+ All Categories
Home > Documents > 07 RN31547EN10GLA0 Capacity Dimensioning

07 RN31547EN10GLA0 Capacity Dimensioning

Date post: 19-Jul-2016
Category:
Upload: yousuf-shaikh
View: 25 times
Download: 4 times
Share this document with a friend
Description:
UMTS Capacity Dimensioning
97
For internal use 1 © NSN Siemens Networks RN31547EN10GLK0 Capacity Dimensioning 3GRPESS – MODULE 6
Transcript
Page 1: 07 RN31547EN10GLA0 Capacity Dimensioning

For internal use1 © NSN Siemens Networks RN31547EN10GLK0

Capacity Dimensioning3GRPESS – MODULE 6

Page 2: 07 RN31547EN10GLA0 Capacity Dimensioning

2 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module 6 – Capacity Dimensioning

Objectives

After this module the participant shall be able to:-

• Understand basic traffic modeling

• Calculate air interface capacity and load

• Calculate BTS processing capacity and load

Page 3: 07 RN31547EN10GLA0 Capacity Dimensioning

3 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Air interface dimensioning– DCH load calculation– HSDPA capacity– HSUPA capacity

• BTS HW capacity dimensioning– Flexi WCDMA BTS capacity– CCCH dimensioning– DCH (R99) dimensioning– HSDPA Dimensioning– HSUPA Dimensioning– Flexi BTS Example– Ultrasite HW capacity

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Rad

io n

etw

ork

Acc

ess

netw

ork

Page 4: 07 RN31547EN10GLA0 Capacity Dimensioning

4 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Analytical air interface load calculation

• BTS HW capacity dimensioning

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Rad

io n

etw

ork

Acc

ess

netw

ork

Page 5: 07 RN31547EN10GLA0 Capacity Dimensioning

5 © NSN Siemens Networks RN31547EN10GLK0For internal use

Traffic estimation

• The traffic estimation requires information related to the network topology, subscribers and traffic

– Cell area from coverage dimensioning– Subscriber density from marketing– Subscriber traffic profile from marketing

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Subs densityCell area Traffic / subscriber

Traffic / cell

Traffic / site

Page 6: 07 RN31547EN10GLA0 Capacity Dimensioning

6 © NSN Siemens Networks RN31547EN10GLK0For internal use

Subscriber density

• Operator subscriber density depends on – Population density– Mobile phone penetration– Operator market share

• The subscriber density can be considered quite stable in mature markets

– Mobile phone penetration close to 100% for basic services– Major changes possible only when new operators come to the market

or with aggressive marketing campaigns

• In developing markets fast changes in mobile phone penetration and operator market share

Page 7: 07 RN31547EN10GLA0 Capacity Dimensioning

7 © NSN Siemens Networks RN31547EN10GLK0For internal use

Traffic information

• The subscriber density and user traffic profile are the main requirements for capacity dimensioning

• Traffic forecast should be done by analysing the offered Busy Hour traffic per subscriber for different services in each rollout phase

• Traffic data:– Voice :

▪ Erlang per subscriber during busy hour of the network▪ Codec bit rate, Voice activity

– Video call :▪ Erlang per subscriber during busy hour of the network▪ Service bit rates

– NRT data :▪ Average throughput (kbps) subscriber during busy hour of the network▪ Target bit rates

Page 8: 07 RN31547EN10GLA0 Capacity Dimensioning

8 © NSN Siemens Networks RN31547EN10GLK0For internal use

User traffic profile - Marketing Forecast

• (Average) traffic demand per subscriber in busy hour: 2008/2009 – Speech telephony: 20 – 23 mErl– Video telephony: 2,5 – 3.0 mErl– SMS 0.3– Data services ~ 500 – 900 bps– Source: Mobile Networks:Subscription Tool - Market Compendium Summer 2006 [Subscriber

Number & Speech traffic]

• Marketing data predict “Minutes of use per subscriber per month (MoU)”

• Mapping of MoU values to traffic demand per subscriber in busy hour▪ “High traffic” customer segment: 0.68% of monthly traffic in busy hour

• - Considering 22 days and 15% daily traffic in BH ▪ “Medium traffic” customer segment: 0.5 % of monthly traffic in busy hour

• - Considering 30 days and 15% daily traffic in BH ▪ “Low traffic” customer segment: 0.33% of monthly traffic in busy hour

• - Considering 30 days and 10% daily traffic in BH

Page 9: 07 RN31547EN10GLA0 Capacity Dimensioning

9 © NSN Siemens Networks RN31547EN10GLK0For internal use

3600100060__/____]_[_

Days

ratioionconcentratBHMonthSubscriberperuseofMinutesmErlDemandTraffic

User traffic profile - Speech traffic evolution

Speech traffic evolution

0,005,00

10,0015,0020,00

25,0030,00

35,0040,00

2006 2007 2008 2009 2010 2011

year

mE

rl

High traffic customerMedium traffic customerLow traffic customer

Page 10: 07 RN31547EN10GLA0 Capacity Dimensioning

10 © NSN Siemens Networks RN31547EN10GLK0For internal use

User traffic profile - Video Call traffic evolution

2

2,5

3

3,5

4

2006 2007 2008 2009 2010 2011

[mE

rl]

Page 11: 07 RN31547EN10GLA0 Capacity Dimensioning

11 © NSN Siemens Networks RN31547EN10GLK0For internal use

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

2006 2007 2008 2009 2010 2011

[bps

/sub

scrib

er in

BH

]

High Medium Low

PS data traffic demand [bps] per subscriber in busy hour: 2006 – 2011High – medium – low(includes various PS data applications)

User traffic profile - Data traffic evolution

Page 12: 07 RN31547EN10GLA0 Capacity Dimensioning

12 © NSN Siemens Networks RN31547EN10GLK0For internal use

Example: Traffic estimation

• Cell area: 10 km2

• Planning area: 100 km2 and 10 000 subscribers 100 subs/km2

1000 subs/cell

• User profile▪ Speech traffic: 25 mErl/subs/BH▪ NRT data traffic: DL 750 bps/subs/BH, UL 75 bps/subs/BH

Cell traffic: Speech - 25 Erl/cell/BH, NRT data DL - 750 kbps/cell/BH, NRT data UL - 75 kbps/cell/BH

Page 13: 07 RN31547EN10GLA0 Capacity Dimensioning

13 © NSN Siemens Networks RN31547EN10GLK0For internal use

Traffic model

• Traffic model is used to derive the required capacity from average traffic and service quality requirement

• Real time traffic (speech, video call, video streaming) is commonly modelled with Erlang-B model

– Average traffic (Erlangs)– Blocking probability (%) Required number of traffic channels

• Non-real time traffic (web, email services) can be modelled as average traffic with defined overhead

Page 14: 07 RN31547EN10GLA0 Capacity Dimensioning

14 © NSN Siemens Networks RN31547EN10GLK0For internal use

Erlang-B model

• Erlang-B model is used for system without queuing

• Assumes random call arrival

• Blocking probability can be calculated as

– A = traffic in Erl– N = number of channels

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%5 11 10 10 9 9 9 9 8 8 86 13 12 11 11 10 10 10 9 9 97 14 13 12 12 11 11 11 10 10 108 15 14 14 13 13 12 12 12 11 119 17 15 15 14 14 13 13 13 12 12

10 18 17 16 15 15 14 14 14 13 1311 19 18 17 16 16 15 15 15 14 1412 20 19 18 18 17 17 16 16 15 1513 22 20 19 19 18 18 17 17 16 1614 23 21 21 20 19 19 18 18 17 1715 24 23 22 21 20 20 19 19 18 1816 25 24 23 22 21 21 20 20 19 1917 27 25 24 23 22 22 21 21 20 2018 28 26 25 24 23 23 22 22 21 2119 29 27 26 25 24 24 23 23 22 2220 30 28 27 26 26 25 24 24 23 2321 31 29 28 27 27 26 25 25 24 2422 32 31 29 28 28 27 26 26 25 2523 34 32 30 29 29 28 27 27 26 2624 35 33 32 31 30 29 28 28 27 2725 36 34 33 32 31 30 29 29 28 2826 37 35 34 33 32 31 30 30 29 2927 38 36 35 34 33 32 31 31 30 2928 39 37 36 35 34 33 32 32 31 3029 40 38 37 36 35 34 33 33 32 3130 42 39 38 37 36 35 34 34 33 3231 43 41 39 38 37 36 35 35 34 3332 44 42 40 39 38 37 36 35 35 3433 45 43 41 40 39 38 37 36 36 3534 46 44 42 41 40 39 38 37 37 3635 47 45 43 42 41 40 39 38 38 3736 48 46 44 43 42 41 40 39 39 3837 49 47 45 44 43 42 41 40 40 3938 51 48 46 45 44 43 42 41 40 4039 52 49 47 46 45 44 43 42 41 4140 53 50 48 47 46 45 44 43 42 4241 54 51 50 48 47 46 45 44 43 4342 55 52 51 49 48 47 46 45 44 4343 56 53 52 50 49 48 47 46 45 4444 57 55 53 51 50 49 48 47 46 4545 58 56 54 52 51 50 49 48 47 4646 59 57 55 53 52 51 50 49 48 4747 61 58 56 54 53 52 51 50 49 4848 62 59 57 55 54 53 52 51 50 4949 63 60 58 56 55 54 53 52 51 5050 64 61 59 57 56 55 54 53 52 51

Page 15: 07 RN31547EN10GLA0 Capacity Dimensioning

15 © NSN Siemens Networks RN31547EN10GLK0For internal use

Packet data modelling

• Packet data traffic is a sum of multiple services with different traffic profiles and service quality requirements

– Accurate modelling of packet data traffic requires multiple assumptions and complex simulations

• Practical packet data traffic model utilises average bit rate with fixed overhead for protocol and QoS

– The overhead can assumed to be 27%– This figure includes the L2 re-transmission overhead of 10% and 15%

of buffer headroom to avoid overflow (peak to average load ratio headroom) => (1+0.10) x (1+0.15) = 1.265 => 26.5% overhead

– Required bit rate = (1 + Overhead) * Average bit rate

Page 16: 07 RN31547EN10GLA0 Capacity Dimensioning

16 © NSN Siemens Networks RN31547EN10GLK0For internal use

Example: Traffic models

• Cell traffic: 25 Erl/cell/BH, 750 kbps/cell/BH

• Speech: 25 Erl & 2% blocking 34 traffic channels

• NRT data DL: 750 kbps * (1 + 26%) = 945 kbps

• NRT data UL: 75 kbps * (1 + 26%) = 94.5 kbps

Page 17: 07 RN31547EN10GLA0 Capacity Dimensioning

17 © NSN Siemens Networks RN31547EN10GLK0For internal use

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Module Contents

• Traffic estimate and model

• Air interface dimensioning– DCH load calculation– HSDPA capacity– HSUPA capacity

• BTS HW capacity dimensioning

Rad

io n

etw

ork

Acc

ess

netw

ork

Page 18: 07 RN31547EN10GLA0 Capacity Dimensioning

18 © NSN Siemens Networks RN31547EN10GLK0For internal use

• Cell load calculation is needed in order to estimate the level of air interface load in the cell

• Air interface load depends on service mix, radio propagation conditions, network topology and number of active connections as well as traffic inputs or load estimation

– Service type Bitrate, Eb/N0

– Propagation conditions Eb/N0, Orthogonality– Network topology I_other/I_own (Little i)

Air interface load Link budget

Cell rangeMax.

pathlossCell area

Load/cell• Load estimation• Traffic inputs

Load Calculation – Introduction

Page 19: 07 RN31547EN10GLA0 Capacity Dimensioning

19 © NSN Siemens Networks RN31547EN10GLK0For internal use

Air interface capacity

• WCDMA air interface capacity can be estimated with system simulations and/or analytical load calculations

• System simulations provide a complete system model and possibility to model system specific parameters and network layout

– Complex tools, not feasible to use for dimensioning– Dimensioning can be done with pre-analysed results Limited

possibility to change system parameters

• Analytical models utilise system and environment specific input parameters and simple models

– Simple analysis can be done as part of dimensioning process– Parameters configurable flexible model– Results rely on realistic input parameter values

Page 20: 07 RN31547EN10GLA0 Capacity Dimensioning

20 © NSN Siemens Networks RN31547EN10GLK0For internal use

Uplink load equation for DCH

iaRWNoE

j

jbNj

jjUL *1

//

1

Simplified uplink load equation can be used to evaluate the uplink DCH capacity

Uplink load

Activity factor

Chip rate Bit rate

EbNo requirement

Rise in intercell interference ratio

Intercell interference ratio

• Activity factor for speech must account for DPCCH. 67% for uplink based upon 50 % speech activity

• Rise in intercell interference ratio (power rise) dependant upon average UE speed

• Intercell interference ratio (little i) depends upon the network layout and environment 0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 95 98

loading/%

loss

/dB

Page 21: 07 RN31547EN10GLA0 Capacity Dimensioning

21 © NSN Siemens Networks RN31547EN10GLK0For internal use

UL Little i

• In the real environment we will never have separated cell. Therefore in the load factor calculation the other cell interferences should be taken into account.

• This can be introduced by means of the Little i value, which describes how much two cells overlap (bigger overlapping more inter-cell interferences)

Iown

IotherOWN

OTHER

IIi

Page 22: 07 RN31547EN10GLA0 Capacity Dimensioning

23 © NSN Siemens Networks RN31547EN10GLK0For internal use

• Downlink Load Equation

• Downlink load equation can be used to evaluate the downlink DCH capacity when combined with a link budget

Downlink loadActivity factor

Chip rate Bit rate

EbNo requirement

Orthogonality

Intercell interference ratio

• Activity factor for speech must account for DPCCH. 63% for downlink based upon 50 % speech activity

• Orthogonality dependant upon the propagation channel conditions• Intercell interference ratio (little i) depends upon the network layout and

propagation environment

iRWNoE

OHSHOj

jbNj

jjDL

1//

)_1(1

Soft handover overhead

Downlink load equation for DCH

Page 23: 07 RN31547EN10GLA0 Capacity Dimensioning

25 © NSN Siemens Networks RN31547EN10GLK0For internal use

Other cell to own cell interference and SHO overhead• The level of interference received from neighbouring cell

depends strongly on– Network layout (site locations, antenna directions & sectorisation)– Propagation environment (propagation slope)

• Soft handover overhead is related to the cell coverage overlap and other cell interference level

• Below simulated DL values

Page 24: 07 RN31547EN10GLA0 Capacity Dimensioning

26 © NSN Siemens Networks RN31547EN10GLK0For internal use

Load Calculation Examples

• Load factor for different services has to be calculated separately, total load is then the sum of different services in the cell area

• UL/DL single connection load examples are shown in the table below• For example 50 % UL load means on average 50 speech users or about 9

64 kbits/s users/cell in a 3-sector (1+1+1) configuration

Services UL Fractional Load DL Fractional Load12.2 kbit/s 0,97% 1,00%64 kbits/s 4,80% 6,21%128 kbits/s 8,56% 11,07%384 kbits/s 22,89% 29,59%Total Load 37,22% 47,87%

Page 25: 07 RN31547EN10GLA0 Capacity Dimensioning

27 © NSN Siemens Networks RN31547EN10GLK0For internal use

Total base station DL power – R99 traffic

• Total DL base station transmit power can be a limiting factor in highly loaded cell

DL

CCCHN

jjSERVj

j

jbN

DL

TOTDL

PLRWNE

PP

11

11

,0

• where,

– Lserv is the pathloss of user j. The pathloss is defined as total loss from BTS transmitter to the receiver

– PCCCH is the total common control channel power

Page 26: 07 RN31547EN10GLA0 Capacity Dimensioning

28 © NSN Siemens Networks RN31547EN10GLK0For internal use

Example - Total DL power and load

• Total DL power increases exponentially when the 100% load is approached• Higher common control channel allocation consumes larger part of DL power

– 4 W CCCH & 50% load Total power 10.5 W– 8 W CCCH & 50% load Total power 18.5 W

PtxTotal with different common channel power

4.0 4.3 4.7 5.0 5.4 5.9 6.4 7.0 7.7 8.5 9.4 10.511.8

13.415.4

17.9

21.3

26.0

33.1

8.0 8.5 9.1 9.7 10.311.111.912.914.0

15.316.7

18.520.6

23.1

26.3

30.4

35.9

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

0% 5% 9% 14%

18%

23%

27%

32%

36%

41%

45%

50%

54%

59%

64%

68%

73%

77%

82%

86%

91%

Downlink DCH load

PtxT

otal 4 W

8 W

Page 27: 07 RN31547EN10GLA0 Capacity Dimensioning

29 © NSN Siemens Networks RN31547EN10GLK0For internal use

Example load calculation

• Speech: 34 traffic channels

• NRT data: DL – 945 kbps, UL – 94.5 kbps

– Fractional load of 12.2 AMR speech: Load DL = 34 * 1.0% = 34%, load UL = 34 * 0.97% = 33 %

– Fractional load of NRT data, 128 kbps bearer: Load DL = 750 kbps/128 kbps * 11.07% = 64.9 %, Load UL = 75 kbps/128 kbps * 8.56% = 5.0 %

– Total load DL = 97.9%, total load UL = 38% DL overload!

Page 28: 07 RN31547EN10GLA0 Capacity Dimensioning

30 © NSN Siemens Networks RN31547EN10GLK0For internal use

Example – Capacity analysis

• Speech traffic of 25 Erlangs corresponds average of 25 calls in the cell

– Average speech load: UL – 24%, DL – 25%

• Maximum cell power 20 W with 2 W pilot allows maximum DL load of 74% in the example cell

• In average 49% load margin available for NRT data in DL– 49% / 11.07% * 128 kbps = 566 kbps

• In average 566 kbps available for NRT data

Page 29: 07 RN31547EN10GLA0 Capacity Dimensioning

31 © NSN Siemens Networks RN31547EN10GLK0For internal use

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Module Contents

• Traffic estimate and model

• Air interface dimensioning– DCH load calculation– HSDPA capacity– HSUPA capacity

• BTS HW capacity dimensioning

Rad

io n

etw

ork

Acc

ess

netw

ork

Page 30: 07 RN31547EN10GLA0 Capacity Dimensioning

32 © NSN Siemens Networks RN31547EN10GLK0For internal use

Geometry Factor

Total Transmit

Power

Spreading Factor

Orthogonalityfactor

Transmitted HS-

PDSCH power

GP

PSFSINRtot

PDSCHHS

1116

HSDPA Capacity – Introduction

• HSDPA dimensioning can be done based on – Requirement to achieve minimum HSDPA throughput at cell edge

▪ Determined from link budget analysis, SINR at cell edge

– Requirement to achieve average HSDPA throughput across the cell▪ Determined by SINR distribution analysis

• HSDPA capacity depends on– Available power for HSDPA– Channel conditions– Cell range (pathloss)– Interference level over cell area– HSDPA features

and configuration

Page 31: 07 RN31547EN10GLA0 Capacity Dimensioning

33 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSDPA Capacity – HSDPA power calculation

• When using Dynamic Resource Allocation feature BTS can allocate all unused DL power to HSDPA

– All the power available after DCH traffic, HSUPA control channels and common channels can be used for HSDPA

• HSDPA power is shared dynamically between HS-SCCH and HS-PDSCH

DCHtxCCHWBTS PPPPtxHSDPA _max_

Page 32: 07 RN31547EN10GLA0 Capacity Dimensioning

34 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSDPA Capacity – G-Factor

• The G Factor reflects the distance between the MS and BS antenna thus setting a value for G factor means making assumptions on user location.

• A typical range is from -5dB (Cell Edge) to 20dB• Typical G factor distributions (CDF) coming from NSN

simulation tools as well as operator field experience are represented in the following chart:

-20 -10 0

G -factor [dB]

Cum

ulat

ive

dist

ribut

ion

func

tion

[%]

10 20 30 400

10

20

30

40

50

60

70

80

90

100

M acrocell(W allu )Veh- A /Ped- A

M acrocell(Vodafone)Veh- A /Ped- A

M icrocel l(Vodafone)Ped- A

)11(16 G

PSFSINRP totHSDPA

othernoise

own

IPIG

Page 33: 07 RN31547EN10GLA0 Capacity Dimensioning

35 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSDPA capacity and RAN features

• HSDPA capacity is influenced by capabilities of the network and the UE

– Number of codes (5, 10, 15) Higher peak bit rate in good conditions Higher cell throughput

– Code multiplexing (multiple 5 code UEs can utilise up to 15 codes) Higher spectrum efficiency

5 Codes 10 Codes 15 Codes

1.2 Mbps

1.7 Mbps1.8 Mbps

2.0 Mbps

2.2 MbpsNo code -mux (10/15 code UEs)Code -mux (5 -code UEs)

Cell capability

0

500

1000

1500

2000

2500

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60%

DCH power, % of PA

HSD

PA c

ell t

hrou

ghpu

t

5 codes

15 codes

10 codes

Page 34: 07 RN31547EN10GLA0 Capacity Dimensioning

36 © NSN Siemens Networks RN31547EN10GLK0For internal use

Cell size and HSDPA cell throughput

• Cell size has an effect on HSDPA cell throughput when cell edge pathloss is high (large cell or indoor users)

• Increase of BTS power has only limited effect on cell throughput

0

200

400

600

800

1000

1200

1400

100 105 110 115 120 125 130 135 140 145 150 155 160

Cell edge pathloss, dB

HSD

PA c

ell t

hrou

ghpu

t

DCH load 10%&20W

DCH load 30%&20W

DCH load 50%&20W

DCH load 10%&40W

DCH load 30%&40W

DCH load 50%&40W 5 codes

Page 35: 07 RN31547EN10GLA0 Capacity Dimensioning

37 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSDPA Capacity with DCH load

• DCH power usage influences available HSDPA power and thus HSDPA throughput

– Case 20 W Node B, increasing DCH load lowers the available HSDPA power• HSDPA capacity can be enhanced with optional features

Page 36: 07 RN31547EN10GLA0 Capacity Dimensioning

38 © NSN Siemens Networks RN31547EN10GLK0For internal use

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Module Contents

• Traffic estimate and model

• Air interface dimensioning– DCH load calculation– HSDPA capacity– HSUPA capacity

• BTS HW capacity dimensioning

Rad

io n

etw

ork

Acc

ess

netw

ork

Page 37: 07 RN31547EN10GLA0 Capacity Dimensioning

39 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPA Capacity – HSUPA Cell Throughput

C/I = Eb/No – Processing GainC/I is translated to HSUPA bit rate using the Eb/No look-up table derived from link level simulations

ia

IC

Nj

jjj

UL

1

)/(11

1

1

0

2

4

6

8

10

12

0 20 40 60 80 100

Uplink Load (%)

Incr

ease

in In

terfe

renc

e (d

B)

Example Target Uplink Load

Uplink Load generated by R99 DCH

Uplink Load available for HSUPA UE

Methodology• The uplink load is shared between HSUPA and R99 DCH uplink load• Uplink load is translated to uplink C/I using the uplink load equation• UEs distribution inside the cell impacts on possible C/I thus it also impacts on cell

throughput– By default, each UE is allocated an equal share of UL Load. – The saving in uplink load is re-distributed to the UE closer to the cell

Layer 1 Bit Rate

TTI (ms)

Physical Channel

Eb/No with RxDiv

1920.0 10 2*SF2 0.5

1440.0 10 2*SF2 0.1

384.0 10 1*SF4 0.9

256.0 10 1*SF4 1.1

128.0 10 1*SF8 1.9

Page 38: 07 RN31547EN10GLA0 Capacity Dimensioning

40 © NSN Siemens Networks RN31547EN10GLK0For internal use

• If maximum 80% load is possible through cell and assuming 5 simultaneous users.

• E.g. DCH load 30 % (80%-30%)/5 = 10% per user (equal share assumption)

• Example Eb/Nos are ITU Vehicular-A 30 km/h•

HSUPA Capacity – Example

65.0_ LPowerRiseUULi

Layer 1 Bit Rate

TTI (ms)

Physical Channel

Eb/No with RxDiv

1920.0 10 2*SF2 0.5

1440.0 10 2*SF2 0.1

1024.0 10 2*SF2 0.2

512.0 10 2*SF4 0.6

384.0 10 1*SF4 0.9

256.0 10 1*SF4 1.1

128.0 10 1*SF8 1.9

Page 39: 07 RN31547EN10GLA0 Capacity Dimensioning

41 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Air interface dimensioning

• BTS HW capacity dimensioning

– Flexi WCDMA BTS capacity– CCCH dimensioning– DCH (R99) dimensioning– HSDPA Dimensioning– HSUPA Dimensioning– Flexi BTS Example– Ultrasite HW capacity

Rad

io n

etw

ork

Acc

ess

netw

ork

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Page 40: 07 RN31547EN10GLA0 Capacity Dimensioning

42 © NSN Siemens Networks RN31547EN10GLK0For internal use

Base band processing units – general info

Base band units of Flexi and Ultra BTS product line:• Flexi WCDMA System Module (FSM)

– Used in Flexi Node B– 2 FSMs are allowed in maximum in the NodeB – Consists of FSP cards (Functional Signal Processing unit)– CE (Channel Element) is basic processing capacity unit

• Wideband Signal Processing unit (WSP)– Used in UltraSite and MetroSite NodeB– Max No of WSPs per NodeB depends on its type (18 WSPs in maximum)– CE is basic processing capacity unit

Both base band units provide Rx and Tx channel processing (scrambling and descrambling, interleaving UL/DL, spreading and despreading, channel coding and decoding)

Page 41: 07 RN31547EN10GLA0 Capacity Dimensioning

43 © NSN Siemens Networks RN31547EN10GLK0For internal use

Flexi WCDMA BTS Site Capacity Upgrade Alternatives Baseband (BB) capacity• Channel Element (CE) refers to the

capacity requirement of 1 User voice/16 kbps (UL&DL)

• Upgrades in min. 1CE (Channel Element) steps

• Additional CE by SW license key • Softer HO overhead is included• No site visit needed to optimize for

changing traffic mix• 1 type of HW supports CCH, DCH,

HSDPA and HSUPA• 384 kbps supported in UL and DL for

both HSDPA and R99 services

Page 42: 07 RN31547EN10GLA0 Capacity Dimensioning

44 © NSN Siemens Networks RN31547EN10GLK0For internal use

Flexi WCDMA BTS HW Capacity Evolution in Channel Elements (CE)

RAS05.1 RAS05.1 ED WBTS5.0(RU10)

240 CE

Study Item

750 CE

250 CE

500 CE

240 CE

240 CE240 CE

Release 1 HW, FSMB

Release 2 HW, FSMC

Release 2 HW, FSMD

Release 2 HW, FSME

500 CE

500 CE

750 CE

750 CE

240 CE 240 CE

500 CE 750 CE

Other possible configurations:please see following 2 slides

New SM HW introducedSM chaining High capacity SM, if market needRelease 1 HW SM

Max.

1500 CE

Page 43: 07 RN31547EN10GLA0 Capacity Dimensioning

45 © NSN Siemens Networks RN31547EN10GLK0For internal use

Flexi WCDMA BTS SW Capacity Evolution in Channel Elements (CE) Release 1 HW

RAS05.1 RAS05.1 ED RAS06

240 CE

192 CE

192 CE

192 CE192 CE

Release 1 HW, FSMB

240 CE

240 CE

240 CE

Release 2 HW System Modules

Common channel usage with Release 1 HWNumber of cells RAS05.1 RAS05.1

EDRAS06 RU10

1…3 (e.g. 1+1+1) 16 CE 16 CE 26 CE 26 CE4…6 (e.g. 2+2+2) n/a 32 CE 52 CE 52 CE7…9 (e.g.. 3+3+3) n/a n/a n/a 78 CE

Page 44: 07 RN31547EN10GLA0 Capacity Dimensioning

46 © NSN Siemens Networks RN31547EN10GLK0For internal use

216 CE468 CE

720 CE*180 CE

396 CE

Flexi WCDMA BTS SW Capacity Evolution in Channel Elements (CE) Release 2 HW

WBTS5.0 (RU10) Study item

750 CE

250 CE

500 CE

Release 2 HW, FSMC

Release 2 HW, FSMD

Release 2 HW, FSME*

396 CE

396 CE

216 CE

468 CE

468 CE

* High capacity SM, if market need

468 CE

720 CE*

720 CE*

Common Channels included as below:3 cells/20 km cell radius: with 1 System module6 cells/10 km cell radius: with 1 System module6 cells/20 km cell radius: with 2 System modules9 cells/10 km cell radius: with 2 System modules12 cells/10 km cell radius: with 2 System modules

All combinations possibleAll combinations possible

All combinations possible

Each system module contains free CEs pool designed for CCCH which allow to support the following configurations

Page 45: 07 RN31547EN10GLA0 Capacity Dimensioning

47 © NSN Siemens Networks RN31547EN10GLK0For internal use

Main changes compared to FSMB and FSMC/D

• RU10 delivers new system modules FSMC and FSMD, which are more efficient from the baseband allocation perspective than FSMB

• Main enhancements via new rel.2 HW– Maximum capacity is higher, with FSMD much higher (up to 792 CEs)– R99 baseband allocation with 384 kbps is lowered from 16 to 12 CEs– HSDPA allocation is lower

▪ Shared HSDPA scheduler for BB efficiency for FSMB 80 CE and for FSMC/D 72 CEs

• Note: In RU10 shared HSDPA with FSMB enables 48 users/LCG and with FSMC/D 64 users/LCG

▪ Dedicated HSDPA scheduler with 64 users/cell (1+1+1), FSMB 240 CEs and FSMC/D 216 CEs

– HSUPA allocation is lower▪ To meet the maximum number of users (60 users/LCG) FSMB =240 CEs

and FSMC/D 144 CEs

Page 46: 07 RN31547EN10GLA0 Capacity Dimensioning

48 © NSN Siemens Networks RN31547EN10GLK0For internal use

Maximum Capacity Configurations

• Maximum CE capacity for traffic use is available with 2 system modules in one BTS:

– FSMB + FSMC: max. Site capacity 420 CE (= 240 CE + 180 CE) minus CE for CCCH

– FSMB + FSMD: max. Site capacity 636 CE (= 240 CE + 396 CE) minus CE for CCCH

– FSMC + FSMC: max. Site capacity 360 CE (= 180 CE + 180 CE)– FSMC + FSMD: max. Site capacity 576 CE (= 180 CE + 396 CE)– FSMD + FSMD: max. Site capacity 792 CE (= 396 CE + 396 CE)

Note: Only FSMB needs to be subtract CEs for control

Page 47: 07 RN31547EN10GLA0 Capacity Dimensioning

49 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Air interface dimensioning

• BTS HW capacity dimensioning

– Flexi WCDMA BTS capacity– CCCH dimensioning

▪ Rel1 HW (FSMB) and Rel2 HW (FSMC/D)

– DCH (R99) dimensioning– HSDPA Dimensioning– HSUPA Dimensioning– Flexi BTS Example– Ultrasite HW capacity

Rad

io n

etw

ork

Acc

ess

netw

ork

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Page 48: 07 RN31547EN10GLA0 Capacity Dimensioning

50 © NSN Siemens Networks RN31547EN10GLK0For internal use

Base Band CE requirements for CCCH

RU10 Rel.2 HW CE for control• Control CEs are already subtracted

(FSMC/D)

In RAS06 and FSMB RU10• Control channel CE consumption have to be subtracted• >6 cells needs extension module

Common channel usage with Release 1 HWNumber of cells RAS05.1 RAS05.1 ED RAS06 RU101…3 (e.g. 1+1+1) 16 CE 16 CE 26 CE 26 CE

4…6 (e.g. 2+2+2) n/a 32 CE 52 CE 52 CE

7…9 (e.g.. 3+3+3) n/a n/a n/a 78 CE

10…12 (e.g. 4+4+4) Requires Rel2 System Module as Extension Module

# cells/BTS CE required for CCCHUltrasite (WSPC)

1…3 164…6 327…9 48

10…12 64

Flexi CEs forCCCH

Ultra WSPC CEs for CCCH

Common Channels included as below:3 cells/20 km cell radius: with 1 System module6 cells/10 km cell radius: with 1 System module6 cells/20 km cell radius: with 2 System modules9 cells/10 km cell radius: with 2 System modules12 cells/10 km cell radius: with 2 System modules

Page 49: 07 RN31547EN10GLA0 Capacity Dimensioning

51 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Air interface dimensioning

• BTS HW capacity dimensioning

– Flexi WCDMA BTS capacity– CCCH dimensioning– DCH (R99) dimensioning

▪ Rel1 HW (FSMB) and Rel2 HW (FSMC/D)

– HSDPA Dimensioning– HSUPA Dimensioning– Flexi BTS Example– Ultrasite HW capacity

Rad

io n

etw

ork

Acc

ess

netw

ork

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Page 50: 07 RN31547EN10GLA0 Capacity Dimensioning

52 © NSN Siemens Networks RN31547EN10GLK0For internal use

Flexi WCDMA BTS Base Band CE requirements for R99 users

Note: Soft HOs not included in calculations, Soft HO user is seen as normal user on other BTS

Rel1 HW (FSMB)

User data CE UL/min SF

CE DL/min SF

AMR (voice) 1) 1/ SF64 1/ SF128

WB-AMR 2) 1 / SF64 1 / SF128

PS 16 kbps 1 / SF64 1 / SF128

PS 32 kbps 2 / SF32 2 / SF64

PS 64 kbps 4 / SF16 4 / SF32

PS 128 kbps 4 / SF8 4 / SF16

PS 256 kbps 8 / SF4 8 / SF8

PS 384 kbps 16 / SF4 16 / SF8

CS 64 kbps 4 / SF16 4 / SF32

CS 57.6 kbps 4 / SF16 4 / SF32

CS 14.4 kbps 1 / SF64 1 / SF128

1) AMR codecs 12.2, 7.95 and 5.90 and 4.75 kbps supported2) WB-AMR codecs 12.65, 8.85 and 6.6 kbps supported

* FSME (High capacity SM) if market need

Rel2 HW (FSMC/FSMD/FSME*)

User data CE UL/min SF

CE DL/min SF

AMR (voice) 1) 1/ SF64 1/ SF128

WB-AMR 2) 1 / SF64 1 / SF128

PS 16 kbps 1 / SF64 1 / SF128

PS 32 kbps 2 / SF32 2 / SF64

PS 64 kbps 4 / SF16 4 / SF32

PS 128 kbps 4 / SF8 4 / SF16

PS 256 kbps 9 / SF4 9 / SF8

PS 384 kbps 12 / SF4 12 / SF8

CS 64 kbps 4 / SF16 4 / SF32

CS 57.6 kbps 4 / SF16 4 / SF32

CS 14.4 kbps 1 / SF64 1 / SF128

Less CE needed with high bitrate (384 kbps) with Rel2 HW System Module!

RU10RAS06/RU10

Page 51: 07 RN31547EN10GLA0 Capacity Dimensioning

53 © NSN Siemens Networks RN31547EN10GLK0For internal use

WCDMA Flexi BTS Example Base Band Capacity for R99Rel1 HW (FSMB)

Note: Soft HOs not included in calculations

User data CE required/ connection

BB Processing Capacity1 System Module

(FSMB, RAS05.1)192 CE, 16 CE for CCH

BB Processing Capacity2 System Modules

(FSMB+FSMB, RAS06)2* 240 CE, 26 CE for CCH

16kbps/ voice 1 176 454

32kbps 2 88 227

64kbps 4 44 113

128kbps 4 44 113

256kbps (DL) 8 22 56

384kbps 16 11 28

• 1+1+1,common channels included in calculations• Max.# CE licensed• Max. # of simultaneous users on Flexi WCDMA BTS based on

Baseband capacity, excluding Air and Iub Interfaces

Page 52: 07 RN31547EN10GLA0 Capacity Dimensioning

54 © NSN Siemens Networks RN31547EN10GLK0For internal use

WCDMA Flexi BTS Example Base Band Capacity for R99Rel2 HW (FSMD) (RU10)

Note: Soft HOs not included in calculations

User data CE required/ connection

BB Processing Capacity1 System Module

(FSMD, RU10)396 CE

BB Processing Capacity2 System Modules

(FSMD+FSMD, RU10)2* 396 CE

16kbps/ voice 1 396 792

32kbps 2 198 396

64kbps 4 99 198

128kbps 4 99 198

256kbps (DL) 9 44 88

384kbps 12 33 66

• 2+2+2, common channels included in calculations (cell range <10 km)

• Max.# CE licensed• Max. # of Simultaneous users on Flexi WCDMA BTS based on

Baseband capacity, excluding Air and Iub Interfaces

RU10

Page 53: 07 RN31547EN10GLA0 Capacity Dimensioning

55 © NSN Siemens Networks RN31547EN10GLK0For internal use

BB capacity dimensioning for DCH traffic

• The calculation of the BTS resource requirement is based on the total required number of physical channels for the data and CCCH processing requirement

• Physical channels for CS traffic are calculated based on the total traffic in the BTS and blocking %

• Physical channels for PS NRT traffic are calculated based on the total traffic in the BTS and bearer bit rate

• SHO overhead is added to the UL and DL – # cells = # sectors * #carriers– Traffic_site = # cells * Traffic_cell– Physical_channels = Erlb_B(Traffic_site, blocking %) * (1 +

SHO_overhead)

Page 54: 07 RN31547EN10GLA0 Capacity Dimensioning

56 © NSN Siemens Networks RN31547EN10GLK0For internal use

Example: BB capacity for DCH

• Speech: 24 Erl/cell• NRT data DL: 750 kbps * (1 + 26%) = 945 kbps/cell• NRT data UL: 75 kbps * (1 + 26%) = 94.5 kbps/cell• 3 sector and 1 carrier site, Flexi FSMB

– Speech: 24 Erl/cell * 3 cell/site = 72 Erl/site 86 channels/site 86 CE UL&DL– NRT data DL: 945 kbps/cell * 3 cell = 2835 kbps/site 22.1 channels/site (128

kbps bearer) 92 CE DL– NRT data UL: 94.5 kbps/cell * 3 cell = 283.5 kbps/site 2.2 channels/site (128

kbps bearer) 12 CE UL– CCCH: 26 CE UL&DL

• Total: UL – 124 CE, DL – 206 CE 2 system modules & license for 196 CE

Page 55: 07 RN31547EN10GLA0 Capacity Dimensioning

57 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Air interface dimensioning

• BTS HW capacity dimensioning

– Flexi WCDMA BTS capacity– CCCH dimensioning– DCH (R99) dimensioning– HSDPA Dimensioning

▪ Rel1 HW (FSMB) ▪ Rel2 HW (FSMC/D)

– HSUPA Dimensioning– Flexi BTS Example– Ultrasite HW capacity

Rad

io n

etw

ork

Acc

ess

netw

ork

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Page 56: 07 RN31547EN10GLA0 Capacity Dimensioning

58 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSDPA and BTS HW

• HSDPA traffic has a static resource allocation in BTS– Resource allocation per HSDPA scheduler – Resources shared between users

• Required amount of resources depends on HSDPA scheduler configuration

– Type of scheduler– Number of schedulers

• HSDPA scheduler configuration selected based on required cell throughput, number of HS-PDSCH codes, number of HSDPA active users

Page 57: 07 RN31547EN10GLA0 Capacity Dimensioning

59 © NSN Siemens Networks RN31547EN10GLK0For internal use

1. Minimum baseband• QPSK/16 QAM• Max 5 codes per cell• 16 Users per BTS • Up to 3.6 Mbps per BTS• 32 CE from FSMB allocated to HSDPA

scheduler• 1 scheduler with 1-3 cells per BTS• Cells can be on different frequencies

(e.g.., 2-omni or in later SW releases 3-omni, 2+1)16 users

16 users16 users

8 users

4 users4 users

Example 1: 16 users per BTS1*32 CE

Example 2: 16 users per cell3*32 CE

2. 16 Users per cell• Up to 3.6 Mbps per cell• Max 5 codes per cell• Each HSDPA cell requires 32 CE from FSMB is

allocated to HSDPA• Max 6 HSDPA schedulers per BTS

HSDPA BTS Configuration Options for Flexi BTS, Rel1 HW

Page 58: 07 RN31547EN10GLA0 Capacity Dimensioning

60 © NSN Siemens Networks RN31547EN10GLK0For internal use

3. Shared HSDPA Scheduler for Baseband Efficiency

• Up to 10.8 Mbps per scheduler• Max 15 codes per cell, 45 codes for BTS• Max 48 Users per scheduler• 80 CE from FSMB allocated to HSDPA scheduler• 1 scheduler per group of 1-3 cells• Max 4 schedulers per BTS (4*80=320CE)

10 users

16 users22 users

Example 3: Shared HSDPA Scheduler for BB Efficiency1*80 CE

48 users

48 users48 users

Example 4: 48 Users per cell3*80CE

4. 48 Users per Cell• Up to 14.4 Mbps per cell (with code multiplexing)• Max 15 codes per cell• 80 CE from FSMB allocated per HSDPA

scheduler (=per cell)• Max 5 schedulers per BTS (5*80=400CE)

HSDPA BTS Configuration Options for Flexi BTS, Rel1 HW

Page 59: 07 RN31547EN10GLA0 Capacity Dimensioning

61 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSDPA improvements in RU10- Rel1 HW (FSMB)• Same HSDPA schedulers available as before• Same CE dimensioning rules apply as before• Improvements:

– Cell dedicated scheduler (80CE): number of users increased from 48 UE to 64 UE

RU10

Cell Dedicated Scheduler:• 64 HSDPA users

FSMB

64 *64 *

64 *

1+1+1

Page 60: 07 RN31547EN10GLA0 Capacity Dimensioning

62 © NSN Siemens Networks RN31547EN10GLK0For internal use

Shared HSDPA Scheduler for Baseband Efficiency• Peak rate of 10.8 Mbps is shared dynamically between sectors• Efficient utilization of resources since the peak rate of 10.8 Mbps is only

seldom available in macro cells due to interference

3.6 Mbps

3.6 Mbps 10.8 Mbps

0 Mbps (no HSDPA mobiles)

7.2 Mbps

3.6 Mbps

0 Mbps (no HSDPA mobiles)

3.6 Mbps 0 Mbps (no HSDPA mobiles)

Throughput shared equally between all

sectors

HSDPA mobiles only in single

sector

Throughput shared between two

sectors

Instantaneous adaptation according to throughput per sector

Page 61: 07 RN31547EN10GLA0 Capacity Dimensioning

63 © NSN Siemens Networks RN31547EN10GLK0For internal use

Common chs:26 CE

availablecapacity for traffic

134CE

Carrier 1Common channels

Carrier 1

Carrier 1Traffic channels

FSMB

HSDPA BLOCKShared HSDPA scheduler

80 CE

• Max. capacity 240 CE/FSMB• CE licenses can be activated, based on traffic mix• 80 CE required for Shared HSDPA Scheduler (1-3 cells)

32CE included in OSW price

Based on traffic requirements activated CE

(208)

RAS06Flexi WCDMA BTS BB Example, Rel1 HW 1+1+1, 240 CE, Shared HSDPA Scheduler for BB Efficiency, 10/15 codes

Page 62: 07 RN31547EN10GLA0 Capacity Dimensioning

64 © NSN Siemens Networks RN31547EN10GLK0For internal use

Maximum number of HSDPA schedulers simultaneouslyactive

HSDPA Scheduler1 System Module (FSMB)

2 System Modules (2 *

FSMB)Basic HSDPA, 16 users per BTS 1 (3*) 1 (4*)

16 Users per cell 3 6

Shared HSDPA Scheduler for BB efficiency

1 (2*) 1 (4*)

48 Users per cell 2 5

* Usage of Tcell parameter required

• Note that only one type of scheduler can be used in BTS at a time– Down to one cell per shared scheduler

▪ thus almost corresponding to the performance of dedicated scheduler

– When using shared scheduler you can easily expand to more than one schedulers

▪ Meet the HSDPA capacity requirement in cell level due to the traffic growth

Page 63: 07 RN31547EN10GLA0 Capacity Dimensioning

65 © NSN Siemens Networks RN31547EN10GLK0For internal use

WCDMA Flexi BTS Base Band Dimensioning, Rel1 HW Example for 1+1+1/ HSDPA activation

• Note that the table describes only BTS Baseband dimensioning. In practice also Iub, Air interface, etc has to be taken into account. Please see RAS dimensioning guide for more information.

• CEs required for associated HSDPA UL is not included in the table• Common Channels not included• 5 code phones assumed to be used in NW. Figures in brackets (by red) assumes 10 code

phones and figures in brackets (by blue) assumes 15 code phones are used in NW

RAS06

Page 64: 07 RN31547EN10GLA0 Capacity Dimensioning

66 © NSN Siemens Networks RN31547EN10GLK0For internal use

Flexi WCDMA BTS Baseband CE requirements for HSDPA users in uplink (associated uplink channel) with Rel1 HW and Rel2 HW

• Note: Soft HOs not included in calculations• *** FSME (High capacity SM) if market need

Rel1 HW (FSMB)

User data CE UL/min SF

CE DL/min SF

PS 16 kbps 1 / SF64 *) 1 / SF128 **)

PS 64 kbps 4 / SF16 1 / SF128 **)

PS 128 kbps 4 / SF8 1 / SF128 **)

PS 384 kbps 16 / SF4 1 / SF128 **)

*) In case of SF is 32, then 2 CE is required in UL**) 1 CE for DL signaling is required per HSDPA user

Rel2 HW (FSMC/FSMD/FSME***)

User data CE UL/min SF

CE DL/min SF

PS 16 kbps 1 / SF64 *) 1 / SF128 **)

PS 64 kbps 4 / SF16 1 / SF128 **)

PS 128 kbps 4 / SF8 1 / SF128 **)

PS 384 kbps 12 / SF4 1 / SF128 **)

RU10

Less CE needed with high bitrates (384 kbps) with rel2 HW System Module!

Page 65: 07 RN31547EN10GLA0 Capacity Dimensioning

67 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Air interface dimensioning

• BTS HW capacity dimensioning

– Flexi WCDMA BTS capacity– CCCH dimensioning– DCH (R99) dimensioning– HSDPA Dimensioning

▪ Rel1 HW (FSMB) ▪ Rel2 HW (FSMC/D)

– HSUPA Dimensioning– Flexi BTS Example– Ultrasite HW capacity

Rad

io n

etw

ork

Acc

ess

netw

ork

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Page 66: 07 RN31547EN10GLA0 Capacity Dimensioning

68 © NSN Siemens Networks RN31547EN10GLK0For internal use

Main changes compared to FSMB and FSMC/D

• RU10 delivers new system modules FSMC and FSMD, which are more efficient from the baseband allocation perspective than FSMB

• HSDPA allocation is lower – Shared HSDPA scheduler for BB efficiency

▪ FSMB 80 CE▪ FSMC/D 72 CEs

– Dedicated HSDPA scheduler with 64 users/cell (1+1+1), ▪ FSMB 240 CEs ▪ FSMC/D 216 CEs

Page 67: 07 RN31547EN10GLA0 Capacity Dimensioning

69 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSDPA improvements in RU10- Rel2 HW (FSMC/D)• Same schedulers in use as with Rel1 HW System Module• Improvements in Rel2 HW vs. Rel1 HW in RU10:

– Both Shared Scheduler for Baseband Efficiency and Cell Dedicated -scheduler needs only 72 CE (80 CE with FSMB)

– Shared Scheduler for Baseband Efficiency: 14.4 Mbps peak rate (10.8 Mbps with FSMB)

– Shared Scheduler for Baseband Efficiency: 64 users (48 users with FSMB)

RU10

Shared Scheduler for BB Efficiency:• 14.4 Mbps peak rate• 64 HSDPA users• 72 CECell Dedicated Scheduler (64 users):• 72 CE

27 *15 *

22 *

FSMC

FSMD1+1+1

Page 68: 07 RN31547EN10GLA0 Capacity Dimensioning

70 © NSN Siemens Networks RN31547EN10GLK0For internal use

Max number of HSDPA schedulers simultaneously active- Rel2 HW: FSMC/D

HSDPA Scheduler FSMC 2*FSMC FSMD 2*FSMD

Basic HSDPA, 16 users per BTS/LCG (32 CE) 1(4*) 1(8*) 1(4*) 1(8*)

16 Users per cell (32 CE) 5 10 11 12

Shared HSDPA Scheduler for BB efficiency (72 CE) 1(2*) 1(4*) 1(4*) 1(8*)

64 Users per cell (72 CE) 2 4 5 10

RU10

Note that only one type of scheduler can be used in BTS at a time

FSMC/FSMD: up to 2+2+2/10 km or 1+1+1/20 km cell range configuration used, 1 * LCG2*FSMC/2*FSMD: up to 4+4+4/10 km or 2+2+2/20 km cell range configuration used, 2 * LCG * Usage of Tcell parameter required

Page 69: 07 RN31547EN10GLA0 Capacity Dimensioning

71 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Air interface dimensioning

• BTS HW capacity dimensioning

– Flexi WCDMA BTS capacity– CCCH dimensioning– DCH (R99) dimensioning– HSDPA Dimensioning– HSUPA Dimensioning

▪ Rel1 HW (FSMB) ▪ Rel2 HW (FSMC/D)

– Flexi BTS Example– Ultrasite HW capacity

Rad

io n

etw

ork

Acc

ess

netw

ork

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Page 70: 07 RN31547EN10GLA0 Capacity Dimensioning

72 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPAGeneral information• HSUPA activation requires a "fixed pool" of 8 CE when activating the

feature.– In RU10 this fixed activation is not needed

• BTS Resource Manager can dynamically allocate additional BB resources for HSUPA.

– Depending on the total amount of free available CE (#licenses and installed HW capacity) and the traffic load,

• A max. of 128 CE in UltraSite and 160 CE (RU10 = 240CEs) in Flexi BTS can be utilized by HSUPA.

– In case of conflict with R99 RT or NRT traffic needs, BTS Resource manager will reduce the amount of BB resources available for HSUPA.

• HSUPA user can reach max 2.0 Mbps• HSUPA is used only together with HSDPA for DL • In addition to the CE consumption for HSDPA and HSUPA activation, 1

CE for signaling is required per user.• Flexi BTS Rel2 HW HSUPA dimensioning: to be defined

– Note: Softer HO overhead is included in the CE dimensioning table (Table 3), similarly as with Rel99 DCH

Page 71: 07 RN31547EN10GLA0 Capacity Dimensioning

73 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPA resource stepsRel1 HW (FSMB)• HSUPA resources are allocated in steps of Channel Elements (CEs)• Max 160 CE can be allocated to HSUPA• Size of each HSUPA resource step in Channel Elements is described

below:

HSUPA Resource step

Flexi BTSRel1 HW (FSMB)

1 32 CE

2 24 CE

3 24 CE

4 32 CE

5 24 CE

6 24 CE

1 Flexi BTS submodule

1 Flexi BTS submodule

Page 72: 07 RN31547EN10GLA0 Capacity Dimensioning

74 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPA combined minimum baseband throughput

Flexi BTS Combined minimum baseband L1 throughput of all usersMinimum Number of HSUPA UE per BTS 0 <1.4 Mbps 1.4 Mbps 2.8 Mbps 4.2 Mbps 5.6 Mbps 7 Mbps 8.4 Mbps

0 0 0 0 0 0 0 0 0

1 – 4 0 1 1 2 3 4 n/a n/a

5 – 8 0 1 2 2 3 4 5 69 - 12 0 2 2 3 3 4 5 6

13 - 16 0 2 3 4 4 4 5 617 - 20 0 3 3 4 5 5 5 621 - 24 0 3 3 4 5 6 6 6

• Number of HSUPA resource steps allocated to get certain combined BTS baseband L1 throughput with certain number of UEs:

• UEs Peak Throughput depends on how many simultaneous UEs there are in each HSUPA resource step at a time:

• 1-2 UEs in one HSUPA resource step:2 Mbps peak rate per UE

• 3-4 UEs in one HSUPA resource step:1.4 Mbps peak rate per UE

• 5-8 UEs in one HSUPA resource step:384 kbps - <1.4 Mbps peak rate per UE

• Example: to get 4.2 Mbps combined (of all UEs) L1 throughput with 12 users, 3 HSUPA resource steps are needed i.e. Resource steps 1-3 (32 CE + 24 CE + 24 CE = 80 CE)

Page 73: 07 RN31547EN10GLA0 Capacity Dimensioning

75 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPA Channel Element dimensioning

Flexi BTS Combined minimum baseband L1 throughput of all usersMinimum Number of HSUPA UE per BTS 0 <1.4

Mbps 1.4 Mbps 2.8 Mbps 4.2 Mbps 5.6 Mbps 7 Mbps 8.4 Mbps

0 8 8 8 8 8 8 8 8

1 – 4 8 32 CE 32 CE 56 CE 80 CE 112 CE n/a n/a

5 – 8 8 32 CE 56 CE 56 CE 80 CE 112 CE 136 CE 160 CE9 - 12 8 56 CE 56 CE 80 CE 80 CE 112 CE 136 CE 160 CE

13 - 16 8 56 CE 80 CE 112 CE 112 CE 112 CE 136 CE 160 CE17 - 20 8 80 CE 80 CE 112 CE 136 CE 136 CE 136 CE 160 CE21 - 24 8 80 CE 80 CE 112 CE 136 CE 160 CE 160 CE 160 CE

• Amount of Channel Elements (CEs) allocated to get certain combined (of all UEs) BTS baseband L1 throughput vs. certain number of UEs:

Note! Step1: 32 CE includes 8 CE fixed reservation

RU10 provides an extension and changes:• up to 60 users • L1 throughput up to 12.6 Mbps• No <1.4 Mbps used• No reservation (8 CEs) when HSUPA activated• Minimum reservation means 1-4 users and 1.4 Mbps• FSMB with 60 simultaneous HSUPA users consumes 240 CEs and rel.2 HW consumes 144 CEs

RU1060 users

RU1012.6 Mbps

Page 74: 07 RN31547EN10GLA0 Capacity Dimensioning

76 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPA improvements in RU10- Rel1 HW (FSMB)• HSUPA fixed allocation is 0 CE

– In RAS06 when HSUPA is activated an 8 CE fixed reservation is done

• Number of HSUPA UE per BTS/LCG increased to 60– In RAS06 max 24 users per BTS (20 per cell)– Max 20 UE per cell also in RU10– Total BTS level throughput increased to 12.6 Mbps (8.4 Mbps in RAS06)– See HSUPA resource steps and dimensioning tables in next slides

• Improved resource handling:– Resource Manager will reallocate free resources (relieved from Rel99) back to HSUPA.

▪ Improves user throughput▪ In RAS06 only new HSUPA calls are allocated to relieved resources

– HSUPA users can be moved between Flexi sub modules. ▪ Improves HSUPA user throughput as second submodule is taken earlier into use as in RAS06▪ In RAS06 HSUPA users can not be moved from one sub module to another

RU10

Page 75: 07 RN31547EN10GLA0 Capacity Dimensioning

77 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPA improvements in RU10- Rel1 HW (FSMB) HSUPA Resource Steps

RU10

• HSUPA resources are allocated in steps of Channel Elements (CEs)• Size of each HSUPA resource step in Channel Elements is described

below:

HSUPA Resource

stepIncremental CE

valueCumulative CE

value

1 32 CE 32 CE

2 24 CE 56 CE

3 24 CE 80 CE

4 32 CE 112 CE

5 24 CE 136 CE

6 24 CE 160 CE

7 32 CE 192 CE

8 24 CE 216 CE

9 24 CE 240 CE

1st Flexi BTS submodule

2nd Flexi BTS submodule

Max 240 CE

3rd Flexi BTS submodule

FSMB

Page 76: 07 RN31547EN10GLA0 Capacity Dimensioning

78 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPA improvements in RU10- Rel1 HW (FSMB) HSUPA Resource Steps

RU10

FSMB Combined minimum baseband L1 throughput of all users

Minimum Number of

HSUPA UE per BTS

1.4 Mbps

2.8 Mbps

4.2 Mbps

5.6 Mbps

7.0 Mbps

8.4 Mbps

9.8 Mbps

11.2 Mbps

12.6 Mbps

1 – 4 1 2 2 4 n/a n/a n/a n/a n/a

5 – 8 2 2 2 4 5 6 7 8 n/a9 - 12 2 3 3 4 5 6 7 8 9

13 - 16 3 4 4 4 5 6 7 8 917 - 20 3 4 5 5 5 6 7 8 921 - 24 3 4 5 6 6 6 7 8 925 – 28 4 5 6 7 7 7 7 8 929 – 32 4 5 6 7 8 8 8 8 933 – 36 5 6 6 8 9 9 9 9 937 – 40 5 6 7 8 9 n/a n/a n/a n/a

41- 44 6 6 8 8 9 n/a n/a n/a n/a

45 – 48 6 6 8 8 n/a n/a n/a n/a n/a

49 – 52 7 7 9 9 n/a n/a n/a n/a n/a

53 – 56 7 7 9 n/a n/a n/a n/a n/a n/a

57 - 60 8 8 9 n/a n/a n/a n/a n/a n/a

Page 77: 07 RN31547EN10GLA0 Capacity Dimensioning

79 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPA improvements in RU10- Rel1 HW (FSMB) HSUPA Resource Steps as CEs

RU10

FSMB Combined minimum baseband L1 throughput of all users

Minimum Number of

HSUPA UE per BTS

1.4 Mbps

2.8 Mbps

4.2 Mbps

5.6 Mbps

7.0 Mbps

8.4 Mbps

9.8 Mbps

11.2 Mbps

12.6 Mbps

1 – 4 32 56 56 112 n/a n/a n/a n/a n/a

5 – 8 56 56 56 112 136 160 192 216 n/a9 - 12 56 80 80 112 136 160 192 216 24013 - 16 80 112 112 112 136 160 192 216 24017 - 20 80 112 136 136 136 160 192 216 24021 - 24 80 112 136 160 160 160 192 216 24025 – 28 112 136 160 192 192 192 192 216 24029 – 32 112 136 160 192 216 216 216 216 24033 – 36 136 160 160 216 240 240 240 240 24037 – 40 136 160 192 216 240 n/a n/a n/a n/a

41- 44 160 160 216 216 240 n/a n/a n/a n/a

45 – 48 160 160 216 216 n/a n/a n/a n/a n/a

49 – 52 192 192 240 240 n/a n/a n/a n/a n/a

53 – 56 192 192 240 n/a n/a n/a n/a n/a n/a

57 - 60 216 216 240 n/a n/a n/a n/a n/a n/a

Page 78: 07 RN31547EN10GLA0 Capacity Dimensioning

80 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Air interface dimensioning

• BTS HW capacity dimensioning

– Flexi WCDMA BTS capacity– CCCH dimensioning– DCH (R99) dimensioning– HSDPA Dimensioning– HSUPA Dimensioning

▪ Rel1 HW (FSMB) ▪ Rel2 HW (FSMC/D)

– Flexi BTS Example– Ultrasite HW capacity

Rad

io n

etw

ork

Acc

ess

netw

ork

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Page 79: 07 RN31547EN10GLA0 Capacity Dimensioning

81 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPA resource steps in RU10 - Flexi WCDMA BTS, Rel2 System Module• HSUPA resources are allocated in steps of Channel Elements (CEs)• Size of each HSUPA resource step in Channel Elements is described below:

HSUPA Resource step

Incremental CE value

Cumulative CE value

1 30 CE 30 CE

2 6 CE 36 CE

3 30 CE 66 CE

4 6 CE 72 CE

5 30 CE 102 CE

6 6 CE 108 CE

7 30 CE 138 CE

8 6 CE 144 CE

Max 144 CE

FSMC

FSMD

RU10

Page 80: 07 RN31547EN10GLA0 Capacity Dimensioning

82 © NSN Siemens Networks RN31547EN10GLK0For internal use

FSMC/D Combined minimum baseband L1 throughput of all usersMinimum

Number of HSUPA UE per

BTS

1.4 Mbps

2.8 Mbps

4.2 Mbps

5.6 Mbps

7.0 Mbps

8.4 Mbps

9.8 Mbps

11.2 Mbps

12.6 Mbps

1 - 3 1 1 2 2 n/a n/a n/a n/a n/a

4 - 6 1 2 2 2 3 3 4 4 n/a

7 - 9 2 2 3 3 3 3 4 4 510 - 12 2 2 3 4 4 4 4 5 513 - 15 2 3 3 4 5 5 5 5 516 - 18 3 3 3 4 5 6 6 6 619 - 21 3 4 4 4 5 6 7 7 722 - 24 4 4 4 4 5 6 7 8 825 - 27 4 4 5 5 5 6 7 8 n/a

28 - 30 4 4 5 5 5 6 7 8 n/a

31 - 33 5 5 6 6 6 6 7 8 n/a

34 - 36 5 6 6 6 6 6 7 8 n/a

37 - 39 6 6 6 7 7 7 7 8 n/a

40 - 42 6 6 6 7 7 7 7 8 n/a

43 - 45 6 7 7 8 8 8 8 8 n/a

46 - 51 7 7 8 8 n/a n/a n/a n/a n/a

51 - 60 8 8 8 8 n/a n/a n/a n/a n/a

HSUPA in RU10- Rel2 HW (FSMC/D) HSUPA Resource Steps

RU10

Page 81: 07 RN31547EN10GLA0 Capacity Dimensioning

83 © NSN Siemens Networks RN31547EN10GLK0For internal use

FSMC/D Combined minimum baseband L1 throughput of all usersMinimum

Number of HSUPA UE per

BTS

1.4 Mbps

2.8 Mbps

4.2 Mbps

5.6 Mbps

7.0 Mbps

8.4 Mbps

9.8 Mbps

11.2 Mbps

12.6 Mbps

1 - 3 30 30 36 36 n/a n/a n/a n/a n/a

4 - 6 30 36 36 36 66 66 72 72 n/a

7 - 9 36 36 66 66 66 66 72 72 10210 - 12 36 36 66 72 72 72 72 102 10213 - 15 36 66 66 72 102 102 102 102 10216 - 18 66 66 66 72 102 108 108 108 10819 - 21 66 72 72 72 102 108 138 138 13822 - 24 72 72 72 72 102 108 138 144 14425 - 27 72 72 102 102 102 108 138 144 n/a

28 - 30 72 72 102 102 102 108 138 144 n/a

31 - 33 102 102 108 108 108 108 138 144 n/a

34 - 36 102 108 108 108 108 108 138 144 n/a

37 - 39 108 108 108 138 138 138 138 144 n/a

40 - 42 108 108 108 138 138 138 138 144 n/a

43 - 45 108 138 138 144 144 144 144 144 n/a

46 - 51 138 138 144 144 n/a n/a n/a n/a n/a

51 - 60 144 144 144 144 n/a n/a n/a n/a n/a

HSUPA in RU10- Rel2 HW (FSMC/D) HSUPA Resource Steps as CEs

RU10

Page 82: 07 RN31547EN10GLA0 Capacity Dimensioning

84 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Air interface dimensioning

• BTS HW capacity dimensioning

– Flexi WCDMA BTS capacity– CCCH dimensioning– DCH (R99) dimensioning– HSDPA Dimensioning– HSUPA Dimensioning– Flexi BTS Example– Ultrasite HW capacity

Rad

io n

etw

ork

Acc

ess

netw

ork

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Page 83: 07 RN31547EN10GLA0 Capacity Dimensioning

85 © NSN Siemens Networks RN31547EN10GLK0For internal use

CE consumption example, 1 Flexi System module, Rel1 HW (FSMB in RAS06)Common channel CER'99 only CEHSDPA CEHSUPA only CEHSUPA / R'99 CE

Dynamically shared BB capacity between R’99 and HSUPA

Fixed reservation of 8

CE to enable HSUPA in the

BTS

HSDPA only capacity, fully pooled across

sectors (16 users per BTS)

R’99 only capacity, fully pooled across

freqs & sectors

Common CHs for 1+1+126 CE

70 CE

8-112 CE

32 CE

Page 84: 07 RN31547EN10GLA0 Capacity Dimensioning

86 © NSN Siemens Networks RN31547EN10GLK0For internal use

CE consumption example, 2 Flexi System modules, Rel1 HW (FSMB in RAS06)Common channel CER'99 only CEHSDPA CEHSUPA only CEHSUPA / R'99 CE

R’99 only capacity, fully pooled across

freqs & sectors

HSDPA only capacity, fully pooled across

sectors (Shared HSDPA

Scheduler for BB Efficiency)

Dynamically shared BB capacity

between R’99 and HSUPA

Fixed reservation of 8

CE to enable HSUPA in the

BTS

8-160 CE

80 CE

214 CE

26 CE

Page 85: 07 RN31547EN10GLA0 Capacity Dimensioning

87 © NSN Siemens Networks RN31547EN10GLK0For internal use

Channel Elements estimation example for FSMB in RAS06Channel element estimation:• Node B type Flexi and 3-sectors, 6

HSDPA/Rel5 users + 6 HSPA/Rel6 users• For CCCH 26 CE• HSDPA associated UL DPCH is 64 kbps,

4 CE per traffic channel from UL. – 6 simultaneous (rel 5.) users 6*4 CE = 24

CE

• HSDPA shared scheduler and 15 codes, 48 users per Node B.

– 80 CE UL/DL. – 1 CE/user for SRB (rel 5. + rel 6. = 12)

• HSUPA 6 simultaneous users (rel. 6) and 2.8 Mbps (needs 2 resource steps)

– 56 CE UL/DL – 1 CE/user for SRB, 6*1 = 6 CE

• Thus total:– Downlink is 26 + 80 + 56 + 12 = 174 CE– Uplink is 26 + 24 + 80 + 56 + 6 = 192 CE

(extra is the associated UL DPCH which only in UL as well as minor difference in SRB)

Feature CE required for HSDPAUltrasite Flexi

5 codes 32 3210 codes 64 8015 codes 64 80

Shared scheduler 48 users 64 80

Shared scheduler 16 users 32 32

Cell specific scheduler 192 24016 user per Node B 32 3248 user per Node B 64 80

48 user per cell 192 240

# cells/BTS CE required for CCCHUltrasite Flexi

1…3 16 264…6 32 527…9 48 RU10

10…12 64 RU10

# of HSUPA UE per BTS 0 <1.4

Mbps1.4

Mbps2.8

Mbps

0 8 8 8 8

1 – 4 8 32 CE 32 CE 56 CE

5 – 8 8 32 CE 56 CE 56 CE

9 - 12 8 56 CE 56 CE 80 CE

13 - 16 8 56 CE 80 CE 112CE

17 - 20 8 80 CE 80 CE 112CE

21 - 24 8 80 CE 80 CE 112CE

Page 86: 07 RN31547EN10GLA0 Capacity Dimensioning

88 © NSN Siemens Networks RN31547EN10GLK0For internal use

Dynamically shared BB capacity between R’99 and

HSUPA

HSDPA only capacity, fully pooled across sectors (64

users per BTS)

Common CHs included for 1+1+1 @20 km

and2+2+2 @10 km

HSDPA CEHSUPA / R'99 CE

0-108 CE

72 CE

CE consumption example, 1 Flexi System module, Rel2 HW (FSMC) in RU10

Page 87: 07 RN31547EN10GLA0 Capacity Dimensioning

89 © NSN Siemens Networks RN31547EN10GLK0For internal use

R’99 only capacity, fully pooled across

freqs & sectors

R'99 only CEHSDPA CEHSUPA / R'99 CE

Common CHs included for 1+1+1 @20 km /

2+2+2@10 km

144 CE

1 * FSMD = 396 CEs

216 CE

Dynamically shared BB

capacity between R’99 and HSUPA

HSDPA only capacity, fully pooled across sectors (dedicated

HSDPA schedulers 64 users/cell)

FSMD capacity is supporting very high HSPA configuration• Control channels are included• In this example HSDPA scheduler is

dedicated to all 3-sectors– One scheduler can support up to 64

users per cell, 15 codes and 14.4 Mbps per user

– One scheduler consume 72 CEs, thus for 3-sector 216 CEs

• HSUPA maximum consumption is 144 CEs and it is flexible shared between HSUPA and R99

– HSUPA with 144CEs supports 60 users and up to 12.6 Mbps 36 CE

CE consumption example,Rel2 HW (FSMD)

Page 88: 07 RN31547EN10GLA0 Capacity Dimensioning

90 © NSN Siemens Networks RN31547EN10GLK0For internal use

Channel Elements estimation example (FSMC/D for RU10)

Channel element estimation:• Node B type Flexi and 3-sectors

– Control channels included

• HSDPA associated UL DPCH is 64 kbps, 4 CE per traffic channel from UL.

– 6 simultaneous (rel 5.) users 6*4 CE = 24 CE

• HSDPA shared scheduler and 15 codes, 64 users per Node B. – 72 CE UL/DL. – 1 CE/user for SRB (rel 5. + rel 6. = 12)

• HSUPA 6 simultaneous users (rel. 6) and 2.8 Mbps (needs 2 resource steps) – 36 CE UL/DL – 1 CE/user for SRB, 6*1 = 6 CE

• Thus total:– Downlink is 72 + 36 + 12 = 120 CE– Uplink is 24 + 72 + 36 + 6 = 138 CE

(extra is the associated UL DPCH which only in UL as well as minor difference in SRB)

FSMC = 180 CEsFSMD = 396 CEs

Page 89: 07 RN31547EN10GLA0 Capacity Dimensioning

91 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSDPA SchedulerSystem module # of codes Scheduling

# of HSDPA users

HSDPA CE usage

HSUPA/DCH CE (shared) DCH only CE

HSDPA CE usage

HSUPA/DCH CE (shared)

DCH only CE CCH CE

1* Shared Scheduler FSMB 5 Codes Round Robin / Proportional Fair 16 user/BTS 32 112 70 32 240 182 262* Shared Scheduler FSMB 5 Codes Round Robin / Proportional Fair 16 user/BTS 64 112 38 64 240 150 263* Shared Scheduler FSMB 5 Codes Round Robin / Proportional Fair 16 user/BTS 96 92 0 96 240 92 524* Shared Scheduler FSMB 5 Codes Round Robin / Proportional Fair 16 user/BTS N/A N/A N/A 128 240 60 52

Cell Specific (3 cells) FSMB 5 Codes Round Robin / Proportional Fair 16 user/cell 96 112 6 96 240 118 26Cell Specific (6 cells) FSMB 5 Codes Round Robin / Proportional Fair 16 user/cell N/A N/A N/A 192 236 0 52

1* Shared Scheduler FSMB 15 Codes Round Robin / Proportional Fair 48 user/BTS 80 112 22 80 240 134 262* Shared Scheduler FSMB 15 Codes Round Robin / Proportional Fair 48 user/BTS 160 54 0 160 240 54 263* Shared Scheduler FSMB 15 Codes Round Robin / Proportional Fair 48 user/BTS 240 N/A N/A 240 188 0 524* Shared Scheduler FSMB 15 Codes Round Robin / Proportional Fair 48 user/BTS 320 N/A N/A 320 108 0 52

Cell Specific (2 cells) FSMB 15 Codes Round Robin / Proportional Fair 64 user/cell 160 54 0 160 240 54 26Cell Specific (3 cells) FSMB 15 Codes Round Robin / Proportional Fair 64 user/cell 240 N/A N/A 240 214 0 26Cell Specific (5 cells) FSMB 15 Codes Round Robin / Proportional Fair 64 user/cell 400 N/A N/A 400 28 0 52Cell Specific (6 cells) FSMB 15 Codes Round Robin / Proportional Fair 64 user/cell 480 N/A N/A 480 N/A N/A 52

Flexi BTS 1*FSMB (Max 240) Flexi BTS 2*FSMB (max.480 CE)

FSMB capacity with HSPA (RU10)

• When using one FSMB, there can is 112 CEs available for HSUPA

• When using two FSMB HSUPA/R99 can share up to 240 CEs and still there is dedicated capacity available for R99 only

– There can up to two HSDPA schedulers• When having dedicated HSDPA schedulers (1+1+1) there is

214 CEs available for HSUPA/R99

Page 90: 07 RN31547EN10GLA0 Capacity Dimensioning

92 © NSN Siemens Networks RN31547EN10GLK0For internal use

FSMC capacity with HSPA (RU10)

• FSMC enables multiple schedulers and via HSPA resource allocation enhancements it can leave more capacity for R99

HSDPA SchedulerSystem module # of codes Scheduling

# of HSDPA users

HSDPA CE usage

HSUPA/DCH CE (shared)

DCH only CE

HSDPA CE usage

HSUPA/DCH CE (shared)

DCH only CE CCH CE

1* Shared Scheduler FSMC 5 Codes Round Robin / Proportional Fair 16 user/BTS 32 144 4 32 144 184 included2* Shared Scheduler FSMC 5 Codes Round Robin / Proportional Fair 16 user/BTS 64 116 0 64 144 152 included3* Shared Scheduler FSMC 5 Codes Round Robin / Proportional Fair 16 user/BTS 96 84 0 96 144 120 included4* Shared Scheduler FSMC 5 Codes Round Robin / Proportional Fair 16 user/BTS 128 52 0 128 144 88 included

Cell Specific (3 cells) FSMC 5 Codes Round Robin / Proportional Fair 16 user/cell 96 84 0 96 144 120 includedCell Specific (6 cells) FSMC 5 Codes Round Robin / Proportional Fair 16 user/cell N/A N/A N/A 192 144 24 included

1* Shared Scheduler FSMC 15 Codes Round Robin / Proportional Fair 64 user/BTS 72 108 0 72 144 144 included2* Shared Scheduler FSMC 15 Codes Round Robin / Proportional Fair 64 user/BTS 144 36 0 144 144 72 included3* Shared Scheduler FSMC 15 Codes Round Robin / Proportional Fair 64 user/BTS 216 N/A N/A 216 144 0 included4* Shared Scheduler FSMC 15 Codes Round Robin / Proportional Fair 64 user/BTS 288 N/A N/A 288 72 0 included

Cell Specific (2 cells) FSMC 15 Codes Round Robin / Proportional Fair 64 user/cell 144 36 0 144 144 72 includedCell Specific (3 cells) FSMC 15 Codes Round Robin / Proportional Fair 64 user/cell 216 N/A N/A 216 144 0 includedCell Specific (5 cells) FSMC 15 Codes Round Robin / Proportional Fair 64 user/cell 360 N/A N/A 360 N/A N/A includedCell Specific (6 cells) FSMC 15 Codes Round Robin / Proportional Fair 64 user/cell 432 N/A N/A 432 N/A N/A included

Flexi BTS 1*FSMC (Max 180) Flexi BTS 2*FSMC (max.360 CE)

Page 91: 07 RN31547EN10GLA0 Capacity Dimensioning

93 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSDPA SchedulerSystem module # of codes Scheduling

# of HSDPA users

HSDPA CE usage

HSUPA/DCH CE (shared)

DCH only CE

HSDPA CE usage

HSUPA/DCH CE (shared)

DCH only CE CCH CE

1* Shared Scheduler FSMD 5 Codes Round Robin / Proportional Fair 16 user/BTS 32 144 220 32 144 616 included2* Shared Scheduler FSMD 5 Codes Round Robin / Proportional Fair 16 user/BTS 64 144 188 64 144 584 included3* Shared Scheduler FSMD 5 Codes Round Robin / Proportional Fair 16 user/BTS 96 144 156 96 144 552 included4* Shared Scheduler FSMD 5 Codes Round Robin / Proportional Fair 16 user/BTS 128 144 124 128 144 520 included

Cell Specific (3 cells) FSMD 5 Codes Round Robin / Proportional Fair 16 user/cell 96 144 156 96 144 552 includedCell Specific (6 cells) FSMD 5 Codes Round Robin / Proportional Fair 16 user/cell 192 144 60 192 144 456 included

1* Shared Scheduler FSMD 15 Codes Round Robin / Proportional Fair 64 user/BTS 72 144 180 72 144 576 included2* Shared Scheduler FSMD 15 Codes Round Robin / Proportional Fair 64 user/BTS 144 144 108 144 144 504 included3* Shared Scheduler FSMD 15 Codes Round Robin / Proportional Fair 64 user/BTS 216 144 36 216 144 432 included4* Shared Scheduler FSMD 15 Codes Round Robin / Proportional Fair 64 user/BTS 288 108 0 288 144 360 included

Cell Specific (2 cells) FSMD 15 Codes Round Robin / Proportional Fair 64 user/cell 144 144 108 144 144 504 includedCell Specific (3 cells) FSMD 15 Codes Round Robin / Proportional Fair 64 user/cell 216 144 36 216 144 432 includedCell Specific (5 cells) FSMD 15 Codes Round Robin / Proportional Fair 64 user/cell 360 36 0 360 144 288 includedCell Specific (6 cells) FSMD 15 Codes Round Robin / Proportional Fair 64 user/cell 432 N/A N/A 432 144 216 included

Flexi BTS 1*FSMD (Max 396 CE) Flexi BTS 2*FSMD (max.792 CE)

FSMD capacity with HSPA (RU10)

• FSMD enables very high usage of HSPA and leaving lots of capacity for R99

• With one FSMD you can have up to 4 shared HSDPA schedulers with 15 codes and 64 users/LCG

– Still there is room for HSUPA and R99• With one FSMD you can also enable dedicated schedulers for 5 cells• With two FSMD you can share easily two operators RAN with high HSDPA

usage

Page 92: 07 RN31547EN10GLA0 Capacity Dimensioning

94 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module Contents

• Traffic estimate and model

• Air interface dimensioning

• BTS HW capacity dimensioning

– Flexi WCDMA BTS capacity– CCCH dimensioning– DCH (R99) dimensioning– HSDPA Dimensioning– HSUPA Dimensioning– Flexi BTS Example– Ultrasite HW capacity

Rad

io n

etw

ork

Acc

ess

netw

ork

Basic Traffic Model

Air Interface Dimensioning

Channel Card Dimensioning

RNC Dimensioning

Iub Dimensioning

Iu Dimensioning

Iur Dimensioning

+

Topology Subscribers

Page 93: 07 RN31547EN10GLA0 Capacity Dimensioning

95 © NSN Siemens Networks RN31547EN10GLK0For internal use

Ultrasite BB capacity – Introduction

• Two BB cards, WSPA and WSPC• WSPA capacity 32 CE, WSPC capacity 64 CE• HSDPA/HSUPA supported only by WSPC

• CCCH capacity reservation different for WSPA and WSPC

• DCH capacity reservation as with Flexi FSMB

# cells/BTSCE required for CCCH

in UltrasiteWSPA WSPC

1…3 8 CE / cellmax 4 cells

164…6 327…9 48

10…12 64

Page 94: 07 RN31547EN10GLA0 Capacity Dimensioning

96 © NSN Siemens Networks RN31547EN10GLK0For internal use

Ultrasite BB capacity – HSDPA

• Baseband HW resource reservation for HSDPA Scheduler types

• 1..3 cells per LCG• Only single type of scheduler per BTS• Max 12 HSDPA cells/BTS

HSDPA SchedulerCE

reservationMax number of schedulers per

BTSMinimum baseband 32 CE / LCG 4

16 Users per cell, 1 scheduler / WSCP 32 CE / LCG* 12

Shared HSDPA Scheduler for BB efficiency

64 / LCG 4

48 Users per cell 64 / cell 12

Page 95: 07 RN31547EN10GLA0 Capacity Dimensioning

97 © NSN Siemens Networks RN31547EN10GLK0For internal use

WCDMA ULTRA BTS Base Band DimensioningExample for 1+1+1/ HSDPA activation

• Note that the table describes only BTS Baseband dimensioning. In practice also Iub, Air interface, etc has to be taken into account. Please see RAS dimensioning guide for more information.

• CEs required for associated HSDPA UL is not included in the table• Common Channels not included• 5 code phones assumed to be used in NW. Figures in (brackets) assumes 10 code phones

and figures in [brackets] assumes 15 code phones are used in NW

RAS06

Page 96: 07 RN31547EN10GLA0 Capacity Dimensioning

98 © NSN Siemens Networks RN31547EN10GLK0For internal use

HSUPA Channel Element dimensioning (Ultra)

Flexi BTS Combined minimum baseband L1 throughput of all usersMinimum Number of HSUPA UE per BTS 0 <1.4

Mbps 1.4 Mbps 2.8 Mbps 4.2 Mbps 5.6 Mbps 7 Mbps 8.4 Mbps

0 8 8 8 8 8 8 8 8

1 – 4 8 32 CE 32 CE 48 CE 64 CE 88 CE n/a n/a

5 – 8 8 32 CE 48 CE 48 CE 64 CE 88 CE 108 CE 128 CE9 - 12 8 48 CE 48 CE 64 CE 64 CE 88 CE 108 CE 128 CE13 - 16 8 48 CE 64 CE 88 CE 88 CE 88 CE 108 CE 128 CE17 - 20 8 64 CE 64 CE 88 CE 108 CE 108 CE 108 CE 128 CE21 - 24 8 64 CE 64 CE 88 CE 108 CE 128 CE 128 CE 128 CE

•Max. 2 WSPC can be allocated to HSUPA

•Amount of Channel Elements (CEs) allocated to get certain combined (of all UEs) BTS baseband L1 throughput vs. certain number of UEs:

Note! Step1: 32 CE includes 8 CE fixed reservation

Page 97: 07 RN31547EN10GLA0 Capacity Dimensioning

99 © NSN Siemens Networks RN31547EN10GLK0For internal use

Module 6 – Capacity Dimensioning

Summary

• The capacity dimensioning task includes multiple

phases

•Traffic estimation

•Traffic modelling

•Load estimation (air interface or BTS)

• Air interface capacity estimation requires number of

estimates related to radio environment


Recommended