+ All Categories
Home > Documents > 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Date post: 21-Dec-2015
Category:
View: 290 times
Download: 5 times
Share this document with a friend
Popular Tags:
70
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Transcript
Page 1: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Page 2: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

ba

Draw the location of all 2-fold symmetry axes using the ellipse symbol.

Draw a unit cell.

How many molecules in the unit cell? asymmetric unit?

Estimate (x,y) coordinates of oxygen atom in fractions of a unit cell. Use the ruler provided.

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li H

Li

H

Li

H

Li

H

LiH

Li

H

Li

H

Li

H

LiH

Li

Page 3: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

ba

Two-folds

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li H

Li

H

Li

H

Li

H

LiH

Li

H

Li

H

Li

H

LiH

Li

Page 4: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

ba

Unit Cell

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li H

Li

H

Li

H

Li

H

LiH

Li

H

Li

H

Li

H

LiH

Li

Choice 1

Choice 2

Choice 3

Choice 4

Page 5: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

4 Choices of originH

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

ba

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

Choice 1 Choice 2

Choice 3 Choice 4

Page 6: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

ba

Which plane group?

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li H

Li

H

Li

H

Li

H

LiH

Li

H

Li

H

Li

H

LiH

Li

Page 7: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

X=0.2

What are the coordinates of the oxygen using origin choice 1?

ba

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li H

Li

H

Li

H

Li

H

LiH

Li

H

Li

H

Li

H

LiH

Li

X=0.20Y=0.20

1 2 3 41

2

3

Page 8: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li H

Li

H

Li

H

Li

H

LiH

Li

H

Li

H

Li

H

LiH

Li

ba

X=0.20Y=0.20

What are the coordinates of the other oxygen in the unit cell?

X=0.80Y=0.80

Symmetry operators in plane group p2X, Y-X,-Y

1

2

3

4

1 2 3 4

Page 9: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

ba

Always allowed to add or subtract multiples of 1.0

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li H

Li

H

Li

H

Li

H

LiH

Li

H

Li

H

Li

H

LiH

Li

X=0.2Y=0.2

X=1.8Y=0.8

X=1.2Y=0.2

X=0.8Y=0.8

X=2.2Y=0.2

X=2.8Y=0.8

Page 10: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li H

Li

H

Li

H

Li

H

LiH

Li

H

Li

H

Li

H

LiH

Li

What would be the oxygen coordinates if we had drawn the unit cell with origin choice 2?b

a

1 2 3

X=0.70Y=0.20

1

2

3

4

Page 11: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Oxygen coordinates with origin choice 3?

X=0.30Y=0.30

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li H

Li

H

Li

H

Li

H

LiH

Li

H

Li

H

Li

H

LiH

Li

ba

1 2 31

2

3

Page 12: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li

H

Li H

Li

H

Li

H

Li

H

LiH

Li

H

Li

H

Li

H

LiH

Li

ba

Oxygen coordinates with origin choice 4?

1 2 3 4

X=0.80Y=0.30

1

2

3

Page 13: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Cheshire operators

• X , Y

• X+.5, Y

• X+.5, Y+.5

• X , Y+.5

X=0.20Y=0.20

X=0.70Y=0.20

X=0.30Y=0.30

X=0.80Y=0.30

Choice 1

Choice 2

Choice 3

Choice 4

Page 14: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

The 4 choices of origin are equally valid but once a choice is made, you must remain consistent.

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

ba

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li

H

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

H

H

Li

Li H

H

Li

Li H

H

Li

Li

Choice 1 Choice 2

Choice 3 Choice 4

X1=0.20Y1=0.20

X1=0.70Y1=0.20

X1=0.80Y1=0.30

X1=0.30Y1=0.30

X2=0.80Y2=0.80

X2=0.30Y2=0.80

H

Li

H

Li

X2=0.70Y2=0.70

X2=0.20Y2=0.70

Page 15: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

What did we learn?

• There are multiple valid choices of origin for a unit cell.

• The values of x,y,z for the atoms will depend on the choice of origin.

• To compare atomic coordinates between structures solved with different origins, a Cheshire operator must be applied.

• Adding 1 to x, y, or z, or any combination of x, y, and z is valid. It is just a unit cell translation.

Page 16: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Interpreting difference Patterson Maps in Lab this week!

• Calculate an isomorphous difference Patterson Map (native-heavy atom). We collected 16 derivative data sets in lab (different heavy atoms at different concentrations)– HgCl2 Hg(Acetate)2 PCMBS– PIP– EuCl3 GdCl3 SmCl3

• How many heavy atom sites per asymmetric unit, if any?

• What are the positions of the heavy atom sites?• Let’s review how heavy atom positions can be

calculated from difference Patterson peaks.

Page 17: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Patterson synthesis

P(uvw)=?hkl cos2(hu+kv+lw -)

hkl

Patterson synthesis

P(uvw)=Ihkl cos2(hu+kv+lw -)

hkl

Patterson Review

A Patterson synthesis is like a Fourier synthesis except for what two variables?

Fourier synthesis

(xyz)=|Fhkl| cos2(hx+ky+lz -hkl)

hkl

Page 18: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Hence, Patterson density map= electron density map convoluted

with its inverted image.

Patterson synthesis

P(uvw)=Ihkl cos2(hu+kv+lw)Remembering Ihkl=Fhkl•Fhkl*

And Friedel’s law Fhkl*= F-h-k-l P(uvw)=FourierTransform(Fhkl•F-h-k-l)

P(uvw)=(uvw) (-u-v-w)

Page 19: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Significance?

P(uvw)=(uvw) (-u-v-w)

The Patterson map contains a peak for every interatomic vector in the unit cell.

The peaks are located at the head of the interatomic vector when its tail is placed at the origin.

Page 20: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

a

b

Electron Density vs. Patterson Density

H H

H H

H HH H

Electron Density Mapsingle water molecule in the unit cell

Patterson Density Mapsingle water molecule convoluted with its inverted image.

a

bLay down n copies of the unit cell at the origin, where n=number of atoms in unit cell.

1

23

For copy n, atom n is placed at the origin.A Patterson peak appears under each atom.

Page 21: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Every Patterson peak corresponds to an inter-atomic vector

H H

Electron Density Mapsingle water molecule in the unit cell

Patterson Density Mapsingle water molecule convoluted with its inverted image.

a

b

3 sets of peaks:

Length O-HWhere?

Length H-HWhere?

Length zero Where?

How many peaks superimposed at origin?

How many non-origin peaks?

1

23H H

H HH H

Page 22: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Patterson maps are more complicated to interpret than electron density maps.

Imagine the complexity of a Patterson map of a protein

Electron Density Mapsingle water molecule in the unit cell

Patterson Density Mapsingle water molecule convoluted with its inverted image.

a

b

Unit cell repeats fill out rest of cell with peaksH H

H H

Page 23: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Patterson maps have an additional center of symmetry

Electron Density Mapsingle water molecule in the unit cell

Patterson Density Mapsingle water molecule convoluted with its inverted image.

a

b

H H H H

H H H H

plane group pm plane group p2mm

Page 24: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Calculating X,Y,Z coordinates from Patterson peak positions (U,V,W)

Three Examples

1. Exceedingly simple 2D example

2. Straightforward-3D example, Pt derivative of polymerase in space group P21212

3. Advanced 3D example, Hg derivative of proteinase K in space group P43212.

Page 25: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Plane group p2

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H H

H

H

H

H

H

H

HH

H

H

H

H

H

H

HH

H

b

Page 26: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Let’s consider only oxygen atoms

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H H

H

H

H

H

H

H

HH

H

H

H

H

H

H

HH

H

b

Analogous to a difference Patterson map where we subtract out the contribution of the protein atoms, leaving only the heavy atom contribution.

Leaves us with a Patterson containing only self vectors (vectors between equivalent atoms related by crystal symmetry). Unlike previous example.

Page 27: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

How many faces?

•In unit cell?•In asymmetric unit?•How many peaks will be in the Patterson map?•How many peaks at the origin?•How many non-origin peaks?

(0,0) ab

Page 28: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Symmetry operators in plane group p2

(0,0) ab

(0.2,0.3)

(-0.2,-0.3)

SYMMETRY OPERATORSFOR PLANE GROUP P21) x,y2) -x,-y

Coordinates of one smiley face are given as 0.2, 0.3. Coordinates of other smiley faces are related by symmetry operators for p2 plane group.

For example, symmetry operators of plane group p2 tell us that if there is an atom at (0.2, 0.3), there is a symmetry related atom at (-x,-y) = (-0.2, -0.3).

But, are these really the coordinates of the second face in the unit cell?

Yes! Equivalent by unit cell translation.(-0.2+1.0, -0.3+1.0)=(0.8, 0.7)

Page 29: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Patterson in plane group p2Lay down two copies of unit cell at origin, first copy with smile 1 at origin, second copy with simile 2 at origin.

(0,0) ab

a(0,0)b

(0.2,0.3)

(-0.2,-0.3)

SYMMETRY OPERATORSFOR PLANE GROUP P21) x,y2) -x,-y

PATTERSON MAP2D CRYSTAL

What are the coordinates of this Patterson self peak? (a peak between atoms related by xtal sym)What is the length of the vector between faces?

Patterson coordinates (U,V) are simply symop1-symop2. Remember this bridge! symop1 X , Y = 0.2, 0.3

symop2 -(-X,-Y) = 0.2, 0.3 2X, 2Y = 0.4, 0.6 = u, v

Page 30: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Patterson in plane group p2

(0,0) ab

a(0,0)b

(0.2,0.3)

(-0.2,-0.3)

SYMMETRY OPERATORSFOR PLANE GROUP P21) x,y2) -x,-y

PATTERSON MAP2D CRYSTAL

(0.4, 0.6)

(-0.4, -0.6)

(0.6, 0.4)

Page 31: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Patterson in plane group p2

a(0,0)b

PATTERSON MAP

(0.4, 0.6)

If you collected data on this crystaland calculated a Patterson mapit would look like this.

(0.6, 0.4)

Page 32: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Now I’m stuck in Patterson space. How do I get back to x,y coordinates?

a(0,0)b

PATTERSON MAP

(0.4, 0.6)

Remember the Patterson Peak positions (U,V) correspond to vectors between symmetry related smiley faces in the unit cell. That is, differences between our friends the space group operators.

SYMMETRY OPERATORSFOR PLANE GROUP P21) x,y2) -x,-y

x , y -(-x, –y) 2x , 2y u=2x, v=2y

symop #1symop #2

(0.6, 0.4)

plug in Patterson valuesfor u and v to get x and y.

Page 33: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Now I’m stuck in Patterson space. How do I get back to x,y, coordinates?

a(0,0)b

PATTERSON MAP

(0.4, 0.6)

SYMMETRY OPERATORSFOR PLANE GROUP P21) x,y2) -x,-y

x y-(-x –y)2x 2y

symop #1symop #2

set u=2x v=2y plug in Patterson valuesfor u and v to get x and y.

u=2x0.4=2x0.2=x

v=2y0.6=2y0.3=y

Page 34: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Hurray!!!!

SYMMETRY OPERATORSFOR PLANE GROUP P21) x,y2) -x,-y

x y-(-x –y)2x 2y

symop #1symop #2

set u=2x v=2y plug in Patterson valuesfor u and v to get x and y.

u=2x0.4=2x0.2=x

v=2y0.6=2y0.3=y

HURRAY! we got back the coordinatesof our smiley faces!!!!

(0,0) ab

(0.2,0.3)

2D CRYSTAL

Page 35: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Devil’s advocate: What if I chose u,v= (0.6,0.4) instead of (0.4,0.6) to solve for

smiley face (x,y)?

a(0,0)b

PATTERSON MAP

(0.4, 0.6)

(0.6, 0.4)

using Patterson (u,v) values 0.4, 0.6to get x and y.

u=2x0.4=2x0.2=x

v=2y0.6=2y0.3=y

u=2x0.6=2x0.3=x

v=2y0.4=2y0.2=y

using Patterson (u,v) values 0.6, 0.4to get x and y.

These two solutions do not give the same x,y? What is going on??????

Page 36: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Arbitrary choice of origin

• Original origin choice• Coordinates x=0.2, y=0.3.

(0,0) ab

(0.2,0.3)

(-0.2,-0.3)

(0.8,0.7) (0.3,0.2)

(-0.3,-0.2)

(0.7,0.8)

(0,0) ab

• New origin choice• Coordinates x=0.3, y=0.2.

Related by 0.5, 0.5 (x,y) shift

Page 37: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Recap• Patterson maps are the convolution of the electron density

of the unit cell with its inverted image.• The location of each peak in a Patterson map corresponds

to the head of an inter-atomic vector with its tail at the origin.

• There will be n2 Patterson peaks total, n peaks at the origin, n2-n peaks off the origin.

• Peaks produced by atoms related by crystallographic symmetry operations are called self peaks.

• There will be one self peak for every pairwise difference between symmetry operators in the crystal.

• Written as equations, these differences relate the Patterson coordinates u,v,w to atom positions, x,y,z.

• Different crystallographers may arrive at different, but equally valid values of x,y,z that are related by an arbitrary choice of origin or unit cell translation.

Page 38: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Polymerase example, P21212

• Difference Patterson map, native-Pt derivative.• Where do we expect to find self peaks?• Self peaks are produced by vectors between atoms

related by crystallographic symmetry.• From international tables of crystallography, we find

the following symmetry operators.1. X, Y, Z2. -X, -Y, Z3. 1/2-X,1/2+Y,-Z4. 1/2+X,1/2-Y,-Z• Everyone, write the equation for the location of the self

peaks. 1-2, 1-3, and 1-4 Now!

Page 39: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Self Vectors

1. X, Y, Z2. -X, -Y, Z3. 1/2-X,1/2+Y,-Z4. 1/2+X,1/2-Y,-Z

1. X, Y, Z2.-X, -Y, Zu=2x, v=2y, w=0

1. X, Y, Z3. ½-X,½+Y,-Zu=2x-½,v=-½,w=2z

1. X, Y, Z4. ½+X,½-Y,-Zu=-½,v=2y-½,w=2z

Harker sections, w=0, v=1/2, u=1/2

Page 40: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Isomorphous difference Patterson map (Pt derivative)

W=0

V=1/2

U=1/2

1. X, Y, Z2.-X, -Y, Zu=2x, v=2y, w=0

1. X, Y, Z3. ½-X,½+Y,-Zu=2x-½,v=-½,w=2z

1. X, Y, Z4. ½+X,½-Y,-Zu=-½,v=2y-½,w=2z

Solve for x, y using w=0 Harker sect.

Page 41: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Harker section w=0

W=0 1. X, Y, Z2.-X, -Y, Zu=2x, v=2y, w=0

0.168=2x0.084=x

0.266=2y0.133=y

Does z=0? No!

Solve for x, z using v=1/2 Harker sect.

Structure Lab
No, it just means that the two atoms related by this symmetry operator had the same z coordinate. You dont know what the coordinate is.
Page 42: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Harker Section v=1/2

V=1/2

1. X, Y, Z3. ½-X,½+Y,-Zu=2x-½,v=-½,w=2z

0.333=2x-1/20.833=2x0.416=x

0.150=2z0.075=z

Page 43: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Resolving ambiguity in x,y,z

• From w=0 Harker section x1=0.084, y1=0.133• From v=1/2 Harker section, x2=0.416, z2=0.075• Why doesn’t x agree between solutions? They

differ by an origin shift. Choose the proper shift to bring them into agreement.

• What are the rules for origin shifts? Cheshire symmetry operators relate the different choices of origin. You can apply any of the Cheshire symmetry operators to convert from one origin choice to another.

Page 44: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Cheshire symmetry

1. X, Y, Z2. -X, -Y, Z3. -X, Y, -Z4. X, -Y, -Z5. -X, -Y, -Z6. X, Y, -Z7. X, -Y, Z8. -X, Y, Z

9. 1/2+X, Y, Z10. 1/2-X, -Y, Z11. 1/2-X, Y, -Z12. 1/2+X, -Y, -Z13. 1/2-X, -Y, -Z14. 1/2+X, Y, -Z15. 1/2+X, -Y, Z16. 1/2-X, Y, Z

17. X,1/2+Y, Z18. -X,1/2-Y, Z19. -X,1/2+Y, -Z20. X,1/2-Y, -Z21. -X,1/2-Y, -Z22. X,1/2+Y, -Z23. X,1/2-Y, Z24. -X,1/2+Y, Z

25. X, Y,1/2+Z26. -X, -Y,1/2+Z27. -X, Y,1/2-Z28. X, -Y,1/2-Z29. -X, -Y,1/2-Z30. X, Y,1/2-Z31. X, -Y,1/2+Z32. -X, Y,1/2+Z

33. 1/2+X,1/2+Y, Z34. 1/2-x,1/2-Y, Z 35. 1/2-X,1/2+Y, -Z36. 1/2+X,1/2-Y, -Z37. 1/2-X,1/2-Y, -Z38. 1/2+X,1/2+Y, -Z39. 1/2+X,1/2-Y, Z40. 1/2-X,1/2+Y, Z

41. 1/2+X, Y,1/2+Z42. 1/2-X, -Y,1/2+Z43. 1/2-X, Y,1/2-Z44. 1/2+X, -Y,1/2-Z45. 1/2-X, -Y,1/2-Z46. 1/2+X, Y,1/2-Z47. 1/2+X, -Y,1/2+Z48. 1/2-X, Y,1/2+Z

49. X,1/2+Y,1/2+Z50. -X,1/2-Y,1/2+Z51. -X,1/2+Y,1/2-Z52. X,1/2-Y,1/2-Z53. -X,1/2-Y,1/2-Z54. X,1/2+Y,1/2-Z55. X,1/2-Y,1/2+Z56. -X,1/2+Y,1/2+Z

57. 1/2+X,1/2+Y,1/2+Z58. 1/2-X,1/2-Y,1/2+Z59. 1/2-X,1/2+Y,1/2-Z60. 1/2+X,1/2-Y,1/2-Z61. 1/2-X,1/2-Y,1/2-Z62. 1/2+X,1/2+Y,1/2-Z63. 1/2+X,1/2-Y,1/2+Z64. 1/2-X,1/2+Y,1/2+Z

From w=0 Harker section xorig1=0.084, yorig1=0.133From v=1/2 Harker section, xorig2=0.416, zorig2=0.075

Apply Cheshire symmetry operator #10To x1 and y1 Xorig1=0.084½-xorig1=0.5-0.084½-xorig1=0.416 =xorig2

yorig1=0.133-yorig1=-0.133=yorig2

Hence,Xorig2=0.416, yorig2=-0.133, zorig2=0.075

Page 45: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Advanced case,Proteinase K in space group P43212

• Where are Harker sections?

Page 46: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.
Page 47: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.
Page 48: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Symmetry operator 2-Symmetry operator 4

-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼

Page 49: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Symmetry operator 2-Symmetry operator 4

-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼

Plug in u. u=-½-x-y0.18=-½-x-y0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y

Add two equations and solve for y.

0.68=-x-y+(0.72= x-y) 1.40=-2y -0.70=y

Plug y into first equation and solve for x.

0.68=-x-y 0.68=-x-(-0.70) 0.02=x

Page 50: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Symmetry operator 2-Symmetry operator 4

-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼

Plug in u. u=-½-x-y0.18=-½-x-y0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y

Add two equations and solve for y.

0.68=-x-y+(0.72= x-y) 1.40=-2y -0.70=y

Plug y into first equation and solve for x.

0.68=-x-y 0.68=-x-(-0.70) 0.02=x

Page 51: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Symmetry operator 2-Symmetry operator 4

-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼

Plug in u. u=-½-x-y0.18=-½-x-y0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y

Add two equations and solve for y.

0.68=-x-y+(0.72= x-y) 1.40=-2y -0.70=y

Plug y into first equation and solve for x.

0.68=-x-y 0.68=-x-(-0.70) 0.02=x

Page 52: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Symmetry operator 2-Symmetry operator 4

-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼

Plug in u. u=-½-x-y0.18=-½-x-y0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y

Add two equations and solve for y.

0.68=-x-y+(0.72= x-y) 1.40=-2y -0.70=y

Plug y into first equation and solve for x.

0.68=-x-y 0.68=-x-(-0.70) 0.02=x

Page 53: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.
Page 54: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Symmetry operator 3-Symmetry operator 6

½-y ½+x ¾+z - ( -y -x ½-z) ½ ½+2x ¼+2z

Plug in v. v= ½+2x 0.48= ½+2x-0.02=2x-0.01=x Plug in w. w= ¼+2z 0.24= ¼+2z -0.01=2z -0.005=z

Page 55: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Symmetry operator 3-Symmetry operator 6

½-y ½+x ¾+z - ( -y -x ½-z) ½ ½+2x ¼+2z

Plug in v. v= ½+2x 0.46= ½+2x-0.04=2x-0.02=x Plug in w. w= ¼+2z 0.24= ¼+2z -0.01=2z -0.005=z

Page 56: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Symmetry operator 3-Symmetry operator 6

½-y ½+x ¾+z - ( -y -x ½-z) ½ ½+2x ¼+2z

Plug in v. v= ½+2x 0.46= ½+2x-0.04=2x-0.02=x Plug in w. w= ¼+2z 0.24= ¼+2z -0.01=2z -0.005=z

Page 57: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

From step 3Xstep3= 0.02 ystep3=-0.70 zstep3=?.???From step 4Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005

Clearly, Xstep3 does not equal Xstep4 .

Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02.For example, let’s use: -x, -y, zAnd apply it to all coordinates in step 3.xstep3-transformed = - (+0.02) = -0.02ystep3-transformed = - (- 0.70) = +0.70 Now xstep3-transformed = xstep4

And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z:Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005

Or simply, x=-0.02, y=0.70, z=-0.005

The x, y coordinate in step 3 describes one of the heavy atom positions in the unit cell. The x, z coordinate in step 4 describes a symmetry related copy. We can’t combine these coordinates directly. They don’t describe the same atom. Perhaps they evenreferred to different origins.

How can we transform x, y from step 3 so it describesthe same atom as x and z in step 4?

Page 58: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

From step 3Xstep3= 0.02 ystep3=-0.70 zstep3=?.???From step 4Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005

Clearly, Xstep3 does not equal Xstep4 .

Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02.For example, let’s use: -x, -y, zAnd apply it to all coordinates in step 3.xstep3-transformed = - (+0.02) = -0.02ystep3-transformed = - (- 0.70) = +0.70 Now xstep3-transformed = xstep4

And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z:Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005

Or simply, x=-0.02, y=0.70, z=-0.005

Cheshire Symmetry Operators for space group P43212

X, Y, Z -X, -Y, Z -Y, X, 1/4+Z Y, -X, 1/4+Z Y, X, -Z -Y, -X, -Z X, -Y, 1/4-Z -X, Y, 1/4-Z

1/2+X, 1/2+Y, Z 1/2-X, 1/2-Y, Z 1/2-Y, 1/2+X, 1/4+Z 1/2+Y, 1/2-X, 1/4+Z 1/2+Y, 1/2+X, -Z 1/2-Y, 1/2-X, -Z 1/2+X, 1/2-Y, 1/4-Z 1/2-X, 1/2+Y, 1/4-Z

X, Y, 1/2+Z -X, -Y, 1/2+Z -Y, X, 3/4+Z Y, -X, 3/4+Z Y, X, 1/2-Z -Y, -X, 1/2-Z X, -Y, 3/4-Z -X, Y, 3/4-Z

1/2+X, 1/2+Y, 1/2+Z 1/2-X, 1/2-Y, 1/2+Z 1/2-Y, 1/2+X, 3/4+Z 1/2+Y, 1/2-X, 3/4+Z 1/2+Y, 1/2+X, 1/2-Z 1/2-Y, 1/2-X, 1/2-Z 1/2+X, 1/2-Y, 3/4-Z 1/2-X, 1/2+Y, 3/4-Z

Page 59: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

From step 3Xstep3= 0.02 ystep3=-0.70 zstep3=?.???From step 4Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005

Clearly, Xstep3 does not equal Xstep4 .

Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02.For example, let’s use: -x, -y, zAnd apply it to all coordinates in step 3.xstep3-transformed = - (+0.02) = -0.02ystep3-transformed = - (- 0.70) = +0.70 Now xstep3-transformed = xstep4

And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z:Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005

Or simply, x=-0.02, y=0.70, z=-0.005

Cheshire Symmetry Operators for space group P43212

X, Y, Z -X, -Y, Z -Y, X, 1/4+Z Y, -X, 1/4+Z Y, X, -Z -Y, -X, -Z X, -Y, 1/4-Z -X, Y, 1/4-Z

1/2+X, 1/2+Y, Z 1/2-X, 1/2-Y, Z 1/2-Y, 1/2+X, 1/4+Z 1/2+Y, 1/2-X, 1/4+Z 1/2+Y, 1/2+X, -Z 1/2-Y, 1/2-X, -Z 1/2+X, 1/2-Y, 1/4-Z 1/2-X, 1/2+Y, 1/4-Z

X, Y, 1/2+Z -X, -Y, 1/2+Z -Y, X, 3/4+Z Y, -X, 3/4+Z Y, X, 1/2-Z -Y, -X, 1/2-Z X, -Y, 3/4-Z -X, Y, 3/4-Z

1/2+X, 1/2+Y, 1/2+Z 1/2-X, 1/2-Y, 1/2+Z 1/2-Y, 1/2+X, 3/4+Z 1/2+Y, 1/2-X, 3/4+Z 1/2+Y, 1/2+X, 1/2-Z 1/2-Y, 1/2-X, 1/2-Z 1/2+X, 1/2-Y, 3/4-Z 1/2-X, 1/2+Y, 3/4-Z

Page 60: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

From step 3Xstep3= 0.02 ystep3=-0.70 zstep3=?.???From step 4Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005

Clearly, Xstep3 does not equal Xstep4 .

Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02.For example, let’s use: -x, -y, zAnd apply it to all coordinates in step 3.xstep3-transformed = - (+0.02) = -0.02ystep3-transformed = - (- 0.70) = +0.70 Now xstep3-transformed = xstep4

And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z:Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005

Or simply, x=-0.02, y=0.70, z=-0.005

Cheshire Symmetry Operators for space group P43212

X, Y, Z -X, -Y, Z -Y, X, 1/4+Z Y, -X, 1/4+Z Y, X, -Z -Y, -X, -Z X, -Y, 1/4-Z -X, Y, 1/4-Z

1/2+X, 1/2+Y, Z 1/2-X, 1/2-Y, Z 1/2-Y, 1/2+X, 1/4+Z 1/2+Y, 1/2-X, 1/4+Z 1/2+Y, 1/2+X, -Z 1/2-Y, 1/2-X, -Z 1/2+X, 1/2-Y, 1/4-Z 1/2-X, 1/2+Y, 1/4-Z

X, Y, 1/2+Z -X, -Y, 1/2+Z -Y, X, 3/4+Z Y, -X, 3/4+Z Y, X, 1/2-Z -Y, -X, 1/2-Z X, -Y, 3/4-Z -X, Y, 3/4-Z

1/2+X, 1/2+Y, 1/2+Z 1/2-X, 1/2-Y, 1/2+Z 1/2-Y, 1/2+X, 3/4+Z 1/2+Y, 1/2-X, 3/4+Z 1/2+Y, 1/2+X, 1/2-Z 1/2-Y, 1/2-X, 1/2-Z 1/2+X, 1/2-Y, 3/4-Z 1/2-X, 1/2+Y, 3/4-Z

Page 61: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Use x,y,z to predict the position of a non-Harker Patterson peak

• x,y,z vs. –x,y,z ambiguity remainsIn other words x=-0.02, y=0.70, z=-0.005 or x=+0.02, y=0.70, z=-0.005 could be correct.

• Both satisfy the difference vector equations for Harker sections• Only one is correct. 50/50 chance• Predict the position of a non Harker peak.• Use symop1-symop5• Plug in x,y,z solve for u,v,w.• Plug in –x,y,z solve for u,v,w• I have a non-Harker peak at u=0.28 v=0.28, w=0.0• The position of the non-Harker peak will be predicted by the correct

heavy atom coordinate.

Page 62: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

x y z -( y x -z) x-y -x+y 2z

symmetry operator 1-symmetry operator 5u v w

First, plug in x=-0.02, y=0.70, z=-0.005

u=x-y = -0.02-0.70 =-0.72v=-x+y= +0.02+0.70= 0.72w=2z=2*(-0.005)=-0.01

The numerical value of these co-ordinates falls outside the section we have drawn. Lets transform this uvw by Patterson symmetry u,-v,-w.

-0.72, 0.72,-0.01 becomes-0.72,-0.72, 0.01 then add 1 to u and v 0.28, 0.28, 0.01 This corresponds to the peak shown u=0.28, v=0.28, w=0.01Thus, x=-0.02, y=0.70, z=-0.005 is correct. Hurray! We are finished!

In the case that the above test failed, we would change the sign of x.

(1) U, V, W (2)-U,-V, W (3) U, V,-W (4)-U,-V,-W (5)-U, V, W (6) U,-V, W (7)-U, V,-W (8) U,-V,-W (9)-V, U, W (10) V,-U, W (11)-V, U,-W (12) V,-U,-W(13) V, U, W (14)-V,-U, W (15) V, U,-W (16)-V,-U,-W

Page 63: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Symmetry Operators are the Bridge between Atomic Coordinates and Patterson Peaks

u(0,0)v

PATTERSON MAP

(0.4, 0.6)

x , y -(-x, –y) 2x , 2y u=2x, v=2y

symop #1symop #2

(0.6, 0.4)

(0,0) xy

(0.2,0.3)

(-0.2,-0.3)

SYMMETRY OPERATORSFOR PLANE GROUP P21) x,y 2) -x,-y

Page 64: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Assignment

• Calculate an isomorphous difference Patterson map in lab.

• Solve the positions of the heavy atom (x,y,z) from the peaks in the map (u,v,w).– follow the procedures in the handout– write neatly– check your answer

• Next week hand in your calculation. • We will test the accuracy of your solution and

use it to calculate phases and electron density.

Page 65: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Calculate Y and Z

Calculate X and Y

X,Y,Z referred to a common origin.

If prediction lies outside Patterson asymmetric unit (0→0.5, 0→0.5,0→ 0.5) usePatterson symmetry operators to find the symmetry equivalent peak in theasymmetric unit. If the predicted peak is absent, then negate x value and re-calculate u,v,w. Predicted peak should be present if algebra is correct.

Crystal space

U=0.5

W=0.25 Cheshire operator applied to Y and Z if two values of Y do not match

P43212 Symmetry operator difference 1-5

x y z

-( y

x -z)

x-y -x+y 2z

u,v,w

Check answer for peak

off Harker section.

P43212 Symmetry operator difference 3-6

P43212 Symmetry operator difference 2-4

Patterson space

Page 66: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

m230d_2010_scaled.mtzprok-eu-yanran.scaprok-gd-1-10-david.scaprok-gd-1-1-keith.scaprok-gd-1-1-shewit.scaprok-gd-1-4-wei.scaprok-hgac-1-4-ralph.scaprok-hgcl2-1-1-huimin.scaprok-hgcl2-travis.scaprok-native-amanda.scaprok-native-natalie.scaprok-native-saken.scaprok-pcmbs-1-1-alex.scaprok-pcmbs-1-1-toby.scaprok-pcmbs-alexsin.scaprok-pip-1-1-annie.scaprok-pip-1-1-lauren.scaprok-pip-1-4-christine.scaprok-pmsf-angelica.scaprok-pmsf-camellia.scaprok-pmsf-catherine.scaprok-pmsf-yuewei.scaprok-sm-1-1-bill.scaprok-sm-1-4-xinghong.sca

Intensity measurements (IHKL)

All data sets were appended into a spreadsheet. Each column contains IHKL of a different data set. Each row specifies a different HKL.-using the CCP4 program CAD.

Intensity measurements were converted to structure factor amplitudes (|FHKL|) -using the CCP4 program TRUNCATE.

All data sets were scaled to areference native data set with the best statistics: prok-native-natalie-using the CCP4 program SCALEIT.

Page 67: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Scale intensities by a constant (k) and resolution dependent exponential (B)

H K L intensity sigma1 0 10 106894.0 1698.01 0 11 41331.5 702.31 0 12 76203.2 1339.01 0 13 28113.5 513.61 0 14 6418.2 238.71 0 15 45946.4 882.7 1 0 16 26543.8 555.6

prok-native-natalie

106894.0 / 40258.7 = 2.65 41331.5 / 25033.2 = 1.65 76203.2 / 24803.6 = 3.07 28113.5 / 11486.3 = 2.45 6418.2 / 9180.5 = 0.70 45946.4 / 25038.8 = 1.83 26543.8 / 21334.6 = 1.24

prok-native-saken

H K L intensity sigma1 0 10 40258.7 1222.91 0 11 25033.2 799.81 0 12 24803.6 771.51 0 13 11486.3 423.91 0 14 9180.5 353.61 0 15 25038.8 783.01 0 16 21334.6 686.4

comparison-Probably Natalie used a larger crystal than Saken. -Multiply Saken’s data by k and B to put the data on the same scale.

Page 68: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

OVERALL FILE STATISTICS for resolution range 0.000 - 0.399

=======================

Col Sort Min Max Num % Mean Mean Resolution Type Column

num order Missing complete abs. Low High label

1 ASC 0 42 0 100.00 22.2 22.2 56.53 1.60 H H

2 NONE 0 30 0 100.00 9.1 9.1 56.53 1.60 H K

3 NONE 0 63 0 100.00 23.8 23.8 56.53 1.60 H L

4 NONE 0.0 19.0 0 100.00 9.48 9.48 56.53 1.60 I FreeR_flag

5 NONE 6.2 2336.4 1623 94.96 232.23 232.23 40.76 1.60 F FP_native-natalie

6 NONE 0.8 34.0 1623 94.96 3.59 3.59 40.76 1.60 Q SIGFP_native-natalie

7 NONE 6.5 1420.2 5392 83.26 248.69 248.69 33.97 1.70 F FP_native-amanda

8 NONE 0.6 56.2 5392 83.26 3.51 3.51 33.97 1.70 Q SIGFP_native-amanda

9 NONE 1.6 2486.3 9128 71.66 278.06 278.06 48.05 1.79 F FP_native-saken

10 NONE 1.0 56.3 9128 71.66 5.84 5.84 48.05 1.79 Q SIGFP_native-saken

11 NONE 2.0 2428.1 5239 83.74 258.80 258.80 56.53 1.69 F FP_Eu-yanran

12 NONE 1.5 117.4 5239 83.74 11.53 11.53 56.53 1.69 Q SIGFP_Eu-yanran

13 NONE -109.8 175.0 5280 83.61 -2.52 15.74 56.53 1.69 D D_Eu-yanran

14 NONE 0.0 80.8 5280 83.61 18.37 18.37 56.53 1.69 Q SIGD_Eu-yanran

15 NONE 4.1 2334.3 5370 83.33 254.01 254.01 56.53 1.70 F FP_Gd-david

16 NONE 0.7 37.2 5370 83.33 3.57 3.57 56.53 1.70 Q SIGFP_Gd-david

17 NONE -52.0 47.8 5415 83.19 -0.99 8.20 56.53 1.70 D D_Gd-david

18 NONE 0.0 28.4 5415 83.19 5.75 5.75 56.53 1.70 Q SIGD_Gd-david

19 NONE 13.7 2166.6 14898 53.75 307.13 307.13 48.05 1.91 F FP_Gd-keith

20 NONE 2.3 178.1 14898 53.75 23.20 23.20 48.05 1.91 Q SIGFP_Gd-keith

21 NONE -234.6 266.1 15375 52.27 -0.08 22.57 48.05 1.91 D D_Gd-keith

22 NONE 0.0 287.9 15375 52.27 35.67 35.67 48.05 1.91 Q SIGD_Gd-keith

23 NONE 7.0 2361.1 5566 82.72 253.74 253.74 56.53 1.70 F FP_Gd-shewit

24 NONE 1.6 161.6 5566 82.72 11.67 11.67 56.53 1.70 Q SIGFP_Gd-shewit

25 NONE -128.6 103.2 5651 82.46 -1.60 17.22 56.53 1.70 D D_Gd-shewit

26 NONE 0.0 102.4 5651 82.46 18.70 18.70 56.53 1.70 Q SIGD_Gd-shewit

27 NONE 3.7 2404.7 480 98.51 233.25 233.25 56.53 1.60 F FP_Gd-wei

28 NONE 0.8 19.5 480 98.51 3.33 3.33 56.53 1.60 Q SIGFP_Gd-wei

29 NONE -77.1 64.6 601 98.13 0.31 12.27 56.53 1.60 D D_Gd-wei

30 NONE 0.0 32.2 601 98.13 5.45 5.45 56.53 1.60 Q SIGD_Gd-wei

31 NONE 7.0 2175.4 5797 82.00 256.78 256.78 56.53 1.71 F FP_HgAc-ralph

32 NONE 0.7 76.2 5797 82.00 6.24 6.24 56.53 1.71 Q SIGFP_HgAc-ralph

33 NONE -66.7 57.1 5912 81.65 0.35 6.39 56.53 1.71 D D_HgAc-ralph

34 NONE 0.0 55.2 5912 81.65 10.02 10.02 56.53 1.71 Q SIGD_HgAc-ralph

35 NONE 4.1 2025.3 5506 82.91 263.03 263.03 56.53 1.70 F FP_HgCl2-huimin

36 NONE 1.4 96.4 5506 82.91 7.62 7.62 56.53 1.70 Q SIGFP_HgCl2-huimin

37 NONE -96.9 125.9 6249 80.60 1.60 9.71 56.53 1.70 D D_HgCl2-huimin

38 NONE 0.0 98.4 6249 80.60 12.11 12.11 56.53 1.70 Q SIGD_HgCl2-huimin

39 NONE 9.1 2020.0 8928 72.28 254.72 254.72 40.76 1.69 F FP_HgCl2-travis

40 NONE 1.8 147.6 8928 72.28 11.15 11.15 40.76 1.69 Q SIGFP_HgCl2-travis

41 NONE -140.7 137.7 10384 67.76 -3.31 13.56 40.76 1.69 D D_HgCl2-travis

42 NONE 0.0 166.3 10384 67.76 17.25 17.25 40.76 1.69 Q SIGD_HgCl2-travis

43 NONE 6.1 2276.3 5412 83.20 254.27 254.27 56.53 1.70 F FP_PCMBS-alexj

44 NONE 0.8 49.5 5412 83.20 3.78 3.78 56.53 1.70 Q SIGFP_PCMBS-alexj

45 NONE -75.3 72.9 5413 83.20 0.23 7.72 56.53 1.70 D D_PCMBS-alexj

46 NONE 0.0 33.8 5413 83.20 5.98 5.98 56.53 1.70 Q SIGD_PCMBS-alexj

47 NONE 0.7 2275.5 5067 84.27 251.80 251.80 56.53 1.69 F FP_PCMBS-alexs

48 NONE 0.5 50.7 5067 84.27 3.90 3.90 56.53 1.69 Q SIGFP_PCMBS-alexs

49 NONE -71.6 78.1 5319 83.49 0.60 9.27 56.53 1.69 D D_PCMBS-alexs

50 NONE 0.0 34.1 5319 83.49 6.16 6.16 56.53 1.69 Q SIGD_PCMBS-alexs

51 NONE 2.2 2246.6 337 98.95 233.26 233.26 48.05 1.60 F FP_PCMBS-toby

52 NONE 1.1 31.4 337 98.95 3.04 3.04 48.05 1.60 Q SIGFP_PCMBS-toby

53 NONE -63.7 68.4 458 98.58 -0.68 7.52 48.05 1.60 D D_PCMBS-toby

54 NONE 0.0 27.6 458 98.58 4.86 4.86 48.05 1.60 Q SIGD_PCMBS-toby

55 NONE 6.2 2265.1 5371 83.33 247.65 247.65 48.05 1.70 F FP_PIP-annie

AND SO ON…………….

No. of reflections used in FILE STATISTICS 32212

LIST OF REFLECTIONS

===================

0 0 4 2.00 1816.34 26.07 ? ? 1882.86

56.33 1194.04 117.40 0.00 0.00 1499.12

26.90 0.00 0.00 ? ? ?

? 1188.25 43.78 0.00 0.00 1544.44

19.48 0.00 0.00 1445.92 74.58 0.00

0.00 1601.80 51.68 0.00 0.00 1733.87

88.65 0.00 0.00 1782.74 49.52 0.00

0.00 ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? 1549.52 63.20 0.00

0.00 ? ? ? ? ?

? 1954.73 56.31 ? ? ? ?

Page 69: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.
Page 70: 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34 1 2 34.

Recommended