+ All Categories
Home > Documents > 06_InfluenceLineMax

06_InfluenceLineMax

Date post: 05-Apr-2018
Category:
Upload: ahmedgamal2011
View: 213 times
Download: 0 times
Share this document with a friend

of 49

Transcript
  • 7/31/2019 06_InfluenceLineMax

    1/49

    120

    Maximum Influence at a Point Due to a Series of Concentrated Loads

    F2

    x1 x2

    F1

    F3

    x

    MC

    ab/L

    VC

    x

    (b/L)

    (-a/L)

    AB

    Ca b

  • 7/31/2019 06_InfluenceLineMax

    2/49

    121

    AB

    Ca b

    x

    MC

    ab/L

    F2

    x1 x2

    F1

    F3

    '3V

    '2V

    '3M'2M

    VC

    x

    (b/L)

    (-a/L)

    )()()/()'( '33'221 VFVFLbFVCR ++=

    )()()/()'( '33'221 VFVFLaFVCL ++=

    )()()/(' '33'221 MFMFLabFM ++=

  • 7/31/2019 06_InfluenceLineMax

    3/49

    122

    AB

    Ca b

    VC

    x

    (b/L)

    (-a/L)

    x

    MC

    ab/L

    F2

    x1 x2

    F1

    F3

    ''1V

    ''1M

    ''3V

    ''3M

    )()/(')'( ''332''11 VFLbFVFVCR ++=

    )()/(')'( ''332''11 VFLaFVFVCL ++=

    )()/('' ''332''11 MFLabFMFM ++=

  • 7/31/2019 06_InfluenceLineMax

    4/49

    123

    AB

    Ca b

    VC

    x

    (b/L)

    (-a/L)

    x

    MC

    ab/L

    F2

    x1 x2

    F1

    F3

    '''2V

    '''2M

    )/('')'( 3''22 LbFVFVCR +=

    )/('')'( 3'''22 LaFVFVCL +=

    )/(''' 3'''22 LabFMFM +=

  • 7/31/2019 06_InfluenceLineMax

    5/49

    124

    VC

    x

    0.75

    -0.25

    4 kN

    1 m 3 m

    1 kN

    6 kN Shear

    AB

    C2 m 6 m

  • 7/31/2019 06_InfluenceLineMax

    6/49

    125

    Case 1

    VC

    x

    0.75

    -0.25

    4 kN

    1 m 3 m

    1 kN

    6 kN

    0.625

    0.25

    (VC)1= 1(0.75) + 4(0.625) + 6(0.25) = 4.75 kN

    AB

    C2 m 6 m

  • 7/31/2019 06_InfluenceLineMax

    7/49

    126

    Case 2

    VC

    x

    0.75

    -0.25

    4 kN

    1 m 3 m

    1 kN

    6 kN

    -0.125

    0.375

    AB

    C2 m 6 m

    (VC)2= 1(-0.125) + 4(0.75) + 6(0.375) = 5.125 kN

    V1-2= 5.125 - 4.75 = 0.375 kN

    (VC)1= 1(0.75) + 4(0.625) + 6(0.25) = 4.75 kN

  • 7/31/2019 06_InfluenceLineMax

    8/49

    127

    Case 3

    VC

    x

    0.75

    -0.25

    4 kN

    1 m 3 m

    1 kN

    6 kN

    (VC)3= 6(0.75) = 4.5 kN

    AB

    C2 m 6 m

    V2-3

    = 4.5 - 5.125 = - 0.625 kN

    (VC)max= (VC)2 = 5.125 kN

    (VC)2= 1(-0.125) + 4(0.75) + 6(0.375) = 5.125 kN

  • 7/31/2019 06_InfluenceLineMax

    9/49

    128

    The critical position of the loads can be determined in a more direct manner by finding

    the change in shear, V, which occurs when the load are moved from Case 1 to Case 2,

    then from Case 2 to Case 3, and so on.If the slope of the influence line iss, then

    (y2 -y1) =s(x2 -x1), and therefore

    V=Ps (x2

    -x1

    )

    Sloping Line

    ----------(6-1)

    If the load moves past a point where there is a discontinuity or jump in the influence

    line, as point C, then the change in shear is simply

    V=P(y2 -y1)

    Jump

    ----------(6-2)

  • 7/31/2019 06_InfluenceLineMax

    10/49

    129

    AB

    C2 m 6 m

    4 kN

    1 m 3 m

    1 kN

    6 kN

    VC

    x

    0.75

    -0.25

    V1-2= 1(-0.25 - 0.75) + 1(1/8)(1) + 4(1/8)(1) + 6(1/8)(1) = 0.375 kN

    (VC)2 = (VC)1 + V1-2 = 4.75 + 0.375 = 5.125 kN

    s = 1/8

    (VC)1= 1(0.75) + 4(0.625) + 6(0.25) = 4.75 kN

  • 7/31/2019 06_InfluenceLineMax

    11/49

    130

    4 kN

    1 m 3 m

    1 kN

    6 kN

    VC

    x

    0.75

    -0.25

    V2-3= 1(1/8)(1) + 4(-0.25-0.75) + 4(1/8)(2) + 6(1/8)(3) = -0.625 kN

    (VC)3 = (VC)2 + V2-3 = 5.125 -0.625 = 4.5 kN

    s = 1/8

    AB

    C2 m 6 m

  • 7/31/2019 06_InfluenceLineMax

    12/49

    131

    4 kN

    1 m 3 m

    1 kN

    6 kN

    Moment

    MC

    x

    (2)(6)/8 = 1.5

    AB

    C2 m 6 m

  • 7/31/2019 06_InfluenceLineMax

    13/49

    132

    Case 1

    MC

    x

    1.5 1.250.5

    (MC)1= 1(1.5) + 4(1.25) + 6(0.5) = 9.5 kNm

    4 kN

    1 m 3 m

    1 kN

    6 kN

    AB

    C2 m 6 m

  • 7/31/2019 06_InfluenceLineMax

    14/49

    133

    Case 2

    MC

    x

    1.5

    (MC)2= 1(0.75) + 4(1.5) + 6(0.75) = 11.25 kNm

    0.75 0.75

    4 kN

    1 m 3 m

    1 kN

    6 kN

    AB

    C2 m 6 m

    M1-2= 11.25 - 9.5 = 1.75 kNm

    (MC)1= 1(1.5) + 4(1.25) + 6(0.5) = 9.5 kNm

  • 7/31/2019 06_InfluenceLineMax

    15/49

    134

    Case 3

    MC

    x

    1.5

    (MC)max = (MC)2 = 11.25 kNm

    4 kN

    1 m 3 m

    1 kN

    6 kN

    AB

    C2 m 6 m

    M2-3= 9 - 11.25 = -2.25 kNm

    (MC)3= 6(1.5) = 9 kNm

  • 7/31/2019 06_InfluenceLineMax

    16/49

    135

    We can also use the foregoing methods to determine the critical position of a series of

    concentrated forces so that they create the largest internal moment at a specific point in

    a structure. Of course, it is first necessary to draw the influence line for the moment at

    the point and determine the slopess of its line segments. For a horizontal movement

    (x2 -x1) of a concentrated forceP, the change in moment, M, is equivalent to the

    magnitude of the force times the change in the influence-line ordinate under the load,

    that is

    M=Ps (x2 -x1)

    Sloping Line----------(6-3)

  • 7/31/2019 06_InfluenceLineMax

    17/49

    136

    MC

    x

    1.5

    4 kN

    1 m 3 m

    1 kN

    6 kN

    AB

    C

    2 m 6 m

    mkNM =++=

    75.1)1)(6

    5.1)(64()1)(

    2

    5.1(121

    mkNMMM CC =+=+= 25.1175.15.9)()( 2112

    (MC)1= 1(1.5) + 4(1.25) + 6(0.5) = 9.5 kNm

  • 7/31/2019 06_InfluenceLineMax

    18/49

    137

    MC

    x

    1.5

    4 kN

    1 m 3 m

    1 kN

    6 kN

    AB

    C

    2 m 6 m

    mkNM =++=

    25.2)3)(

    6

    5.1(6)2)(

    2

    5.1(4)1)(

    2

    5.1(132

    mkNMMM CC ==+= 925.225.11)()( 3223

    (MC)2= 11.25 kNm

  • 7/31/2019 06_InfluenceLineMax

    19/49

    138

    Example 6-9

    Determine the maximum shear created at pointB in the beam shown in the figure

    below due to the wheel loads of the moving truck.

    4 kN9 kN 15 kN 10 kN

    1 m 2 m 2 m

    AC

    B

    4 m 4 m

  • 7/31/2019 06_InfluenceLineMax

    20/49

    139

    AC

    B

    4 m 4 m

    SOLUTION

    -0.5

    0.5VB

    x

    4 kN

    9 kN 15 kN 10 kN

    1 m 2 m 2 m

    VBR= 4(0.5) + 9(0.375) + 15(0.125) = 7.25 kN

    0.1250.375

    VBL= 4(-0.5) + 9(0.375) + 15(0.125) = 3.25 kN

    Case 1

  • 7/31/2019 06_InfluenceLineMax

    21/49

    140

    -0.5

    0.5VB

    x

    4 kN

    9 kN 15 kN 10 kN

    1 m 2 m 2 m

    -0.375

    0.25

    VBR= 4(-0.375) + 9(0.5) + 15(0.25) + 10(0) = 6.75 kN

    VBL= 4(-0.375) + 9(-0.5) + 15(0.25) + 10(0) = -2.25 kN

    Case 2

    AC

    B

    4 m 4 m

  • 7/31/2019 06_InfluenceLineMax

    22/49

    141

    -0.5

    0.5VB

    x

    4 kN

    9 kN 15 kN 10 kN

    1 m 2 m 2 m

    0.25

    -0.25-0.125

    VBR= 4(-0.125) + 9(-0.25) + 15(0.5) + 10(0.25) = 7.25 kN

    VBL= 4(-0.125) + 9(-0.25) + 15(-0.5) + 10(0.25) = -7.75 kN

    Case 3

    AC

    B

    4 m 4 m

  • 7/31/2019 06_InfluenceLineMax

    23/49

    142

    -0.5

    0.5VB

    x

    4 kN

    9 kN 15 kN 10 kN

    1 m 2 m 2 m

    -0.25

    VBR= 9(0) + 15(-0.25) + 10(0.5) = 1.25 kN

    VBL= 9(0) + 15(-0.25) + 10(-0.5) = -8.75 kN

    The maximum shearcreated at pointB is -8.75 kN

    Case 4

    AC

    B

    4 m 4 m

  • 7/31/2019 06_InfluenceLineMax

    24/49

    143

    Example 6-10

    Determine the maximum positive moment and negative moment created at point

    B in the beam shown in the figure below due to the wheel loads of the crane.

    A C

    B

    2 m 2 m3 m

    3 kN8 kN4 kN

    2 m3 m

  • 7/31/2019 06_InfluenceLineMax

    25/49

    144

    x

    MB 2(3)/5 = 1.2

    -0.8

    A CB

    2 m 2 m3 m

    3 kN

    8 kN4 kN

    2 m3 m

    SOLUTION

    MB = 3(1.2) + 8(0) = 3.6 kNm

    Positive moment

    CASE I

  • 7/31/2019 06_InfluenceLineMax

    26/49

    145

    A CB

    2 m 2 m3 m

    3 kN

    8 kN4 kN

    2 m3 m

    x

    MB 1.2

    -0.8

    MB = 8(1.2) + 3(0.4) = 10.8 kNm

    0.4

    CASE II

  • 7/31/2019 06_InfluenceLineMax

    27/49

    146

    A CB

    2 m 2 m3 m

    3 kN

    8 kN4 kN

    2 m3 m

    x

    MB 1.2

    -0.8

    MB = 4(1.2) + 8(0) + 3(-0.8) = 2.4 kNm

    The maximum positive momentcreated at pointB is 10.8 kNm

    CASE III

  • 7/31/2019 06_InfluenceLineMax

    28/49

    147

    A CB

    2 m 2 m3 m

    3 kN

    8 kN4 kN

    2 m3 m

    x

    MB 1.2

    -0.8

    MB = 8(-0.8) + 4(0.4) = -4.8 kNm

    Negative moment

    0.4

    CASE I

  • 7/31/2019 06_InfluenceLineMax

    29/49

    148

    3 kN

    8 kN4 kN

    2 m3 m

    x

    MB 1.2

    -0.8

    MB = 4(-0.8) = -3.2 kNm

    A CB

    2 m 2 m3 m

    The maximum negative momentcreated at pointB is - 4.8 kNm

    CASE II

  • 7/31/2019 06_InfluenceLineMax

    30/49

    149

    Absolute Maximum Shear and Moment

    L

    CL

    L/2 L/2

    FR

    x

    F1 F2 F3

    d1 d2

    2'x

    xx '

    A B

    Ay By

    )]'(2

    )[(1:0 xxLFL

    AM RyB ==

  • 7/31/2019 06_InfluenceLineMax

    31/49

    150

    A

    (L/2 -x)

    F1d1

    V2

    M2

    )]'(2

    )[(1

    xxL

    FL

    A Ry =

    For maximumM2 we require

    2

    L

    CL

    L/2 L/2

    x

    F1

    F2

    F3

    d1 d2

    2

    'x

    xx '

    A B

    Ay By

    FR

    1122 )2

    (:0 dFxLAMM y ==

    11)2

    )]('(2

    )[(1

    dFxL

    xxL

    FL

    R =

    11

    2

    2

    '

    2

    '

    4dF

    L

    xxF

    L

    xFxFLFM RRRR +=

    0'22=+=

    L

    xF

    L

    xF

    dx

    dM RR

    2'xx =

  • 7/31/2019 06_InfluenceLineMax

    32/49

    151

    L

    A B

    CL

    L/2 L/2

    F1 F2 F3

    x1 x2

    xx 2

    FR

    x

    xx +1

  • 7/31/2019 06_InfluenceLineMax

    33/49

    152

    FR

    F1 F2 F3

    x1 x2

    b

    b

    2

    x

    FR

    F1 F2 F3

    x1 x2

    b

    b

    2

    x

    a b

    M x

    ''2/ MLab =

    ''3M''1M

    ''33''22''111 MFMFMFMS ++=

    L

    A B

    CL

  • 7/31/2019 06_InfluenceLineMax

    34/49

    153

    FR

    F1 F2 F3

    x1 x2

    a

    a

    2

    2 xx

    a b

    '''33'''22'''112 MFMFMFMS ++=

    M x

    '''3/ MLab =

    The absolute maximum momentis comparison by MS1and MS2.

    '''1M'''2M

    L

    A B

    CL

  • 7/31/2019 06_InfluenceLineMax

    35/49

    154

    1200 kg 400 kg

    8 m

    Example 6-11

    Determine the absolute maximum moment on the simply supported beam cased

    by the wheel loads.

    30 m

    AB

  • 7/31/2019 06_InfluenceLineMax

    36/49

    155

    CL

    15 m 15 m

    M@1200 kg = 0 :

    )8(400)0(12001600 +=x

    mx 2=

    AB

    b

    b

    3 m 3 m

    1600 kg

    1200 kg 400 kg

    6 mmx 2=

  • 7/31/2019 06_InfluenceLineMax

    37/49

    156

    CL

    MS = (1200)(7.47) + (400)(3.74)

    = 10 460 kgm

    14 m 16 m

    M1200x

    (14)(16)/30 = 7.47

    3.74

    + MB= 0:Global:

    Ay= 746.67 kg

    1600 kg

    1200 kg 400 kg

    6 m2 m

    a

    a

    1 m

    1 m

    1

    A

    14 m

    1

    Ay= 746.7 kg

    V1

    M1

    + M1= 0:

    M1= 10 460 kgm

    Or using equilibrium conditions:

    AB

    0)30()14(1600 = yA

    CL

  • 7/31/2019 06_InfluenceLineMax

    38/49

    157

    CL

    MS = (1200)(4) + (400)(7.2) = 7680 kgm

    By comparison, Mmax = 10 460 kgm

    M400

    (18)(12)/30 = 7.2

    x

    4

    18 m 12 m

    b

    b

    3 m 3 m

    1600 kg

    1200 kg 400 kg

    6 m2 m

    AB

  • 7/31/2019 06_InfluenceLineMax

    39/49

    158

    4.6 T 8.2T 8.2T

    4.2 m 1.2 m

    Example 6-12

    Determine the absolute maximum moment and maximum shear on the simply

    supported beam cased by the wheel loads.

    20 m

    AB

    F 21 T

  • 7/31/2019 06_InfluenceLineMax

    40/49

    159

    4.6 T 8.2T 8.2T

    4.2 m 1.2 m

    M@ 4.6 T = 0 :

    )4.5(2.8)2.4(2.8)0(6.421 ++=x

    mx 75.3=

    FR=21 T

    x

    45.02.4 =x

    20 m

    AB

    Absolute maximum moment

    F =21 T

    CL

  • 7/31/2019 06_InfluenceLineMax

    41/49

    160

    AB

    4.6 T 8.2T 8.2T

    FR=21 T

    4.2 m 1.2 m

    1.875 m10 m 10 m

    M4.6T x

    a = 8.125 m b = 11.875 m

    4.82

    3.12 2.63

    MS = (4.6)(4.82) + (8.2)(3.12) = 69.32 Tm+ (8.2)(2.63)

    FR=21 T

  • 7/31/2019 06_InfluenceLineMax

    42/49

    161

    4.6 T 8.2T 8.2T

    4.2 m 1.2 m

    0.225 m

    CL

    10 m 10 m

    M8.2T x

    a = 10.225 m b = 9.775 m

    52.95 4.39

    MS = (4.6)(2.95) + (8.2)(5) = 90.57 Tm+ (8.2)(4.39)

    By comparison, Mmax = 90.57 Tm

    + MB= 0:0)20()225.10(21 = yA

    Global:

    Ay= 10.74 T

    Or using equilibrium conditions:2

    + M2= 0:

    M2= 90.50 Tm

    A

    10.225 m2

    Ay= 10.74 T

    V2

    M2

    4.6 T

    4.2 m

    AB

    Ab l t i h

  • 7/31/2019 06_InfluenceLineMax

    43/49

    162

    20 m

    A B

    Absolute maximum shear

    4.6 T 8.2T 8.2T

    4.2 m 1.2 m

    (Vmax)1 = 4.6(0.73) + 8.2(0.94) + 8.2(1.0) = 19.27 T

    xVB

    10.940.73

  • 7/31/2019 06_InfluenceLineMax

    44/49

    163

    20 m

    A B

    xVA

    1

    4.6 T 8.2T 8.2T

    4.2 m 1.2 m

    0.79 0.73

    (Vmax)2 = 4.6(1) + 8.2(0.79) + 8.2(0.73) = 17.06 T

  • 7/31/2019 06_InfluenceLineMax

    45/49

    164

    20 m

    A B

    xVA

    1

    4.6 T 8.2T 8.2T

    4.2 m 1.2 m

    0.94

    (Vmax)3 = 8.2(1.0) + 8.2(0.94) = 15.91 T

    By comparison, Vmax

    = 19.27 T

  • 7/31/2019 06_InfluenceLineMax

    46/49

    165

    Example 6-13

    Determine the absolute maximum moment on the simply supported beam cased

    by the wheel loads.

    4 kN9 kN

    15 kN 10 kN

    1 m 2 m 2 m

    AB

    8 m

    SOLUTION 9 kNFR=38 kN

  • 7/31/2019 06_InfluenceLineMax

    47/49

    166

    SOLUTION

    M@ 4 kN = 0 :

    4 kN

    9 kN 15 kN 10 kN

    1 m 2 m 2 m

    x

    1.74 m 0.26 m

    AB

    8 m

    )5(10)3(15)1(9)0(438 +++=x

    mx 74.2=

    9 kN k k

    FR=38 kNCL

  • 7/31/2019 06_InfluenceLineMax

    48/49

    167

    a = 3.13 m b = 4.87 m

    x

    M9 kN (3.13)(4.87)/8 = 1.91

    1.130.34

    1.30

    MS = 4(1.30) + 9(1.91) + 15(1.13) + 10(0.34) = 42.74 kNm

    4 kN

    9 kN 15 kN 10 kN

    1 m 2 m 2 m

    0.87 0.87

    AB

    4 m 4 m

    F9 kN 15 kN 10 kN

    CL

  • 7/31/2019 06_InfluenceLineMax

    49/49

    168

    FR

    0.13 m4 kN

    9 kN 15 kN 10 kN

    1 m 2 m 2 m

    0.13 m

    a = 4.13 m b = 3.87 m

    x

    M15 kN (4.13)(3.87)/8 = 2.01.03

    0.55 0.97

    MS = 4(0.55) + 9(1.03) + 15(2.0) + 10(0.97) = 51.17 kNm

    By comparison, Mmax

    = 51.17 kNm

    3

    + MA= 0:Global:

    By= 18.38 kN

    Or using equilibrium conditions:

    B2 m

    15 kN 10 kN

    3

    18.38 kN

    3.87 mV3

    M3

    + M3= 0:

    -M3 -10(2) + 18.38(3.87) = 0

    M3= 51.13 kNm

    AB

    4 m 4 m 0)8()87.3(38 =+ yB