+ All Categories
Home > Documents > 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting...

0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting...

Date post: 11-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
32
S1 Supporting Information for publication An investigation of the interactions of Eu 3+ and Am 3+ with uranyl minerals: implications for the storage of spent nuclear fuel Saptarshi Biswas, [a] Robin Steudtner, [b] Moritz Schmidt, [b] Cora McKenna, [c] Luis León Vintró, [d] Brendan Twamley, [a] and Robert J. Baker* [a] [a] School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland [b] Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, P.O. Box 510119, D-01314 Dresden, Germany [c] Department of Geology, School of Natural Sciences, University of Dublin, Trinity College, Dublin 2, Ireland [d] School Of Physics, University College Dublin, Belfield, Dublin 4, Ireland Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2016
Transcript
Page 1: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S1

Supporting Information for publication

An investigation of the interactions of Eu3+ and

Am3+ with uranyl minerals: implications for the

storage of spent nuclear fuel

Saptarshi Biswas,[a] Robin Steudtner,[b] Moritz Schmidt,[b] Cora McKenna,[c] Luis León

Vintró,[d] Brendan Twamley,[a] and Robert J. Baker*[a]

[a] School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland

[b] Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, P.O. Box

510119, D-01314 Dresden, Germany

[c] Department of Geology, School of Natural Sciences, University of Dublin, Trinity

College, Dublin 2, Ireland

[d] School Of Physics, University College Dublin, Belfield, Dublin 4, Ireland

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2016

Page 2: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S2

450 475 500 525 550 575

450 475 500 525 550 575

wavelength (nm)

andersonite

liebigite

meta-autunite

meta-torbernite

schoepite

compreignacite

emis

sion

inte

nsity

(a.u

)

becquerelite

Figure S1. Emission spectra of uranyl minerals used in this study (ex = 340 nm, T= 300 K). Spectra are identical to that reported in the literature (becquerelite;[1] compreignacite[2]; schoepite[3]; meta-torbernite[3]; meta-autunite[3]; liebigite[3] andersonite[4]). Cuprosklodowskite is non-emissive at room temperature consistent with the literature.[5]

Page 3: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S3

460 480 500 520 540 560

inte

nsity

(a.u

.)

wavelength (nm)

300 320 340 360 380 400 420 440

inte

nsity

(a.u

.)

wavelength (nm)

Figure S2. Uranyl emission spectrum of grimselite (ex = 380 nm; T = 300 K). Insert shows the excitation spectrum (em = 503 nm).

Page 4: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S4

Figure S3. Solid state structure of becquerelite along the crystallographic b axis from Ref [6]. Colour code – U = blue, O = red, Ca = green.

Page 5: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S5

400 425 450 475 500 525 550 575 600 625 650 500 525 550 575 600 625 650 675 700 725

400 425 450 475 500 525 550 575 600 625 650 500 525 550 575 600 625 650 675 700 725

375 400 425 450 475 500 525 550 575 600 625 650 675 700 500 525 550 575 600 625 650 675 700 725

inte

nsity

(a.u

.) Grimselite ex = 325 nm Grimseliteex= 450 nm

inte

nsity

(a.u

.) Andersonite ex = 380 nm Andersonite ex = 450 nm

inte

nsity

(a.u

)

wavelength (nm)

Becquerelite ex = 390 nm

wavelength (nm)

Becquerelite ex = 450 nm

Figure S4. Solid-state emission spectra of the Eu containing minerals displaying the uranyl region at two different excitation wavelengths.

Page 6: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S6

350 400 450 500 550 350 400 450 500 550

350 400 450 500 550 350 400 450 500 550

inte

nsity

(a.u

.)

A

inte

nsity

(a.u

.)

B

inte

nsity

(a.u

.)

wavelength (nm)

C

inte

nsity

(a.u

.)

wavelength (nm)

D

Figure S5. Excitation spectra of Eu containing minerals (em = 615 nm): (a) becquerelite; (b) leigbigite; (c) andersonite; (d) grimselite.

Page 7: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S7

300 600 900 1200

Becquerelite

Wavenumber (cm -1)

Eu+Becquerelite

Ram

an In

tens

ity

D-Becquerelite

D-Eu+Becquerelite

Figure S6. Raman Spectra of becquerelite and Eu incorporated becquerelite.

Page 8: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S8

900 1200 1500

Becquerelite

Wavenumber (cm-1)

Eu+Becquerelite Tr

ansm

ittan

ce

D-Becquerelite

D-Eu+Becquerelite

Figure S7. IR Spectra of becquerelite and Eu incorporated becquerelite.

Page 9: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S9

Figure S8. SEM images of becquerelite (left) and Eu3+ incorporated becquerelite (right). Scale bar = 10 m.

Figure S9. EDX measurements for Eu incorporated becquerelite (C signal arises from the carbon coating treatment).

Page 10: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S10

576 577 578 579 580

Andersonite Becquerlite Grimselite

Wavelength / nm

Figure S10. Low temperature excitation spectra of grimselite, andersonite and becquerelite (em = ∑Intensity 605 – 630 nm).

Page 11: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S11

Figure S11. Solid state structure of liebigite along the crystallographic a axis, taken from Ref [7]. Colour code – U = blue, O = red, Ca = green.

Page 12: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S12

Figure S12. Solid state structure of andersonite along the crystallographic c axis, taken from Ref [8]. Colour code – U = blue, O = red, Ca = green, Na = purple.

Page 13: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S13

Figure S13. Solid state structure of Grimselite along the crystallographic c axis, taken from Ref [9].

Page 14: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S14

Figure S14. SEM images of andersonite (left) and Eu3+ incorporated andersonite (right). Scale bar = 10 m.

Figure S15. EDX measurements for Eu Incorporated andersonite.

Page 15: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S15

300 600 900 1200

Andersonite

Wavenumber (cm-1)

Eu+Andersonite Ram

an In

tens

ity

D-Andersonite

D-Eu+Andersonite

Figure S16. Raman Spectra of andersonite and Eu incorporated andersonite.

Page 16: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S16

900 1200 1500

Andersonite

Wavenumber (cm-1)

D-Andersonite

Eu+Andersonite

Tran

smitt

ance

D-Eu+Andersonite

Figure S17. IR Spectra of andersonite and Eu incorporated andersonite.

Page 17: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S17

600 605 610 615 620 625 630 635

0

50000

100000

150000

200000

250000

300000

350000

inte

nsity

(a. u

.)

wavelength (nm)

D Fit Peak 1 Fit Peak 2 Fit Peak 3 Fit Peak 4 Cumulative Fit Peak

Model GaussianEquation y = y0 + A/(w*sqrt(PI/(4*ln(2)))) * exp(-4*ln(2)*(x

-xc)^2/w^2)Reduced Chi-Sqr

4.01653E6

Adj. R-Square 0.99968Value Standard Error

Peak1(D) y0 9058.09892 125.99385Peak1(D) xc 611.98172 0.02126Peak1(D) A 497481.68099 11705.37926Peak1(D) w 2.73814 0.03356Peak2(D) y0 9058.09892 125.99385Peak2(D) xc 614.02522 0.01909Peak2(D) A 218865.01968 14150.39567Peak2(D) w 1.93893 0.06019Peak3(D) y0 9058.09892 125.99385Peak3(D) xc 615.84391 0.04676Peak3(D) A 140827.40661 9722.52812Peak3(D) w 2.02669 0.06383Peak4(D) y0 9058.09892 125.99385Peak4(D) xc 617.25515 0.01909Peak4(D) A 2.07153E6 11166.26431Peak4(D) w 8.48687 0.02598

Figure S18. Curve fitting analysis for grimselite at 10 K.

Page 18: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S18

Figure S19. SEM image of grimselite (left) and Eu3+ contacted grimselite (right). Scale bar = 10 m.

Figure S20. EDX measurements for Eu incorporated grimselite.

Page 19: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S19

300 600 900 1200

Grimselite

Wavenumber (cm-1)

Eu+Grimselite

D-Grimselite

Ram

an In

tens

ity

D-Eu+Grimselite

Figure S21. Raman spectra of grimselite and Eu incorporated grimselite.

Page 20: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S20

900 1200 1500

Grimselite

Wavenumber (cm-1)

Eu+Grimselite Tr

ansm

ittan

ce D-Grimselite

D-Eu+Grimselite

Figure S22. IR spectra of grimselite and Eu incorporated grimselite.

Page 21: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S21

580 600 620 680 700

Inte

nsity

(a. u

.)

Wavelength (nm)

Figure S23. Solid-sate emission spectrum of Eu3+ incorporated liebigite at room temperature

(ex = 392 nm).

Page 22: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S22

Figure S24. EDX measurements for Eu incorporated liebigite.

Page 23: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S23

Figure S25. SEM image of Eu incorporated liebigite. Scale bar = 10 m.

Page 24: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S24

300 600 900 1200

Liebigite

Wavenumber (cm-1)

Eu+Liebigite

D-Liebigite

Ram

an In

tens

ity

D-Eu+Liebigite

Figure S26. Raman Spectra of liebigite and Eu incorporated liebigite.

Page 25: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S25

900 1200 1500

Liebigite

Wavenumber (cm-1)

Eu+Liebigite

D-Liebigite

Tran

smitt

ance

D-Eu+Liebigite

Figure S27. IR Spectra of liebigite and Eu incorporated liebigite.

Page 26: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S26

1000 1500 2000 2500 3000 3500 4000

60

70

80

90

100

% T

wavenumber (cm-1)

Figure S28. IR spectrum of “CaNa[UO2(NO3)3]”.

200 400 600 800 1000 1200 1400 1600 18000

500

1000

1500

2000

2500

3000

3500

inte

nsity

(a. u

.)

wavenumber (cm-1)

Figure S29. Raman spectrum of “CaNa[UO2(NO3)3]”.

Page 27: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S27

Figure S30. Typical Gamma-spectrum obtained for 241Am incorporation experiments (in this case Andersonite). The peak at 59.5 keV (marked with an *) was used for the quantification of activity; the other peaks are due to uranium and its decay products.

*

Page 28: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S28

200 400 600 800 1000 1200

200 400 600 800 1000 1200

Wavenumber (cm-1)

Andersonite

Becquerelite

Ram

an in

tens

ity

Compreignacite

Grimselite

Liebigite

Figure S31. Raman spectra of 241Am(III) incorporated minerals.

Page 29: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S29

675 680 685 690 695 700

675 680 685 690 695 700

Wavelength (nm)

Andersonite

Liebigite

Emis

sion

Inte

nsity

(a.u

.) Compreignacite

Grimselite

Figure S32. Solid-sate emission spectrum of 241Am3+ incorporated minerals at room temperature (ex

= 504 nm).

Page 30: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S30

400 425 450 475 500 525 550 575 600

inte

nsity

(a.u

.)

wavelength (nm)

Figure S33. Excitation spectrum of 241Am3+ incorporated minerals at room temperature (em = 687 nm).

Page 31: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S31

Mineral v1(U=O)cm-1

3(U=O)cm-1

d(U=O)raman(Å)

d(U=O)IR(Å)

d(U=O)badgers(Å)

fmdyne Å-1

Becquerelite 796829

872908

1.8151.782

1.8051.779

1.7741.758

5.7146.196

Becquerelite + Eu

796822 910 1.815

1.789 1.777 1.760 6.155

andersonite 806832

913899

1.7791.805

1.7751.785

1.7571.766

6.2525.961

Andersonite + Eu 833 895 1.778 1.788 1.760 6.143

grimselite 815 876 1.796 1.802 1.769 5.883

grimselite + Eu 813 901 1.798 1.784 1.764 6.027

Liebigite 829 870906 1.782 1.807

1.780 1.766 5.954

Liebigite + Eu 829 870

906 1.782 1.8071.780 1.766 5.954

Table S1. Vibrational data for the mineral and their Eu(III) included complexes and the results of structural analysis.

Page 32: 0DWHULDO (6, IRU'DOWRQ7UDQVDFWLRQV 7KLV with uranyl ... · S1 An investigationSupporting ofInformation the interactions for publication of Eu3+ and Am3+ with uranyl minerals: implications

S32

References

[1] S. Amayri, T. Arnold, H. Förstendorf, G. Geipel, G. Bernhard, Can. Mineral. 2004, 42, 953-962.

[2] T. Arnold, N. Baumann, Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy 2009, 71A, 1964-1968.

[3] Z. Wang, J. M. Zachara, C. Liu, P. L. Gassman, A. R. Felmy, S. B. Clark, Radiochim. Acta 2008, 96, 591-598.

[4] S. Amayri, T. Arnold, T. Reich, H. Förstendorf, G. Geipel, G. Bernhard, A. Massanek, Environ. Sci. Technol. 2004, 38, 6032-6036.

[5] Z. Wang, J. M. Zachara, P. L. Gassman, C. Lui, O. Qafoku, W. Yantasee, J. G. Catalano, Geochim, Cosmochim. Acta 2005, 69, 1391.

[6] P.C. Burns and Y. Li, Amer. Mineral. 2002, 87, 550-557.

[7] K. Mereiter, Tscher. Miner. Petrog. 1982, 30, 277-288.

[8] A. Coda, A. Della Giusta, V.Tazzoli, Acta Crystallogr. 1981, B37, 1496-500.

[9] Y. Li, P. C. Burns, Can. Mineral. 2001, 39, 1147-1151.


Recommended