    Wetted surfacewith changed position

    =

    A

    M

    A

    M z y z A y A B B

    ,, ,),(11

    Center of buoyancy with respect towaterplane fixed frame

    - Transverse Righting Moment

    O'x'y'z' : Body fixed frame

    Oxyz : Waterplane fixed frame

    Method 1. calculate center of the buoyancy(B 1) with respect to waterplane fixed frame

    Question : How to calculate center of the buoyancy(B 1) with respect to waterplane fixed frame?

    dydzdA = = dA A= ydA M y A, = zdA M z A,

    A, Mz, My (with respect to waterplane fixed frame)

    How to calculate center of buoyancy B1 withrespect to waterplane fixed frame?

    Method 1. Calculate Center of buoyancy B1 withrespect to waterplane fixed frame directly

    Center of buoyancy is changed from B to B1.

    External moment ( e) is applied on theship in clockwise. A ship is heeled aboutorigin O through an angle of

    O,O'

    x,x'

    y

    z( )+

    j

    k

    10/124

  • 7/28/2019 06 Transverse Righting Moment

    11/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    y

    z

    Wetted surfaceat present

    O

    y

    z

    B

    K

    G

    z

    y B1

    e

    How to calculate center of buoyancy B1 withrespect to waterplane fixed frame?

    Method 2. Calculate center of buoyancy B1with respect to body fixed frame, thentransform B1 to waterplane fixed frame

    with respect to body fixed frame, ,, , A y A z A M M

    ' 'dA dy dz= = dA A, ' ' A y M y dA= , ' ' A z M z dA=

    Integral value could be used as it is exceptintersection region with waterplane area whenposition of ship is changed.

    ( ) ( )+

    1 B y 1 B z

    - Transverse Righting Moment

    O'x'y'z' : Body fixed frame

    Oxyz : Waterplane fixed frame

    Method 2. calculate center of the buoyancy(B 1) with respect to body fixed framethen transform frame from body fixed frame to waterplane fixed frame

    Question : How to calculate center of the buoyancy(B 1) with respect to waterplane fixed frame?

    O,O' x,x'

    y

    z( )+

    j

    k

    11/124

  • 7/28/2019 06 Transverse Righting Moment

    12/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    y

    z

    B

    K

    G

    z

    y

    e

    y

    zWetted surfaceat present

    ( ) ( )+ position change y

    Only changed area andmoment of area have to calculated.

    Wetted surfacewith changed position

    z ( )+( )

    - Transverse Ri htin Moment

    O'x'y'z' : Body fixed frame

    Oxyz : Waterplane fixed frame

    Method 2. calculate center of the buoyancy(B 1) with respect to body fixed framethen transform frame from body fixed frame to waterplane fixed frame

    Question : How to calculate center of the buoyancy(B 1) with respect to waterplane fixed frame?

    How to calculate center of buoyancy B1 withrespect to waterplane fixed frame?

    Method 2. Calculate center of buoyancy B1with respect to body fixed frame, thentransform B1 to waterplane fixed frame

    with respect to body fixed frame, ,, , A y A z A M M

    ' 'dA dy dz= = dA A, ' ' A y M y dA= , ' ' A z M z dA=

    Integral value could be used as it is exceptintersection region with waterplane area whenposition of ship is changed.

    O,O' x,x'

    y

    z( )+

    j

    k

    12/124

  • 7/28/2019 06 Transverse Righting Moment

    13/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    y

    z

    Wetted surfaceat present

    ( ) ( )+ y

    Only changed area andmoment of area have to calculated.

    Wetted surfacewith changed position

    z

    y

    z

    B

    K

    G

    z

    y

    e

    position change( )+

    ( )position change

    y

    zWetted surfaceat present z

    y

    Wetted surfacewith changed position

    Is area invariant with respect to referenceframe?

    Wetted surface area with respect to waterplane fixed frame

    Area is invariant with respect toreference frame.

    - Transverse Ri htin Moment

    O'x'y'z' : Body fixed frame

    Oxyz : Waterplane fixed frame

    Method 2. calculate center of the buoyancy(B 1) with respect to body fixed framethen transform frame from body fixed frame to waterplane fixed frame

    Question : How to calculate center of the buoyancy(B 1) with respect to waterplane fixed frame?

    How to calculate center of buoyancy B1 withrespect to waterplane fixed frame?

    Method 2. Calculate center of buoyancy B1with respect to body fixed frame, thentransform B1 to waterplane fixed frame

    Integral value could be used as it is exceptintersection region with waterplane area whenposition of ship is changed.

    with respect to body fixed frame, ,, , A y A z A M M

    ' 'dA dy dz= = dA A, ' ' A y M y dA= , ' ' A z M z dA=

    O,O' x,x'

    y

    z( )+

    j

    k

    13/124

  • 7/28/2019 06 Transverse Righting Moment

    14/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    y

    z

    B

    K

    G

    z

    y B1

    e

    y

    z

    Wetted surfaceat present

    ( ) ( )+ position change y

    Only changed area andmoment of area have to calculated.

    Wetted surfacewith changed position

    1 B y 1 B z

    1 1

    , ' , '( ' , ' ) , A y A z B B M M

    y z A A

    =

    Center of buoyancy in body fixed frame

    - Transverse Ri htin Moment

    O'x'y'z' : Body fixed frame

    Oxyz : Waterplane fixed frame

    Method 2. calculate center of the buoyancy(B 1) with respect to body fixed framethen transform frame from body fixed frame to waterplane fixed frame

    Question : How to calculate center of the buoyancy(B 1) with respect to waterplane fixed frame?

    How to calculate center of buoyancy B1 withrespect to waterplane fixed frame?

    Method 2. Calculate center of buoyancy B1with respect to body fixed frame, thentransform B1 to waterplane fixed frame

    Integral value could be used as it is exceptintersection region with waterplane area whenposition of ship is changed.

    with respect to body fixed frame, ,, , A y A z A M M

    ' 'dA dy dz= = dA A, ' ' A y M y dA= , ' ' A z M z dA=

    ( )+( )

    1 1

    1 1

    'cos sin

    sin cos ' B B

    B B

    y y

    z z

    =

    Center of buoyancy in waterplane fixedframe : Rotational Transformation

    O,O' x,x'

    y

    z( )+

    j

    k

    14/124

  • 7/28/2019 06 Transverse Righting Moment

    15/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    y

    z

    B

    G

    B1

    1 B y

    1 B z

    O

    y

    z

    B

    K

    G

    z

    y

    B1

    =

    A M

    A M z y z A y A B B

    ,, ,),(11

    Center of buoyancy with respect towaterplane fixed frame

    dydzdA = = dA A= ydA M y A, = zdA M z A,

    with respect to waterplane fixedframe

    y z M M A ,,

    1 1

    , ' , '( ' , ' ) , A y A z B B M M

    y z A A

    =

    1 1

    1 1

    'cos sinsin cos '

    B B

    B B

    y y z z

    =

    Center of buoyancy with respect to waterplanefixed frame

    Rotational transformation

    Method 1. Calculate Center of buoyancy B1 withrespect to waterplane fixed frame directly

    Method 2. Calculate center of buoyancy B1 withrespect to body fixed frame, then transform B1 towaterplane fixed frame

    Same

    with respect to body fixed frame, ' , ', , A y A z A M M

    ' 'dA dy dz = , ' ' A y M y dA= , ' ' A z M z dA=

    Convenient

    1 B y1 B

    z

    - Transverse Ri htin Moment

    1 B y

    1 B z

    O'x'y'z' : Body fixed frameOxyz : Waterplane fixed frame

    O'x'y'z' : Body fixed frameOxyz : Waterplane fixed frame

    Comparison between Method 1 and Method 2

    Question : How to calculate center of the buoyancy(B 1) with respect to waterplane fixed frame?

    O,O'

    x,x'

    y

    z( )+

    j

    k

    15/124

  • 7/28/2019 06 Transverse Righting Moment

    16/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    Rotational Transformation of Point and Frame(A) Rotation of the point (B) Rotation of the frame

    Given : Coordinate of P with respect to oyz frameFind : Coordinate of Q which is rotated coordinate of Pabout origin O in the yz plane through an angle of .

    P

    Pr

    y

    z

    o

    QQr

    =P

    P

    Q

    Q

    z

    y

    z

    y

    cossinsincos

    Given: Coordinate of P with respect to oyz frameFind: Coordinate of P with respect to oyz which is rotatedframe about origin O ' from o ' y' z ' through an angle of .

    ' yP y

    P y

    P z

    P z

    cos sinsin cos

    P P

    P P

    y y

    z z

    =

    Rotational transformation of pointRotational transformation of frame

    P

    Pr

    y

    z

    ,o o

    ' z

    - Transverse Ri htin Moment

    cos sinsin cos

    P P

    P P

    y y

    z z

    =

    ...(1) ...(2 1)

    ...(2 2)

    Rotational transformation of frame16

    /124

  • 7/28/2019 06 Transverse Righting Moment

    17/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    Rotational Transformation of Point and Frame

    Given : Coordinate of P with respect to oyz frameFind : Coordinate of Q which is rotated coordinate of Pabout origin O in the yz plane through an angle of .

    P

    Pr

    y

    z

    o

    QQr

    =P

    P

    Q

    Q

    z y

    z y

    cossinsincos

    P y

    P z

    Rotational transformation of point through an angle of equals to

    rotational transformation of frame through an angle of - .

    Rotational transformation of point

    y

    z

    ,o o

    - Transverse Ri htin Moment

    Given: Coordinate of P with respect to oyz frameFind: Coordinate of P with respect to oyz which is rotatedframe about origin O ' from o ' y' z ' through an angle of - .

    (A) Rotation of the point (B) Rotation of the frame

    cos sinsin cos

    P P

    P P

    y y z z

    = ...(2 1)

    If we substitude - into

    cos sinsin cos

    P P

    P P

    y y

    z z

    =

    ...(2 1)

    Pr

    y

    z

    P y

    P z P

    17/124

  • 7/28/2019 06 Transverse Righting Moment

    18/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    (Proof) Rotational Transformation of Point

    sincoscossin)sin( +=+Summation formula of trigonometric function

    sinsincoscos)cos( =+

    Coordinate of point P, Q is expressed byan angle

    )sin()cos(

    +=+=

    QQ

    QQ

    z y

    rr

    sincos

    PP

    PP

    z y

    rr

    ==

    ( ) ( )

    sincos

    sinsincoscos

    sinsincoscos

    )cos(

    PP

    PP

    QQ

    QQ

    z y

    y

    ==

    =

    +=

    rr

    rr

    r

    Let coordinate of Q be expressed by difference formulaof trigonometric function.

    ( ) ( )

    sincos

    sincoscossin

    sincoscossin

    )sin(

    PP

    PP

    QQ

    QQ

    y z

    z

    +=+=

    +=

    +=

    rr

    rr

    r

    )(, QP rr =

    )(, QP rr =

    =

    P

    P

    Q

    Q

    z

    y

    z

    y

    cossinsincos

    In the matrix form

    P

    Pr

    y

    z

    o

    QQr

    - Transverse Righting Moment

    Given : Coordinate of P with respect to oyz frameFind : Coordinate of Q which is rotated coordinate of P about origin O in the yz plane through anangle of .

    18/124

  • 7/28/2019 06 Transverse Righting Moment

    19/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    (Proof) Rotational Transformation of Frame

    sincoscossin)sin( +=+Summation formula of trigonometric function

    sinsincoscos)cos( =+

    Coordinate of point P is expressed by an angle

    cos( )sin( )

    P P

    P P

    y z

    = + = +

    rr

    cossin

    P P

    P P

    y z

    ==

    rr

    ( ) ( )

    cos( )cos cos sin sincos cos sin sin

    cos sin

    P P

    P P

    P P

    P P

    y

    y z

    = += =

    =

    rr rr r

    Let coordinate of P be expressed by difference formula of trigonometric function.

    ( ) ( )

    sin( )

    sin cos cos sin

    sin cos cos sin

    cos sin

    P P

    P P

    P P

    P P

    z

    z y

    = += += += +

    r

    r r

    r r

    cos sinsin cos

    P P

    P P

    y y

    z z

    =

    In the matrix form

    yP y

    P y

    P zP z

    P

    Pr

    y

    z

    o

    z

    - Transverse Righting Moment

    Given: Coordinate of P with respect to oyz frameFind: Coordinate of P with respect to oyz which is rotated frame about origin O ' from o ' y' z ' throughan angle of - .

    19/124

  • 7/28/2019 06 Transverse Righting Moment

    20/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Sec.1 Calculation of Center of Buoyancy- Rotational Transformation of Point and Frame- Example) Calculation of Center of Buoyancy of Ship with

    Constant SectionMethod Direct calculating center of buoyancy in waterplane fixed frameMethod Transformation center of buoyancy from body fixed frame to

    waterplane fixed frame

    - Calculation of Center of Buoyancy of Ship with Various Station

    Shape 20/124

  • 7/28/2019 06 Transverse Righting Moment

    21/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Example) Calculation of Center of Buoyancy of Ship with Constant Section: Method Direct calculating center of buoyancy in waterplane fixed frame

    G: Center of mass K :Keel B: Center of buoyancy B1 : Changed center of buoyancy

    Given : Breadth ( B):20, Depth ( D):20, Draft(T ) 10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y B , z B) in Waterplane fixed frame

    z

    y

    O

    30 B

    K

    B1

    2020 z

    y P

    Q

    R

    S

    Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin O through anangle of -30 . Calculate center of buoyancy with respect to waterplane fixed frame

    z,z

    y,y O

    B

    K

    20

    10

    20

    QP

    R S

    - Transverse Righting Moment

    Section view

    21/124

  • 7/28/2019 06 Transverse Righting Moment

    22/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    G: Center of mass K :Keel B: Center of buoyancy B1 : Changed center of buoyancy

    z

    yO

    30 B

    K

    B1

    2020

    z

    y P

    Q

    R

    SQuestion) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin Othrough an angle of -30 . Calculate center of buoyancy with respect to waterplanefixed frame

    Sol.) P, Q, R,S with respect to waterplanefixed frame

    ( , )P PP x y is calculated by rotational transformation from

    Q( xQ ,yQ), R( x R ,y R), S ( xS ,yS ) are calculated in the same way.

    =

    A

    M

    A

    M z y z A y A B B

    ,, ,),(11

    cos(30) sin(30) 10 3.66sin(30) cos(30) 10 13.66

    Q

    Q

    x y = =

    cos(30) sin(30) 10 13.66

    sin(30) cos(30) 10 3.66 R

    R

    x

    y

    = =

    cos(30) sin(30) 10 3.66

    sin(30) cos(30) 10 13.66S

    S

    x

    y

    = =

    cos(30) sin(30)sin(30) cos(30)

    0.866 0.5 10 13.660.5 0.866 10 3.66

    P P

    P P

    x x

    y y

    = = =

    - Transverse Righting Moment

    Example) Calculation of Center of Buoyancy of Ship with Constant Section: Method Direct calculating center of buoyancy in waterplane fixed frame

    Given : Breadth ( B):20, Depth ( D):20, Draft(T ) 10, Angle of Heel( ) : -30 Find : Center of buoyancy in Waterplane fixed frame1 1( , ) B B y z

    ( , )P PP x y

    22/124

  • 7/28/2019 06 Transverse Righting Moment

    23/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Sol.) Area

    y

    z

    =

    A

    M

    A

    M z y z A y A B B

    ,, ,),(11

    P

    Q

    R

    S

    2 11 1

    2 1

    ( ) z z

    z z y y y y

    =

    Intersection point between straight line and y

    axis have to be calculated in order to know area.Equation of straight line P1S1 have to becalculated in order to know intersection point.

    Equation of straight line through two points isas follows.

    Substituting two points of P1, S1 into equation of straight line

    13.66 ( 3.66)( 3.66) ( ( 13.66))

    ( 3.66) ( 13.66) z y

    =

    (-13.66,-3.66)

    (-3.66, 13.66)

    (13.66,3.66)

    (3.66,-13.66)

    1.732 20 z y = +

    T

    Intersection point T ( 11.55,0)T

    Equation of straight line of Q1R 1 is obtained in the same way

    1.732 20 z y =

    U

    Intersection point U (11.55,0)U

    - Transverse Righting Moment

    Example) Calculation of Center of Buoyancy of Ship with Constant Section: Method Direct calculating center of buoyancy in waterplane fixed frame

    z

    yO

    30 B

    K

    B1

    2020

    z

    y P

    Q

    R

    S

    G: Center of mass K :Keel B: Center of buoyancy B1 : Changed center of buoyancy

    Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin Othrough an angle of -30 . Calculate center of buoyancy with respect to waterplanefixed frame

    Given : Breadth ( B):20, Depth ( D):20, Draft(T ) 10, Angle of Heel( ) : -30 Find : Center of buoyancy in Waterplane fixed frame1 1( , ) B B y z

    23/124

    l ) l l f f f h h

  • 7/28/2019 06 Transverse Righting Moment

    24/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Sol.) Area

    y

    z

    =

    A

    M

    A

    M z y z A y A B B

    ,, ,),(11

    P

    Q

    R

    S

    Divide area into 4 part , A1,A

    2,A

    3,A

    4.

    Then calculate area of A1.

    (-13.66,-3.66)

    (-3.66, 13.66)

    (13.66,3.66)

    (3.66,-13.66)

    T (-11.55,0) U(11.55,0)A1 A2

    A3A4

    1

    111.55 ( 13.66) 3.66

    23.867

    A Area = =

    Area of A2, A3, A4 can be calculated in the same way.

    2 55.66, A Area =3

    86.6 A Area =

    453.87 A Area =

    - Transverse Righting Moment

    Example) Calculation of Center of Buoyancy of Ship with Constant Section: Method Direct calculating center of buoyancy in waterplane fixed frame

    z

    yO

    30 B

    K

    B1

    2020 z

    y P

    Q

    R

    S

    G: Center of mass K :Keel B: Center of buoyancy B1 : Changed center of buoyancy

    Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin Othrough an angle of -30 . Calculate center of buoyancy with respect to waterplanefixed frame

    Given : Breadth ( B):20, Depth ( D):20, Draft(T ) 10, Angle of Heel( ) : -30 Find : Center of buoyancy in Waterplane fixed frame1 1( , ) B B y z

    24/124

    E l ) C l l i f C f B f Shi i h C S i

  • 7/28/2019 06 Transverse Righting Moment

    25/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Sol.) Centroid

    y

    z

    =

    A

    M

    A

    M z y z A y A B B

    ,, ,),(11

    P

    Q

    R

    S

    (-13.66,-3.66)

    (-3.66, 13.66)

    (13.66,3.66)

    (3.66,-13.66)

    T (-11.547,0) U(11.547,0)A1 A2

    A3A4

    1 _

    211.54 ( 11.54 ( 13.66))

    312.25

    c A x = +

    =

    1 _

    23.66 ( ) 2.44

    3c A y = =

    Centroid of A1 can be calculated as follows1 1 _ _ ( , )c A c A x y

    Centroids of A2, A3, A4 are calculated in the same way.

    2 2 _ _ ( , ) ( 3.96, 1.83)c A c A x y =

    3 3 _ _ ( , ) ( 2.11, 6.99)c A c A x y =

    4 4 _ _ ( , ) (6.29, 4.55)c A c A x y =

    - Transverse Righting Moment

    Example) Calculation of Center of Buoyancy of Ship with Constant Section: Method Direct calculating center of buoyancy in waterplane fixed frame

    z

    yO

    30 B

    K

    B1

    2020 z

    y P

    Q

    R

    S

    G: Center of mass K :Keel B: Center of buoyancy B1 : Changed center of buoyancy

    Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin Othrough an angle of -30 . Calculate center of buoyancy with respect to waterplanefixed frame

    Given : Breadth ( B):20, Depth ( D):20, Draft(T ) 10, Angle of Heel( ) : -30 Find : Center of buoyancy in Waterplane fixed frame1 1( , ) B B y z

    25/124

    E l ) C l l i f C f B f Shi i h C S i

  • 7/28/2019 06 Transverse Righting Moment

    26/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Sol.) 1st moment of area

    =

    A

    M

    A

    M z y z A y A B B

    ,, ,),(11

    1st

    moments of area are calculated with areasand centroids which are calculated in previous.

    (13.66,3.66)

    y

    z

    P

    Q

    R

    S

    (-13.66,- 3.66)

    (-3.66, 13.66)

    (3.66,-13.66)

    T (-11.547,0) U(11.547,0)A1 A2

    A3A4Area y c zc Area yc Area zc

    A1 3.87 -12.25 -2.44 -47.38 -9.44

    A2 55.66 -3.96 -1.83 -220.24 -101.85

    A3 86.60 -2.11 -6.99 -183.01 -605.62

    A4 53.87 6.29 -4.55 338.78 -245.28

    Sum 200.00 -111.85 -962.19

    Centoid of total area is calculated as follows.

    ( )1 1

    , , 111.85 962.( , ) , , 0.56, 4.81200 200

    A y A z B B

    M M y z

    A A

    = = =

    , A y M , A z M

    - Transverse Righting Moment

    Example) Calculation of Center of Buoyancy of Ship with Constant Section: Method Direct calculating center of buoyancy in waterplane fixed frame

    z

    yO

    30 B

    K

    B1

    2020 z

    y P

    Q

    R

    S

    G: Center of mass K :Keel B: Center of buoyancy B1 : Changed center of buoyancy

    Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin Othrough an angle of -30 . Calculate center of buoyancy with respect to waterplanefixed frame

    Given : Breadth ( B):20, Depth ( D):20, Draft(T ) 10, Angle of Heel( ) : -30 Find : Center of buoyancy in Waterplane fixed frame1 1( , ) B B y z

    26/124

  • 7/28/2019 06 Transverse Righting Moment

    27/124

    l ) l l f f f h h

  • 7/28/2019 06 Transverse Righting Moment

    28/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    Sol.) Centroid

    Centroid of total area before heel

    _ _ ( , ) (0, 5)c A c A y z =

    Centroids of changed area after heel

    1 1 _ _

    2 1( , ) ( 10, 10 tan 30 )

    3 3

    ( 6.67, 1.92)

    c A c A y z =

    =

    2 2 _ _ 2 1

    ( , ) ( 10, 10 tan 30 )3 3

    (6.67,1.92)

    c A c A y z = =

    - Transverse Righting Moment

    Example) Calculation of Center of Buoyancy of Ship with Constant Section: Method Transformation of center of buoyancy from body fixed frame to waterplane fixed frame

    z

    y

    y

    z

    O 30

    B

    K

    B1

    20

    20

    QP

    R S

    A1

    A2

    A

    z

    y

    y

    z

    O 30

    B

    K

    B1

    20

    20

    QP

    R S

    G: Center of mass K :Keel B: Center of buoyancy B1 : Changed center of buoyancy

    Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin Othrough an angle of -30 . Calculate center of buoyancy with respect to waterplanefixed frame

    Given : Breadth ( B):20, Depth ( D):20, Draft(T ) 10, Angle of Heel( ) : -30 Find : Center of buoyancy in Waterplane fixed frame1 1( , ) B B y z

    28/124

    E l ) C l l i f C f B f Shi i h C S i

  • 7/28/2019 06 Transverse Righting Moment

    29/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    Sol.) 1st moment of area

    = A

    M

    A

    M z y z A y A B B

    ',', ','

    )','(11

    1st moments of area are calculated with areas

    and centroids which are calculated in previous.Area yc zc Area y Area z

    A 200.00 0.00 -5.00 0.00 -1000.00A1 -28.87 -6.67 -1.92 192.45 55.56A2 28.87 6.67 1.92 192.45 55.56

    Sum 200.00 384.90 -888.89

    , A y M , A z M

    Centroid of total area after heel with respect to body fixed frame is as follows( )

    1 1

    , , 384.90 888.89( , ) , , 1.92, 4.44200 200

    A y A z B B

    M M y z

    A A

    = = =

    Rotationaltransformation

    1 1

    1 1

    cos sin 1.92 0.56cos(30 ) sin(30 )sin cos 4.44 4.81sin(30 ) cos(30 )

    B B

    B B

    y y

    z z

    = = =

    Transform coordinate of centroid of total area with respect to body fixed frame tocentroid with respect to waterplane fixed frame by rotational transformation

    Same result

    - Transverse Righting Moment

    Example) Calculation of Center of Buoyancy of Ship with Constant Section: Method Transformation of center of buoyancy from body fixed frame to waterplane fixed frame

    z

    y

    y

    z

    O 30

    B

    K

    B1

    20

    20

    QP

    R S

    A1

    A2

    A

    z

    y

    y

    z

    O 30

    B

    K

    B1

    20

    20

    QP

    R S

    G: Center of mass K :Keel B: Center of buoyancy B1 : Changed center of buoyancy

    Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin Othrough an angle of -30 . Calculate center of buoyancy with respect to waterplanefixed frame

    Given : Breadth ( B):20, Depth ( D):20, Draft(T ) 10, Angle of Heel( ) : -30 Find : Center of buoyancy in Waterplane fixed frame1 1( , ) B B y z

    29/124

    E l ) C l l i f C f B f Shi i h C S i

  • 7/28/2019 06 Transverse Righting Moment

    30/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    1

    1

    0.56

    4.81 B

    B

    y

    z

    =

    1

    1

    0.56( )

    4.81 B

    B

    y

    z

    =

    Same

    Calculation Result

    Calculation Result

    - Transverse Righting Moment

    Example) Calculation of Center of Buoyancy of Ship with Constant Section: Method Transformation of center of buoyancy from body fixed frame to waterplane fixed frame

    z

    yO

    30 B

    K

    B1

    2020 z

    y P

    Q

    R

    S

    z

    y

    y

    z

    O 30

    B

    K

    B1

    20

    20

    QP

    R S

    Method Direct calculating center of buoyancy inwaterplane fixed frame

    Method Transformation of center of buoyancyfrom body fixed frame to waterplane fixed frame

    30/124

  • 7/28/2019 06 Transverse Righting Moment

    31/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Sec.1 Calculation of Center of Buoyancy- Rotational Transformation of Point and Frame- Example) Calculation of Center of Buoyancy of Ship with

    Constant SectionMethod Direct calculating center of buoyancy in waterplane fixed frameMethod Transformation center of buoyancy from body fixed frame to

    waterplane fixed frame

    - Calculation of Center of Buoyancy of Ship with Various StationShape

    31/124

    Calculation of Center of Buoyancy of Ship with Various Station Shape

  • 7/28/2019 06 Transverse Righting Moment

    32/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Calculation of Center of Buoyancy of Ship with Various Station Shape- Introduction

    1 Br 1 B z

    1 B y

    ' y

    y

    ' z z

    G

    B

    K 1 B

    Lc

    O O

    -

    1' B y

    1' B z1 B

    z

    1 B y

    1 Br

    ' z z

    G

    B

    K

    ' y

    y

    Lc

    dA

    Method Direct calculating center of buoyancy in waterplane fixed frame

    Method Transformation center of buoyancy from body fixed frameto waterplane fixed frame

    How to calculate center of buoyancy of ship with various sections ?

    - Transverse Righting Moment

    How to calculate inwaterplane fixed frame ?

    1 1, B B y z

    Righting Moment : Moment toreturn the ship to the upright floatingposition (Restoring moment, Momentof statical stability))

    BGZ F = i Transverse Restoring moment

    1( )righting G B B y y F = + i

    Righting arm

    Righting Arm ( GZ )

    1G BGZ y y= +

    From direct calculation

    We should know yG , y B1 in waterplane fixed f rame

    From geometrical figure withassumption that M does not changewithin small angle of heel (about 10 )

    sinGZ GM = GM is related to below equation bygeometrical figure

    GM KB BM KG= +

    Z

    K

    z

    O,O'

    y

    z

    )(+

    CL

    y

    z M

    righting

    e

    G

    FG

    B B1

    N

    FB

    1 B y

    G y

    O'x'y'z' : Body fixed frameOxyz : Waterplane fixed frame

    x,x'

    32/124

    VCB(Vertical Center of Buoyancy)

  • 7/28/2019 06 Transverse Righting Moment

    33/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    VCB(Vertical Center of Buoyancy)Step Area, 1 st Moment of Area

    z

    y

    z'

    dA

    y'

    dz'

    dy'

    c y

    c z G

    1

    n

    ii

    A dA dy dz

    A=

    = =

    =

    Area , A

    dA dy dz=

    Differential element of area, dA

    , A y

    c

    M y dA y dy dz

    y A

    = =

    =

    1st

    moment of area with respect to z axis, M A,x

    , A z

    c

    M z dA z dy dz

    z A

    = =

    =

    1st moment of area with respect to y axis, M A,y

    ( ), ,, , A y A z c c M M

    y z A A

    = =

    G

    Centroid G

    (Ai : Area of i-th element)

    ( , )c c y z : center of A

    1) James M. Gere, Mechanics of materials, THOMSON, pp.828-850, 6 th Edition

    - Transverse Righting Moment33

    /124

    VCB(Vertical Center of Buoyancy)

  • 7/28/2019 06 Transverse Righting Moment

    34/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    VCB(Vertical Center of Buoyancy)Step Sectional Area (A M), Displacement Volume

    Displacement volume

    ( ) ' A x dx =

    == '' dzdydA ASectional Area

    L

    formhullr under wate

    B

    T

    A

    x y

    z

    ( ) ''''''

    dxdzdy

    dzdydxdV

    ===

    ( ) A x

    After calculation of each station area,displacement volume can be calculated byintegral of section area over the length of ship

    Each stationarea Integral

    in longitudinaldirection

    Volume

    A

    Area of this Curve Volume( )

    A.P x L

    A

    A1

    A2

    A3 An..

    Oxyz : Waterplane fixed frame

    - Transverse Righting Moment34

    /124

    VCB(Vertical Center of Buoyancy)

  • 7/28/2019 06 Transverse Righting Moment

    35/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    VCB(Vertical Center of Buoyancy)Step Vertical Moment of Volume, Vertical Center of Buoyancy(VCB)

    Vertical Center of Buoyancy

    , , ( ) z A z M M x dx =

    , z M VCB =

    Vertical Moment of Volume

    ( )

    , z M z dV

    z dx dy dz

    z dy dz dx

    =

    =

    =

    , ( ) A z M x M A,z : Vertical moment of area about y axis

    After calculation of each vertical moment of stationarea about the y axis( M A,z), vertical moment of

    displaced volume can be calculated by integral of vertical moment of section area over the length of ship

    L

    formhull

    r under wate

    B

    T

    x y

    z A

    vertical momentof station areaabout the y axis

    Integralin longitudinaldirection

    Verticalmoment of volume

    , ' A z M , ' z M

    Area of this Curve 1st Moment of Volume( )

    , z M

    A.P x L M A1, z

    M A2, z

    M A3, z

    M An, z .

    , A z M

    Oxyz : Waterplane fixed frame

    - Transverse Righting Moment

    z

    35/124

    1) Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3 rd

  • 7/28/2019 06 Transverse Righting Moment

    36/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Area of Triangle by Vector

    0 0( , ) x y

    1 1( , ) x y

    2 2( , ) x y

    x

    y

    1 0r r

    2 0r r

    o

    2r

    1r

    0r

    1 0 2 01( ) ( ) ( )2

    Area = r r r r r

    1 0 2 0 2 0 1 01 ( )( ) ( )( )2

    x x y y x x y y=

    1 0 1 0

    2 0 2 0

    0

    0

    x x y y

    x x y y

    =

    i j k

    1)Cross Product

    ( )sin =a b a b n: Area of parellelogram sinh = ba

    b

    b

    a

    : Area of triangle with side a and b

    A = a b

    12

    A = a b

    Given : Position vector r 0, r 1, r 2, of vertex of triangle Find : Area of triangle

    - Transverse Righting Moment36

    /124

    Area of Triangle

    1) Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3 rd

  • 7/28/2019 06 Transverse Righting Moment

    37/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    Area of Triangleby Rotational Transformation

    )'')(''()'')(''(21

    01020201 y y x x y y x x =

    1 0 2 0 2 0 1 0

    1( )( ) ( )( )2 x x y y x x y y =

    1 0 2 01( ) ( ) ( )2

    Area = r r r r r

    1 0 2 01( ') ( ' ' ) ( ' ' )2

    Area = r r r r r

    [ ] [ ]0 1 2 0 1 2cos sin' ' ' sin cos = r r r r r r

    =210

    210

    210

    210

    cossinsincos

    ''''''

    y y y x x x

    y y y x x x

    ' = r R r

    1 1 0 0 2 2 0 0

    2 2 0 0 1 1 0 0

    1 (( cos sin ) ( cos sin ))(( sin cos ) ( sin cos ))2

    (( cos sin ) ( cos sin ))(( sin cos ) ( sin cos ))

    x y x y x y x y

    x y x y x y x y

    = + +

    + +

    )cos)(sin))((sin)(cos)((

    )cos)(sin))((sin)(cos)((21

    01010202

    02020101

    y y x x y y x x

    y y x x y y x x

    +

    +=

    2 21 0 2 0 1 0 2 0 2 0 1 0 1 0 2 0

    2 21 0 2 0 2 0 1 0 1 0 2 0 1 0 2 0

    1(( )( ) cos sin ( )( ) cos ( )( ) sin ( )( ) sin cos )

    2

    ( )( ) cos sin ( )( ) cos ( )( ) sin ( )( ) sin cos )

    x x x x x x y y x x y y y y y y

    x x x x x x y y x x y y y y y y

    = +

    + +

    { }{ }2 2 1 0 2 0 1 0 2 01

    cos sin ( )( ) ( )( )2 x x y y y y y y = +

    Is a area changed after rotation aboutorigin O? Given : Area before rotation Find : Area after rotation

    0r

    1r

    2r

    x0'r

    1'r

    2'r

    y

    - Transverse Righting Moment

    ,(R: )

    o

    37/124

    Area of Triangle1) Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3 rd

  • 7/28/2019 06 Transverse Righting Moment

    38/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Area of Triangleby Rotational Transformation

    )'')(''()'')(''(21

    01020201 y y x x y y x x =

    1 0 2 0 2 0 1 0

    1( )( ) ( )( )2 x x y y x x y y =

    ( )( ) ( )

    Area

    Area Area

    = =

    Rr

    r r( R : Rotationaltransformation matrix)

    1 0 2 01( ) ( ) ( )2

    Area = r r r r r

    1 0 2 01( ') ( ' ' ) ( ' ' )2

    Area = r r r r r

    { }{ }2 2 1 0 2 0

    1 0 2 0 1 0 2 0

    1 0 2 0

    1cos sin ( )( ) ( )(

    1( )( )

    )

    (

    2

    )( )2

    x x y y y y y

    x x y y y y y y

    y = +

    =

    Area is invariant with respect to frame.

    Given : Find :

    0r

    1r

    2r

    x0'r

    1'r

    2'r

    y

    - Transverse Righting Moment

    ( )( ) a Area Are = rr

    o

    38/124

    1st Moment of Area1) Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3 rd

  • 7/28/2019 06 Transverse Righting Moment

    39/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    1 Moment of Areaby Rotational Transformation

    1 0 2 01( ) ( ) ( )

    2

    Area = r r r r r

    ( ) C A= M r r

    0 0( , ) x y

    1 1( , ) x y

    2 2( , ) x y

    x

    y

    C C r ( , ) x y

    1 2 31

    ( )3C

    = + +r r r r

    A

    B C

    O

    G

    Position vector of centroid oftriangle ABC.

    a

    b

    c

    g

    Let cent of side BC as D

    ( )12OD b c= +

    Now, G is the point of internal division with ratio of 2 to 1

    2 1 22 1 3

    OD OA OD OAOG

    + += =+

    ( )1 123 2g b c a = + + =

    ( )13 a b c+ +

    2

    1

    1 2 3

    3 x x x x xdA xdxdy A+ += = = M

    1 2 3

    3 y y y y

    ydA ydxdy A+ += = = M

    Given : Position vector of vertex of triangle Find : 1 st moment of area of triangle

    Position vector of centroid of triangle r 1r 2r 2

    Area of triangle r 1r 2r 2

    1st moment of area of triangle r 1r 2r 2 with respect to x andy axis

    (*) ( ) , 10- ,40th ,2005, ,pp.15- Transverse Righting Moment

    o

    2r

    0r1r

    D39

    /124

    1) Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3 rd

    1st Moment of Area

  • 7/28/2019 06 Transverse Righting Moment

    40/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    1 2 31 ( ' ' ' )3C = + +r r r r

    1 2 31 ( )3

    = + +R r R r R r

    1 2 31 ( )3

    = + +R r r r

    C A=R r( ) Moment = R r

    ( ) C Moment A=r r1 2 3

    1 ( )3C

    = + +r r r r

    ( ') 'C Moment A=r r

    1 0 2 01( ) ( ) ( )2

    Area = r r r r r

    1st moment of area of triangle before rotation

    ( ') ( ) , ( ) Area Area A A= =r r1st moment of area of triangle after rotation

    Given : Position vector of triangle, angle of rotation Find : 1st moment of area of triangle after rotationabout origin O

    C = R rC C =r R r

    ( )

    C

    Moment

    A=r

    r[ ] [ ]0 1 2 0 1 2

    cos sin' ' '

    sin cos

    = r r r r r r

    =210

    210

    210

    210

    cossinsincos

    ''''''

    y y y x x x

    y y y x x x

    ' = r R r

    0r

    1r

    2r

    x 0'r

    1'r

    2'r

    y

    C

    'C C r

    - Transverse Righting Moment

    1 Moment of Areaby Rotational Transformation

    C r

    o

    40/124

    1) Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3 rd 1st Moment of Area

  • 7/28/2019 06 Transverse Righting Moment

    41/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    C C =r R r

    C A= R r( ) Moment = R r

    ( ) ( )

    C

    Moment Moment

    A

    ==

    R r R r

    R r( R : Rotationaltransformation matrix)

    0r

    1r

    2r

    x 0'r

    1'r

    2'r

    y

    C

    'C C r

    ( ) C Moment A=r r1 2 3

    1 ( )3C

    = + +r r r r

    ( ') 'C oment A=M r r

    1 0 2 01( ) ( ) ( )2

    Area = r r r r r

    1st moment of area of triangle before rotation

    ( ') ( ) , ( ) Area Area A A= =r r1st moment of area of triangle after rotation

    1st moment of area is invariant withrespect to frame.

    [ ] [ ]0 1 2 0 1 2cos sin

    ' ' 'sin cos

    = r r r r r r

    =210

    210

    210

    210

    cossinsincos

    ''''''

    y y y x x x

    y y y x x x

    ' = r R r

    Given : Position vector of triangle, angle of rotation Find : 1st moment of area of triangle after rotationabout origin O

    - Transverse Righting Moment

    1 Moment of Areaby Rotational Transformation

    C r

    o

    41/124

  • 7/28/2019 06 Transverse Righting Moment

    42/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Sec.1 Calculation of Center of Buoyancy- Rotational Transformation of Point and Frame- Example) Calculation of Center of Buoyancy of Ship with

    Constant SectionMethod Direct calculating center of buoyancy in waterplane fixed frameMethod Transformation center of buoyancy from body fixed frame to

    waterplane fixed frame

    - Calculation of Center of Buoyancy of Ship with Various StationShape

    42/124

    Example) Calculation of Center of Buoyancy of Ship with Various Station

  • 7/28/2019 06 Transverse Righting Moment

    43/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    a p e) Ca cu at o o Ce te o uoya cy o S p w t Va ous Stat oShape

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixed

    frame.

    20

    CL

    20

    10

    O,O ' y,y' z,z'

    x,x'

    10

    10

    20 20

    10

    20

    20

    20

    20

    20

    2010

    - Transverse Righting Moment43

    /124

    O y z

    A1

    Example) Calculation of Center of Buoyancy of Ship

  • 7/28/2019 06 Transverse Righting Moment

    44/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    y dz dy dx

    dz dy dx

    =

    y dz dy dx =

    dz dy dx =

    O y

    x

    A3

    A2

    - Transverse Righting Moment

    Sectional area of each section(Body fixed frame)

    ( ) A x dA dy dz = =

    1st moment of area of each section(Body fixed frame)

    , A y M y dy dz

    =

    , A z M z dy dz =

    Displacement volume(Body fixed frame)

    dV =

    1st moment of displacement volume(Body fixed frame)

    , y M

    , z M

    .

    .( )

    F P

    A P A x dx =

    Center of buoyancy(Body fixed frame )

    ,c y

    .

    .( ( ))

    F P

    c A P y A x dx =

    , ,( , )c c y z : Center of displaced volume

    .

    ..

    .

    ( )

    ( )

    F P

    c A PF P

    A P

    A x y dx

    A x dx

    =

    , y M =

    ,c z , z M =

    z dz dy dx

    dz dy dx

    =

    .

    ..

    .

    ( )

    ( )

    F P

    c A PF P

    A P

    A x z dx

    A x dx

    =

    , ,

    , ,

    cos sinsin cos

    c c

    c c

    y y

    z z

    =

    Center of Buoyancy(Waterplane fixed frame )

    z dz dy dx = .

    .( ( ))

    F P

    c A P z A x dx =

    ( )c y A x =

    ( )c z A x =

    ( ) A x : Sectional area at x( , )c c y z : Centroid of section at x'

    p ) y y pwith Various Station Shape

    44/124

    Example) Calculation of Center of Buoyancy of Ship

  • 7/28/2019 06 Transverse Righting Moment

    45/124

    2009 Fall, Ship StabilitySDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    O,O ' y,y' z,z'

    x,x'

    )

    y'

    y

    z' z

    < Section A 1 >

    < Section A 2 >

    < Section A 3 >

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    2

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    y'

    y

    z' z

    y'

    y

    z' z

    - Transverse Righting Moment

    p ) y y pwith Various Station Shape

    45/124

    Example) Calculation of Center of Buoyancy of Ship

  • 7/28/2019 06 Transverse Righting Moment

    46/124

    2009 Fall, Ship Stability SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    ) In the same way of previous example, calculate center of buoyancy with respect to bodyfixed frame at first, then calculate center of buoyancy with respect to waterplane fixedframe by rotational transformation.

    Coordinate of P 1, Q1 is known as (-5,0), (5,0) by geometric shape.Coordinate of P 1, P2, Q 1, Q 2 of section A3

    < Section A 3 >

    O y z

    x

    A3

    A2

    A1

    z

    y

    y

    z

    O30

    B

    K

    B1

    20

    20 Q2

    Q1

    P1P2

    QP

    Calculate equations of straight line PK, KQ in order to know P 2,Q2

    The equation of straight line PK 2 10 z y =

    The equation of straight line KQ 2 10 z y =

    The equation of line of waterplane with respect to body fixed frame is as follows,

    because waterplane is inclined through an angle of 30 .tan 30 0.5774 z y y = =

    Intersection point P 2,Q2 betwwen waterplane and straight line PK, KQ can be calculated as followsP2(-3.88, -2.24), Q 2(7.03, 4.06)

    20

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    Area below waterplane can be calculated also by Gaussian Quadrature.

    p ) y y pwith Various Station Shape

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    46/124

    Example) Calculation of Center of Buoyancy of Ship

  • 7/28/2019 06 Transverse Righting Moment

    47/124

    2009 Fall, Ship Stability SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    ) -A3 : Sectional area of A 3O y z

    x

    A3

    A2

    A1

    z

    y

    y

    z

    O30

    B

    K

    B1

    20

    20 Q2

    Q1

    P1P2

    QP

    A3_2 A3_1

    A3_0

    3_ 0 0.5 10 10 50 A = =

    3_1 1 2

    1( ) ( )

    2

    0 5 0

    0 3.88 2.245.60

    A =

    =

    =

    P O P O

    i j k

    3_ 2 1 2

    1( ) ( )

    2

    0 5 0

    0 7.03 4.0610.15

    A =

    =

    =

    Q O Q O

    i j k

    Total sectional area before heel

    Changed area after heel

    Total sectional area after heel

    3 50 5.60 10.15 54.55 A = + =

    If a ship is not a wall sided ship,area below waterplane is different.

    P2(-3.88, -2.24), Q 2(7.03, 4.06)P1(-5,0), Q 1(5,0)

    20

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    ( )

    ( )i

    A x dA

    dy dz

    A x

    = =

    =

    ( )k A x: Sectional area at x

    _ ( )k i A x : Partial area of section at x'

    p ) y y pwith Various Station Shape

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    < Section A 3 >

    47/124

    Example) Calculation of Center of Buoyancy of Ship

  • 7/28/2019 06 Transverse Righting Moment

    48/124

    2009 Fall, Ship Stability SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    ) Centroid of A3O y z

    x

    A3

    A2

    A1

    z

    y

    y

    z

    O30

    B

    K

    B1

    20

    20 Q2

    Q1

    P1P2

    QP

    A3_2 A3_1

    A3_0

    P2(-3.88, -2.24), Q 2(7.03, 4.06)P1(-5,0), Q 1(5,0)

    3_ 0

    1Cetroid of (0, ( 10))3

    10(0, )3

    A =

    =

    3_10 5 3.88 0 0 2.24Cetroid of ( , )

    3 3

    ( 2.96, 0.75)

    A + =

    =

    3_ 20 7.03 5 0 0 4.06Cetroid of ( , )

    3 3(4.01, 1.35)

    A+ + + +=

    =

    20

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    p ) y y pwith Various Station Shape

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    < Section A 3 >

    48/124

    Example) Calculation of Center

  • 7/28/2019 06 Transverse Righting Moment

    49/124

    2009 Fall, Ship Stability SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    )

    Calculate 1 st moment of area in order to know centroid of section A 3 with respect to body fixed frame

    Area Area*y'c_3_i Area*z'c_3_i A3_0 50.00 0.00 -3.33 0.00 -166.67 A3_1 5.60 -2.96 -0.75 -16.57 -4.18 A3_2 10.15 4.01 1.35 40.69 13.73

    - + 54.55 57.26 -148.76

    - A3 : 1st moment of area of section A 3

    Centroid of section A 3 with respect to body fixed frame is calculated as follows

    ( )

    3 3

    3 3

    , , _ 3 _ 3( , ) ,

    57.26 148.76, 1.05, 2.73

    54.55 54.55

    A y A zc c

    A A

    M M y z

    Area Area =

    = =

    3 , A y M 3, A z M

    3, A y

    M : 1

    st moment of area of section A 3 about z ' axis 3

    , A z M : 1st moment of area of

    section A 3 about y ' axis

    O y z

    x

    A3

    A2

    A1

    y

    yO30

    B

    K

    B1

    20 Q2

    Q1

    P1P2

    QP

    A3_2 A3_1

    A3_0

    20

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    z 20

    - Transverse Righting Moment

    ,k A y M y dy dz

    =

    _ _ _ ( )c k i k i y A x = _ ( )c k k y A x =

    of Buoyancy of Ship with Various Station Shape

    _3 _ c i y _ 3_ c i z

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    < Section A 3 >

    49/124

    Example) Calculation of Center

  • 7/28/2019 06 Transverse Righting Moment

    50/124

    2009 Fall, Ship Stability SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    )

    Calculate 1st

    moment of area in order to know centroid of section A 2 with respect to body fixed frame

    Area Area*y'c_2_i Area*z' c_2_i A3_0 200.00 0.00 -5.00 0.00 -1000.00 A3_1 -28.87 -6.67 -1.92 192.45 55.56 A3_2 28.87 6.67 1.92 192.45 55.56Sum 200.00 384.90 -888.89

    -A2, - A2 : A2 1

    Centroid of section A 2 with respect to body fixed frame is calculated as follows

    ( )3 32 2

    , , _ 2 _ 2

    384.90 888.89( , ) , , 1.92, 4.44

    200 200 A y A z

    c c A A

    M M y z

    Area Area = = =

    y'

    z'

    y

    z

    A2_2 A2_1

    A2_0

    2 , A y M

    : 1st moment of area of section A 2 about z ' axis

    2 , A z M

    : 1st moment of area of section A 2 about y ' axis

    O y z

    x

    A3

    A2

    A1

    20

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    of Buoyancy of Ship with Various Station Shape

    2 , A y M

    2, A z M

    _ 2 _ c i y _ 2_ c i z

    ,k A y M y dy dz

    =

    _ _ _ ( )c k i k i y A x = _ ( )c k k y A x =

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    < Section A 2 >

    50/124

    zExample) Calculation of Center of Buoyancy of Ship

  • 7/28/2019 06 Transverse Righting Moment

    51/124

    2009 Fall, Ship Stability SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    )

    Coordinate of R 1, S1 is known as (-7.5,0), (7.5,0) by geometric shape.

    Coordinate of R 1, R 2, S1, S2 of section A 1O y z

    x

    A3

    A2

    A1

    Calculate equations of straight line RR 3, SS 3 in order to know R 2,S2

    The equation of straight line RR 3 4 30 z y =

    The equation of straight line SS 3 4 30 z y =

    The equation of line of waterplane with respect to body fixed frame is asfollows, because waterplane is inclined through an angle of 30 .tan 30 0.5774 z y y = =

    Intersection point R 3,S3 between waterplane and straight line RR 3, SS 3 can be calculated as followsP2(-6.55,-3.78), Q 2(8.77,5.06)

    z

    y

    y

    z

    O30

    B

    K

    B1

    20

    20

    SR

    S2

    S1

    R 1

    R 2

    R 3 S3

    10

    20

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    with Various Station Shape

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    < Section A 1 >

    51/124

    zExample) Calculation of Center of Buoyancy of Ship

  • 7/28/2019 06 Transverse Righting Moment

    52/124

    2009 Fall, Ship Stability SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    ) - A1 : Sectional area of section A 1

    A1_2 A1_1

    A1_0

    1_ 0 0.5 (15 10) 10 125 A = + =

    1_1 1 2

    1( ) ( )

    2

    0 7.5 0

    0 6.55 3.7814.19

    A =

    =

    =

    P O P O

    i j k

    1_ 2 1 2

    1( ) ( )

    2

    0 7.5 0

    0 8.77 5.0618.98

    A =

    =

    =

    Q O Q O

    i j k

    1 125 14.19 18.98 129.79 A = + =If a ship is not a wall sided ship,area below waterplane is different.

    P2(-6.55,-3.78), Q 2(8.77,5.06)P1(-7.5,0), Q 1(7.5,0)

    O y z

    x

    A3

    A2

    A1

    z

    y

    y

    z

    O30

    B

    K

    B1

    20

    20

    SR

    S2

    S1

    R 1

    R 2

    R 3 S3

    10

    20

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    _

    ( )

    ( )

    k

    k ii

    A x dAdy dz

    A x

    = ==

    with Various Station Shape

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    < Section A 1 >

    Total sectional area before heel

    Changed area after heel

    Total sectional area after heel

    52/124

    OzExample) Calculation of Center of Buoyancy of Ship

  • 7/28/2019 06 Transverse Righting Moment

    53/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    ) Centroid of section A 1

    3_ 0 (15 10) ( 5) (0.5 2.5 10) 10 (2 / 3)Cetroid of (0, )125(0, 4.67)

    A + =

    =

    3_10 7.5 6.55 0 0 3.78Cetroid of ( , )

    3 3( 4.68, 1.26)

    A + =

    =

    3_ 20 7.5 8.77 0 0 5.06Cetroid of ( , )

    3 3(5.42, 1.69)

    A+ + + +=

    =

    P2(-6.55,-3.78), Q 2(8.77,5.06)P1(-7.5,0), Q 1(7.5,0)

    A1_2 A1_1

    A1_0

    O y z

    x

    A3

    A2

    A1

    z

    y

    y

    z

    O30

    B

    K

    B1

    20

    20

    SR

    S2

    S1

    R 1

    R 2

    R 3 S3

    10

    20

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    with Various Station Shape

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    < Section A 1 >

    53/124

    Oz

    Example) Calculation of Center

  • 7/28/2019 06 Transverse Righting Moment

    54/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Calculate 1 st moment of area in order to know centroid of section A 1 with respect to body fixed frame

    Area Area*y'c_1_iArea*z'c_1_i A1_0 125.00 0.00 -4.67 0.00 -583.34 A1_1 14.19 -4.68 -1.26 -66.48 -17.90 A1_2 18.98 5.42 1.69 102.90 32.02

    - + 129.79 169.38 -533.42

    - A1 : 1st moment of area of section A 1

    Centroid of section A 1 with respect to body fixed frame is calculated as follows

    1 , A y M

    : 1st moment of area of section A 1 about z ' axis 1 , A z

    M

    : 1st moment of area of section A 1 about y ' axis

    )

    A1_2 A1_1

    A1_0

    O y z

    x

    A3

    A2

    A1

    z

    y

    y

    z

    O30

    B

    K

    B1

    20

    20

    SR

    S2

    S1

    R 1

    R 2

    R 3 S3

    10

    20

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    , A y M y dy dz

    =

    _ ( )c i i y A x = ( )c y A x =

    of Buoyancy of Ship with Various Station Shape

    1 , A y M 1, A z M

    _1_ c i y _1_ c i z

    ( )

    1 1

    1 1

    , , _1 _1( , ) ,

    169.38 533.42, 1.31, 4.11

    129.79 129.79

    A y A zc c

    A A

    M M y z

    Area Area =

    = =

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    < Section A 1 >

    54/124

    Example) Calculation of Center of Buoyancy of Ship

    O yz

  • 7/28/2019 06 Transverse Righting Moment

    55/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    with Various Station Shape

    )

    Area of this curve Volume( )

    Displacement volume can be calculated by

    integral of sectional area in longitudinal direction50

    0( ) 7,304 A x dx = =

    Displacement Volume

    x' 0

    Area

    A1 A2 A3

    54.55

    200

    127.79

    25 50

    ' Adx =

    O y z

    x

    A3

    A2

    A1

    20

    CL

    y

    z

    20

    10

    O y z

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    dV dx dy dz = = dz dy dx =

    .

    .( )

    F P

    A P A x dx =

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    55/124

    Example) Calculation of Center of Buoyancy of Ship

    O y z

  • 7/28/2019 06 Transverse Righting Moment

    56/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    with Various Station Shape

    )

    Area of this curve Transverse moment

    of volume

    x'

    169.38

    25 50

    384.9

    57.26

    0After calculation of each transverse moment of sectional area about the z ' axis( M A,y' ), transverse moment of displaced volume can be calculated byintegral of transverse moment of section area over the length of ship

    , A y M

    -1 : Transverse moment of displaced volume

    50

    , ,012,455 y A y M M dx = =, A yM : Transverse moment of area about z ' axis

    , A z M

    : Vertical moment of area about y ' axis

    1 , A y M

    2 , A y M

    3 , A y M

    , ' , ' ' y A y M M dx=

    O y z

    x

    A3

    A2

    A1

    20

    CL

    y

    z

    20

    10

    O y

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    y dy dz dx = , y M .

    .( ( ))

    F P

    c A P y A x dx =

    ,c y=

    (Body fixed frame)

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    56/124

    Example) Calculation of Center of Buoyancy of Ship

    O y z

  • 7/28/2019 06 Transverse Righting Moment

    57/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    with Various Station Shape

    )-2 : Vertical moment of displaced volume

    , A z M

    Area of this curve Vertical moment

    of volume

    After calculation of each vertical moment of sectional area about the yaxis( M A,z), vertical moment of displaced volume can be calculated byintegral of vertical moment of section area over the length of ship

    50

    , ,030,794 z A z M M dx = =

    x'

    -148.76

    -888.89

    -533.42

    25 50

    1 , A z M

    2 , A z M

    3 , A z M

    , ' , ' ' z A z M M dx=

    O y z

    x

    A3

    A2

    A1

    20

    CL

    y

    z

    20

    10

    O y

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    , z M z dy dz dx = .

    .( ( ))

    F P

    c A P z A x dx =

    ,c z=

    (Body fixed frame)

    0

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    , A yM

    : Transverse moment of area about z ' axis

    , A z M

    : Vertical moment of area about y ' axis

    57/124

    Example) Calculation of Center of Buoyancy of Shiph h O y

    z

  • 7/28/2019 06 Transverse Righting Moment

    58/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    with Various Station Shape

    )Center of buoyancy (Body fixed frame)

    Center of buoyancy can be calculated if we divide transverse, vertical moment of displaced volume by displaced volume.

    ( )

    , ' , ', ,( , ) ,

    12, 455 30,794, 1.71, 4.21

    7,304 7,304

    y zc c

    M M y z TCB VCB

    = = = = =

    20

    CL

    y

    z

    20

    10

    O y

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    y dy dz dx

    dx dy dz

    =

    ,c

    y , y M =

    ,c z , z M

    =

    z dy dz dx

    dx dy dz

    = Center of buoyancy with respect to waterplane fixed frame have

    to be calculated. Rotational transformation

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    58/124

    Example) Calculation of Center of Buoyancy of Shipi h V i S i Sh O y

    z

  • 7/28/2019 06 Transverse Righting Moment

    59/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    with Various Station Shape

    )

    20

    CL

    y

    z

    20

    10

    O y

    x

    10

    10

    20 20

    10

    - Transverse Righting Moment

    Center of buoyancy (Waterplane fixed frame)

    ,

    ,

    cos sin 1.71sin cos 4.21

    cos(30) sin(30) 1.71 0.63sin(30) cos(30) 4.21 4.50

    c

    c

    y

    z

    =

    = =

    , ,

    , ,

    cos sinsin cos

    c c

    c c

    y y

    z z

    =

    Center of buoyancy with respect to waterplane fixed frame have to be calculated. Rotational transformation

    Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel( ) : -30 Find : Center of buoyancy ( y , c , z , c ) after heel in waterplane fixed frame

    Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When thisship is heeled about x axis in counter-clock wise through an angle of 30 compulsorily ,calculate y and z coordinates of center of buoyancy with respect to waterplane fixedframe.

    59/124

  • 7/28/2019 06 Transverse Righting Moment

    60/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    N a v a

    l A r c

    h i t e c t u r e

    & O c e a n

    E n g

    i n e e r i n g

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    Ch.6 Transverse Righting Moment- Sec.2 Calculating BM, GZ in Wall Sided Ship -

    2009

    Prof. Kyu-Yeul Lee

    Department of Naval Architecture and Ocean Engineering,Seoul National University

    - Ship Stability -

    - Transverse Righting Moment

  • 7/28/2019 06 Transverse Righting Moment

    61/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    Sec.1 Calculation of Center of BuoyancySec.2 Calculation of BM, GZ in Wall Sided ShipSec.3 Inclining TestSec.4 Transverse Stability of ship (Unstable condition)Sec.5 Transverse Righting Moment due to Movement of CargoSec.6 Calculation of Heeling Angle due to Shift of Center of Mass

    61/124

    Transverse Righting Moment

    Righting Moment : Moment toreturn the ship to the upright floating

  • 7/28/2019 06 Transverse Righting Moment

    62/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    Transverse Righting Moment

    Z

    K

    z

    O,O'

    y

    z

    )(+

    CL

    y

    z M

    righting

    e

    G

    FG

    B B1

    N

    FB

    1 B y

    G y

    - Overview of Ship Stability

    O'x'y'z' : Body fixed frameOxyz : Waterplane fixed frame

    return the ship to the upright floatingposition (Righting moment, Momentof statical stability))

    BGZ F = i Transverse Righting moment

    1( )righting G B B y y F = + i

    Righting arm

    Righting Arm ( GZ )

    1G BGZ y y= +

    From direct calculation

    We should know yG , y B1 in waterplane fixed frame

    From geometrical figure withassumption that M does not changewithin small angle of heel (about 10 )

    sinGZ GM =

    GM is related to below equation bygeometrical figure

    GM KB BM KG= +

    x,x'

    G: Center of mass B: Center of buoyancy B1: Changed center of buoyancyK : Keel F G : Weight of ship F B : Buoyant force acting on ship

    Z : The intersection of the line of buoyant force through B1 with the transverse linethrough G

    M : The intersection of the line of buoyant force through B1 with the centerline of the ship

    BM KB : Vertical center

    of buoyancy BM : Transverse Metacenter Radius

    KG : Vertical center of mass of shipis determined by the shape of ship

    ,KB BM KG is determined by loading condition of cargo

    restoring BGZ F = sinGZ GM =

    GM KB BM KG= + BM

    62/124

    Calculation of BM (1)(BM T M i R di )

  • 7/28/2019 06 Transverse Righting Moment

    63/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability - Transverse Righting Moment M : The intersection of the line of buoyant force through B1 with the centerline of the ship B2: The intersection of the line of buoyant force through B1 with the transverse line through B

    M

    Z

    B

    G

    z

    y

    z

    K CL

    B1=

    == yW 2

    W 1

    L2

    L1

    g1g

    B2

    restoring

    F B

    (BM : Transverse Metacentric Radius)

    yv,c

    O'x'y'z' : Body fixed frameOxyz : Waterplane fixed frame

    B1: Changed center of buoyancy

    y

    z( )+ j

    k

    Z : The intersection of the line of buoyant forcethrough B1 with the transverse line throughG

    G: Center of mass B: Center of buoyancyF G : Weight of ship (=W )F B : Buoyancy (= g )

    Wall sided ship: When a ship is in upright position, aship which have perpendicular side shellto waterplane is called wall sided ship .

    Assumption

    1. Wall sided ship Submerged volume is same with

    emerged volume when the ship is

    heeled. ( A ship is heel without changeof displacement volume )

    2. A main deck is not flooded.

    3. Center of rotation is not changed.

    ( M is not changed)

    F G

    Lets derive BM in case of simple section likea wall sided ship.

    O,O' x,x'

    63/124

    Calculation of BM (2)(BM T M i R di )

  • 7/28/2019 06 Transverse Righting Moment

    64/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.2009 Fall, Ship Stability

    M

    Z

    B

    G

    z

    y

    z

    K CL

    B1=

    == yW 2

    W 1

    L2

    L1

    g1g

    B2

    restoring

    F B

    (BM : Transverse Metacentric Radius)

    yv,c

    Relation between moving distance of centerof changed displacement volume andmoving distance of center of center of buoyancy is as follows.

    y

    z( )+ j

    k

    - Transverse Righting Moment

    1 1g v

    BB ggg

    =

    1 12v

    BB Og=

    The shape of displacement volume is

    changed as a ship is heeled.

    F G

    : Displacement volumev : Changed displacement volume

    BB1: Moving distance of center of buoyancy

    gg 1 : Moving distance of center of changed displacement volume

    1 1g BB g v gg =

    1 1( 2 )gg Og=

    M : The intersection of the line of buoyant force through B1 with the centerline of the ship B2: The intersection of the line of buoyant force through B1 with the transverse line through B

    O'x'y'z' : Body fixed frameOxyz : Waterplane fixed frame

    B1: Changed center of buoyancy

    Z : The intersection of the line of buoyant forcethrough B1 with the transverse line throughG

    G: Center of mass B: Center of buoyancyF G : Weight of ship (=W )F B : Buoyancy (= g )

    O,O' x,x'

    64/124

  • 7/28/2019 06 Transverse Righting Moment

    65/124

    dz dy dx = dV = ( ) A x dA dy dz = = 2 ,2 v c BB v y=

    Calculation of BM (4)(BM T M t t i R di )

  • 7/28/2019 06 Transverse Righting Moment

    66/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    (R.H.S)

    - Transverse Righting Moment

    ,2

    v cv y

    : y coordinate of center of changed displacement volume

    : Changed displacement volume

    : Displacement volume

    ,v c yv

    .

    .( )

    F P

    A P A x dx =

    , ,

    , ,

    cos sinsin cos

    v c v c

    v c v c

    y y

    z z

    =

    , , ,cos sinv c v c v c y y z =

    Represent center of buoyancy with respect to waterplanefixed frame as one with respect to body fixed frame., ,( , )v c v c y z

    , ,co si2

    s n( )v c v c y zv =

    , ,

    2 2cos sinv c v cv y v z =

    Transverse moment of volume withrespect to body fixed frame.

    Vertical moment of volume withrespect to body fixed frame.

    y

    yg1

    L1

    L2

    z z

    ,cos

    v c y

    , sinv c z ,v c y

    (BM : Transverse Metacentric Radius)

    O,O'

    x, x'

    66/124

    dz dy dx = dV = ( ) A x dA dy dz = =

    Calculation of BM (5)(BM T M t t i R di )

    2 ,2 v c BB v y=

  • 7/28/2019 06 Transverse Righting Moment

    67/124

    2009 Fall, Ship Stability

    SDAL@Advanced Ship Design Automation Lab.http://asdal.snu.ac.kr Seoul National Univ.

    (R.H.S)

    ,2

    v cv y

    .

    .( )

    F P

    A P A x dx =

    , ,

    2 2cos sinv c v cv y v z =

    Transverse moment of volumewith respect to body fixed frame.

    Vertical moment of volume withrespect to body fixed frame.


Recommended