+ All Categories
Home > Documents > 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE...

1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE...

Date post: 18-Jan-2016
Category:
Upload: ethan-bell
View: 223 times
Download: 0 times
Share this document with a friend
Popular Tags:
21
1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source: Fred Vook, Eugene Visotsky, Bill Hillery, Tim Thomas, E-mail: [email protected] Mark Cudak, Bishwarup Mondal, Fan Wang Motorola Inc. *<http:// standards.ieee.org/faqs/affiliationFAQ.html > Venue: IEEE 802.16m AWD – Call for Contributions IEEE 802.16m-09/0020 Base Contribution: C802.16m-09/0912 Abstract: This presentation discusses the design details and performance evaluation of analog feedback for IEEE 802.16m. Various design issues are also discussed. The proposed amendment text is contained in the base contribution. Purpose: Discuss and adopt proposed text contained in base contribution Notice: This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16. Patent Policy: The contributor is familiar with the IEEE-SA Patent Policy and Procedures: <http://standards.ieee.org/guides/bylaws/sect6-7 . html#6 > and < http://standards.ieee.org/guides/opman/ sect6 .html#6.3 >.
Transcript
Page 1: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

1

Analog Feedback for IEEE 802.16m - Performance Evaluation and Design DetailsAnalog Feedback for IEEE 802.16m - Performance Evaluation and Design Details

Document Number:IEEE S802.16m-09/0912

Date Submitted:2009-04-27

Source: Fred Vook, Eugene Visotsky, Bill Hillery, Tim Thomas, E-mail: [email protected] Mark Cudak, Bishwarup Mondal, Fan Wang

Motorola Inc. *<http://standards.ieee.org/faqs/affiliationFAQ.html>

Venue:IEEE 802.16m AWD – Call for Contributions IEEE 802.16m-09/0020

Base Contribution: C802.16m-09/0912Abstract:

This presentation discusses the design details and performance evaluation of analog feedback for IEEE 802.16m. Various design issues are also discussed. The proposed amendment text is contained in the base contribution.

Purpose:Discuss and adopt proposed text contained in base contribution

Notice:This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

Release:The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that

this contribution may be made public by IEEE 802.16.

Patent Policy:The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

<http://standards.ieee.org/guides/bylaws/sect6-7.html#6> and <http://standards.ieee.org/guides/opman/sect6.html#6.3>.Further information is located at <http://standards.ieee.org/board/pat/pat-material.html> and <http://standards.ieee.org/board/pat >.

Page 2: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

2

Overview

• Detailed design for analog feedback channels

• Overhead comparison between analog feedback and base & adaptive codebooks

• System level performance comparison between analog feedback and base & adaptive codebooks

Page 3: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

3

Analog Feedback Channels within UL Control• Define an Analog Feedback (AFB) channel to be another type of UL

feedback channel– Some number of distributed LRUs are assigned to be AFB channel

• UL Control channels are currently assigned to distributed LRUs– A Distributed LRU is three 6x6 tiles

• The distributed LRUs on UL are then to be divided into:– Data– BW request channel

• Three 6x6 tiles equals a BW request channel– Feedback channels

• HARQ-ACK/NAK, • Primary & Secondary Fast Feedback• Distributed LRUs assigned to feedback channels are divided into 2x6 Feedback Mini

Tiles (FMTs)• Three permuted 2x6 FMTs equals a feedback channel

– Analog feedback channels (Our proposal)• Each distributed LRU that is assigned to be an analog feedback channel forms an

“analog feedback channel”.• Three 6x6 tiles equals an analog feedback channel

Page 4: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

4

Analog Feedback Channel

• The BS assigns some number of distributed LRUs to be Analog Feedback LRUs (AFB LRUs)– MZONE: Each analog feedback LRU is comprised of three 6x6 tiles– LZONE: Each analog feedback LRU is comprised of three 4x6 tiles

• One AFB LRU contains Nafb analog feedback subchannels, where Nafb depends on the number of BS TX antennas:– Nafb=6 for BS=2TX– Nafb=6 for BS=4TX– Nafb=4 for BS=8TX

• Each AFB subchannel is designed to carry eigenvector feedback for one user– The intent is to support MU-MIMO or rank-1 SU-MIMO

• AFB subchannels are multiplexed via combination of FDM / TDM / CDM– CDM spreading / de-spreading is employed to improve post-combining

SINR

Page 5: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

5

Data to be mapped onto an AFB subchannel

• MS estimates DL TX Covariance Matrix via DL multi-antenna pilots (e.g., MIMO midamble, DL reference pilots) over the entire band or over a sub-band

• MS is told whether to calculate a wideband eigenvector or a narrowband eigenvector– Wideband eigenvector is the dominant eigenvector of the

covariance matrix computed over the entire DL bandwidth• Supports rank1 BF / MU-MIMO over mini-band CRUs

– Narrowband eigenvector is the dominant eigenvector of the covariance matrix computed over a sub-band

• BS indicates which sub-band the MS must measure in the command to send the analog feedback

• Supports rank 1 BF / MU-MIMO over sub-band CRUs

• Analog symbols to be sent back (N BS TX antennas)– Eigenvector entries: e1 e2 … eN

– Eigenvector entries are then CDM spread and mapped to the assigned AFB subchannel (next…)

Page 6: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

6

CDM Spreading of Analog Feedback with Mutually Unbiased Bases (MUBs)

• Performance of Analog feedback-based methods is sensitive to the UL CINR

• Performance can be improved by CDM spreading the analog feedback

• Use spreading codes designed from mutually unbiased bases (MUB)– Any two codes within a particular MUB set are orthogonal– Any two codes belonging to two different MUB sets (e.g., A, B) are

guaranteed to have a low cross-correlation level which results in a low interference level

• A sector is assigned a particular MUB matrix– Indicated via TBD

• Values to be mapped (see next slides): eijk = mji*ek, – ith MUB sequence within the assigned MUB matrix: mji, j=1:D– e1 e2 … eN are the eigenvector values for N BS TX antennas

BbAaba any and ,any for ,/1,2

D

Page 7: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

7

Example MUBs (D=2,4)

• D=2

• D=4

,11

2

1,

11

11

2

1

iiBA

iiii

iiii

iiii

iiii

iiii

iiii

1111

1111

2

1,

1111

1111

2

1

,1111

1111

2

1,

1111

1111

1111

1111

2

1

DC

BA

Page 8: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

8

Example MUB (D=8)

• D=8

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

8

1A AEADACAB

i

i

i

idiag

i

i

i

i

diag

i

i

i

i

diag

i

i

i

i

diag1

1

1

1

,

1

1

1

1

,

1

1

1

1

,

1

1

1

1

AHAGAF

1

1

1

1

,

1

1

1

1

,

1

1

1

1

i

i

i

i

diag

i

i

i

i

diag

i

i

i

i

diag

Page 9: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

9

Analog feedback subchannel definition for M-Zone:BS=2 TX: Nafb=6, CDM factor D=4

2 Tx antennas• Nafb=6 analog feedback subchannels, each having a CDM factor of 4

• Mapping for 1st 6x6 tile is shown

• Mapping on 2nd and 3rd 6x6 tile is identical to 1st tile

• en is the nth component of the eigenvector for the given user

• Pk is a pilot symbol

• CDM spreading:

•Having e1 switch places with e2 on alternating frequency groups keeps average transmit power on the OFDM symbols the same

•Blank squares means the user sends nothing on those subcarriers/OFDM symbols

• Overall maximum gain is 48 (2 receive antennas times spreading of 4 times repetition of 6 across frequency)

e111 e121

e131 e141

AFB Subchannel 1 AFB Subchannel 2 AFB Subchannel 3

AFB Subchannel 4 AFB Subchannel 5 AFB Subchannel 6

e112 e122

e132 e142

e112 e122

e132 e142

e111 e121

e131 e141

p111

p131

p121

p141

p112

p132

p122

p142

e112 e122

e132 e142

e111 e121

e131 e141

e211 e221

e231 e241

e212 e222

e232 e242

p211

p231

p221

p241

p212

p232

p222

p242

e211 e221

e231 e241

e212 e222

e232 e242

e311 e321

e331 e341

e411 e421

e431 e441

p311

p331

p321

p341

p112

p132

p122

p142

e312 e322

e332 e342

e311 e321

e331 e341

e311 e321

e331 e341

e212 e222

e232 e242

e211 e221

e231 e241

e312 e322

e332 e342

e412 e422

e432 e442

e312 e322

e332 e342

e411 e421

e431 e441

e411 e421

e431 e441

e412 e422

e432 e442

e412 e422

e432 e442

p311

p331

p321

p341

p212

p232

p222

p242

p411

p431

p421

p441

p412

p432

p422

p442

p411

p431

p421

p441

p312

p332

p322

p342

eijk = mji*ek

pijk = mji*pk

Page 10: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

10

Analog feedback subchannel definition for M-ZoneBS=4 TX: Nafb=6, CDM factor D=4

AFB Subchannel 1

AF

B T

ile 1

AF

B T

ile 2

AFB Subchannel 2 AFB Subchannel 3

AFB Subchannel 4 AFB Subchannel 5 AFB Subchannel 6

AF

B T

ile 1

AF

B T

ile 2

e111 e121

e131 e141

e112 e122

e132 e142

p111

p131

p121

p141

e211 e221

e231 e241

e212 e222

e232 e242

p211

p231

p221

p241

e311 e321

e331 e341

p311

p331

p321

p341

e312 e322

e332 e342

e411 e421

e431 e441

e412 e422

e432 e442

p411

p431

p421

p441

e113 e123

e133 e143

e114 e124

e134 e144

p112

p132

p122

p142

e213 e223

e233 e243

e214 e224

e234 e244

p212

p232

p222

p242

e113 e123

e133 e143

e114 e124

e134 e144

p112

p132

p122

p142

e213 e223

e233 e243

e214 e224

e234 e244

p212

p232

p222

p242

e311 e321

e331 e341

p311

p331

p321

p341

e312 e322

e332 e342

e411 e421

e431 e441

e412 e422

e432 e442

p411

p431

p421

p441

e313 e323

e333 e343

p312

p332

p322

p342

e314 e324

e334 e344

p412

p432

p422

p442

e413 e423

e433 e443

e414 e424

e434 e444

p111

p131

p121

p141

p112

p132

p122

p142

e111 e121

e131 e141

e113 e123

e133 e143

e112 e122

e132 e142

e114 e124

e134 e144

p211

p231

p221

p241

p212

p232

p222

p242

e211 e221

e231 e241

e213 e223

e233 e243

e212 e222

e232 e242

e214 e224

e234 e244

p311

p331

p321

p341

p112

p132

p122

p142

e311 e321

e331 e341

e113 e123

e133 e143

e312 e322

e332 e342

e114 e124

e134 e144

p411

p431

p421

p441

p212

p232

p222

p242

e411 e421

e431 e441

e213 e223

e233 e243

e412 e422

e432 e442

e214 e224

e234 e244

p311

p331

p321

p341

p312

p332

p322

p342

e311 e321

e331 e341

e313 e323

e333 e343

e312 e322

e332 e342

e314 e324

e334 e344

p411

p431

p421

p441

p412

p432

p422

p442

e411 e421

e431 e441

e413 e423

e433 e443

e412 e422

e432 e442

e414 e424

e434 e444

4 Tx antennas• Nafb=6 analog feedback subchannels, each having a CDM factor of 4

• Mapping for 1st and 2nd 6x6 tile is shown

• Mapping on 3rd 6x6 tile is identical to 1st tile

• en is the nth component of the eigenvector for the given user

• Pk is a pilot symbol

• CDM spreading:

• Blank squares means the user sends nothing on those subcarriers/OFDM symbols

• Overall maximum gain is 48 (4 receive antennas times spreading of 4 times repetition of 3 across frequency)

eijk = mji*ek

pijk = mji*pk

Page 11: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

11

Analog feedback subchannel definition for M-ZoneBS=8 TX: Nafb=4, CDM factor D=4

8 Tx antennas• Nafb=4 analog feedback subchannels, each having a CDM factor of 4

• en is the nth component of the eigenvector for the given user

• Having e1 (e3,e5,e7) switch places with e2 (e4,e6,e8) on alternating frequency groups keeps average transmit power on the OFDM symbols the same

• Pk is a pilot symbol

• CDM spreading:

• Blank squares means the user sends nothing on those subcarriers/OFDM symbols

• Overall maximum gain is 64 (8 receive antennas times spreading of 4 times repetition of 2 across frequency)

AF

B T

ile 1

AF

B T

ile 2

AF

B T

ile 3

AFB Subchannel 1 AFB Subchannel 2 AFB Subchannel 3 AFB Subchannel 4

e111 e121

e131 e141

e112 e122

e132 e142

p111

p131

p121

p141

e211 e221

e231 e241

e212 e222

e232 e242

p211

p231

p221

p241

e113 e123

e133 e143

e114 e124

e134 e144

p112

p132

p122

p142

e213 e223

e233 e243

e214 e224

e234 e244

p212

p232

p222

p242

e311 e321

e331 e341

p311

p331

p321

p341

e312 e322

e332 e342

e411 e421

e431 e441

e412 e422

e432 e442

p411

p431

p421

p441

e313 e323

e333 e343

p312

p332

p322

p342

e314 e324

e334 e344

p412

p432

p422

p442

e413 e423

e433 e443

e414 e424

e434 e444

e115 e125

e135 e145

e116 e126

e136 e146

p113

p133

p123

p143

e315 e325

e335 e345

p313

p333

p323

p343

e316 e326

e336 e346

p413

p433

p423

p443

e415 e425

e435 e445

e416 e426

e436 e446

p111

p131

p121

p141

p113

p133

p123

p143

e112 e122

e132 e142

e111 e121

e131 e141

e117 e127

e137 e147

e118 e128

e138 e148

e114 e124

e134 e144

e116 e126

e136 e146

e118 e128

e138 e148

p111

p131

p121

p141

p112

p132

p122

p142

p113

p133

p123

p143

e113 e123

e133 e143

e115 e125

e135 e145

e117 e127

e137 e147

e215 e225

e235 e245

e216 e226

e236 e246

e217 e227

e237 e247

e218 e228

e238 e248

e212 e222

e232 e242

e214 e224

e234 e244

e216 e226

e236 e246

e218 e228

e238 e248

e211 e221

e231 e241

e213 e223

e233 e243

e215 e225

e235 e245

e217 e227

e237 e247

e317 e327

e337 e347

e318 e328

e338 e348

e312 e322

e332 e342

e314 e324

e334 e344

e311 e321

e331 e341

e313 e323

e333 e343

e316 e326

e336 e346

e318 e328

e338 e348

e315 e325

e335 e345

e317 e327

e337 e347

p211

p231

p221

p241

p212

p232

p222

p242

p213

p233

p223

p243

p211

p231

p221

p241

p212

p232

p222

p242

p213

p233

p223

p243

p311

p331

p321

p341

p312

p332

p322

p342

p313

p333

p323

p343

p312

p332

p322

p342

p313

p333

p323

p343

e417 e427

e437 e447

e418 e428

e438 e448

p412

p432

p422

p442

p413

p433

p423

p443

p411

p431

p421

p441

p412

p432

p422

p442

p413

p433

p423

p443

e411 e421

e431 e441

e412 e422

e432 e442

e413 e423

e433 e443

e415 e425

e435 e445

e417 e427

e437 e447

e414 e424

e434 e444

e416 e426

e436 e446

e418 e428

e438 e448

eijk = mji*ek

pijk = mji*pk

Page 12: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

12

Analog feedback subchannel definition for L-Zone:BS=2 TX: Nafb=4, CDM factor D=4

AFB Subchannel 1 AFB Subchannel 2 AFB Subchannel 3 AFB Subchannel 4

e111 e121

e131 e141

e112 e122

e132 e142

e112 e122

e132 e142

e111 e121

e131 e141

p111

p131

p121

p141

p112

p132

p122

p142

e211 e221

e231 e241

e212 e222

e232 e242

p211

p231

p221

p241

p212

p232

p222

p242

e211 e221

e231 e241

e212 e222

e232 e242

e311 e321

e331 e341

e311 e321

e331 e341

e312 e322

e332 e342

e312 e322

e332 e342

e411 e421

e431 e441

e411 e421

e431 e441

e412 e422

e432 e442

e412 e422

e432 e442

p311

p331

p321

p341

p412

p432

p422

p442

p411

p431

p421

p441

p312

p332

p322

p342

2 Tx antennas• Nafb=4 analog feedback subchannels, each having a CDM factor of 4

• Mapping for 1st 4x6 tile is shown

• Mapping on 2nd and 3rd 4x6 tile is identical to 1st tile

• en is the nth component of the eigenvector for the given user

• Pk is a pilot symbol

• CDM spreading:

• Having e1 switch places with e2 on alternating frequency groups keeps average transmit power on the OFDM symbols the same

• Blank squares means the MS sends nothing on those subcarriers/OFDM symbols

• Overall maximum gain is 48 (2 receive antennas times spreading of 4 times repetition of 6 across frequency)

eijk = mji*ek pijk = mji*pk

Page 13: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

13

Analog feedback subchannel definition for L-Zone:BS=4 TX: Nafb=4, CDM factor D=4

AFB Subchannel 1 AFB Subchannel 2 AFB Subchannel 3 AFB Subchannel 4

AF

B T

ile 1

AF

B T

ile 2

e111 e121

e131 e141

e112 e122

e132 e142

p111

p131

p121

p141

e211 e221

e231 e241

e212 e222

e232 e242

p211

p231

p221

p241

e113 e123

e133 e143

e114 e124

e134 e144

p112

p132

p122

p142

e213 e223

e233 e243

e214 e224

e234 e244

p212

p232

p222

p242

e311 e321

e331 e341

p311

p331

p321

p341

e312 e322

e332 e342

e411 e421

e431 e441

e412 e422

e432 e442

p411

p431

p421

p441

e313 e323

e333 e343

p312

p332

p322

p342

e314 e324

e334 e344

p412

p432

p422

p442

e413 e423

e433 e443

e414 e424

e434 e444

p111

p131

p121

p141

p112

p132

p122

p142

e111 e121

e131 e141

e113 e123

e133 e143

e112 e122

e132 e142

e114 e124

e134 e144

p211

p231

p221

p241

p212

p232

p222

p242

e211 e221

e231 e241

e213 e223

e233 e243

e212 e222

e232 e242

e214 e224

e234 e244

p311

p331

p321

p341

p312

p332

p322

p342

e311 e321

e331 e341

e313 e323

e333 e343

e312 e322

e332 e342

e314 e324

e334 e344

p411

p431

p421

p441

p412

p432

p422

p442

e411 e421

e431 e441

e413 e423

e433 e443

e412 e422

e432 e442

e414 e424

e434 e444

4 Tx antennas• Nafb=4 analog feedback subchannels, each having a CDM factor of 4

• Mapping for 1st and 2nd 4x6 tile is shown. Mapping on 3rd 4x6 tile is identical to 1st tile

• en is the nth component of the eigenvector for the given user

• Pk is a pilot symbol

• CDM spreading:

• Blank squares means the MS sends nothing on those subcarriers/OFDM symbols

• Overall maximum gain is 48 (4 receive antennas times spreading of 4 times repetition of 3 across frequency)

eijk = mji*ek pijk = mji*pk

Page 14: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

14

Analog feedback subchannel definition for L-Zone:BS=8 TX: Nafb=3, CDM factor D=2

AMS 1

AF

B T

ile 1

AF

B T

ile 2

AF

B T

ile 3

AMS 2 AMS 3

e111 e121 e112 e122p111 p121

e113 e123 e114 e124p112 p122

e115 e125 e116 e126p113 p123

p114 p124e117 e127 e118 e128

e112 e122

e114 e124

e116 e126

e118 e128

e111 e121

e113 e123

e115 e125

e117 e127

p111 p121

p112 p122

p113 p123

p114 p124

e211 e221 e212 e222p211 p221

e213 e223 e214 e224p212 p222

e215 e225 e216 e226

e217 e227 e218 e228

p213 p223

e112 e122

e114 e124

e116 e126

e118 e128

e111 e121

e113 e123

e115 e125

e117 e127

p111 p121

p112 p122

p113 p123

p114 p124

p214 p224

e211 e221 e212 e222p211 p221

e213 e223 e214 e224p212 p222

e215 e225 e216 e226

e217 e227 e218 e228

p213 p223

p214 p224

p211 p221

p212 p222

p213 p223

p214 p224

e212 e222

e214 e224

e216 e226

e218 e228

e211 e221

e213 e223

e215 e225

e217 e227

8 Tx antennas• Nafb=3 analog feedback subchannels, each having a CDM factor of 4

• en is the nth component of the eigenvector for the given user

• Having e1 (e3,e5,e7) switch places with e2 (e4,e6,e8) on alternating frequency groups keeps average transmit power on the OFDM symbols the same

• Pk is a pilot symbol

•Blank squares means the user sends nothing on those subcarriers/OFDM symbols

•Overall maximum gain is 64 (8 receive antennas times spreading of 4 times repetition of 2 across frequency)

eijk = mji*ek

pijk = mji*pk

Page 15: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

15

UL Transmission Considerations

• Sending all N entries of the eigenvector (rather than normalizing to one of the entries) enables the eigenvectors to be power-scaled independently of the pilots

• The total TX power is determined by power control strategy

• Must apply scale factor across the band to insure total TX power is maintained

• Must preserve gain relationships between the entries of the eigenvector

Page 16: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

16

Overhead Comparison for MU-MIMO• Fast Feedback channels

– Construction: Three 6x6 tiles make up a feedback LRU• Three 2x6 FMTs make up a feedback channel -- Three feedback channels in feedback LRU

– Base 16m codebook index is 6 bits– Each Primary Fast Feedback channel carries 6 bits

• A PFBCH LRU can carry 6-bit PMI for 3 users– Each Secondary Fast Feedback channel carries up to 12 bits

• A SFBCH LRU can theoretically carry 6-bit PMI for 6 users – Actually 3 users in practice since one user is allocated per SFBCH

• Analog feedback (AFB) channels– Construction: Three 6x6 tiles make up an AFB LRU

• For 4TX at BS: 6 AFB channels in an AFB LRU– An AFB LRU can carry eigenvectors for 6 users

• Conclusion for PMI Feedback vs AFB (4TX):– The same T-F “real estate” supports:

• MU-MIMO eigenvector feedback for 6 users• MU-MIMO PMI feedback for 3 users

– AFB has less overhead than the base codebook– However: Adaptive codebooks require the same PMI feedback as base codebook plus an

additional periodic long-term covariance feedback

• AFB requires half the overhead required by PMI feedback– And this ignores the additional periodic long-term covariance feedback required by the

adaptive codebooks!

Page 17: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

17

System Simulation Setup (1/3)• System Layout:

– 19 cell (57 sector) classical layout; statistics in the center cell; – Cell radius = 866 m– 10 MS per sector; final statistics on about ~600 MS in the center cell– 10 MHz, full frequency reuse across cells/sectors

• Channel: – Pathloss model: 130.19 + 37.6*log10(R), where R in km + 10dB penetration loss

+ 2 dB cable loss– SCM channel details: PedB multipath profile, AS = 15 degrees, v = 3km/h, f =

2.5GHz; – Dominant interferers (path loss within 20dB of desired) are modeled as frequency

and spatially selective • BS:

– 4 Transmit antennas, 4 Receive antennas (power fair TX power allocation per antenna)

– TX power = 46 dBm; – ULA with half wave spacing; Array is calibrated– Sector antenna: parabolic (70 degrees 3 dB beamwidth), 17 dBi gain, 20 dB

front-to-back ratio• MS:

– 1 Transmit antenna, 2 receive antenna– MMSE receiver at the MS– UL CCH MS TX power = 23 dBm

Page 18: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

18

System Simulation Setup (2/3)• Downlink:

– Permutation: distributed CRUs (48 randomly permuted PRUs; subband allocation count = 0).

– Full buffer– Equal bandwidth scheduler: N_PRU = floor(48/N_USERS)); for MU-MIMO this

applies per MU-MIMO group– 24 symbols per 5 ms frame; 12 pilots per PRU assumed

• Feedback methods– Analog (eigenvector) feedback– Codebook: LTE 4-bit – 4 TX antennas – Adaptive codebook (16m AWD + LTE 4-bit)

• DL TX methods– SU-MIMO (realistic rank adaptation and PMI selection based on wideband

broadcast interference estimate at the MS on midamble)– MU-MIMO (realistic user grouping at the BS based on wideband PMI & CQI

feedback or eigenvector & CQI feedback, both based on midamble)• Wideband feedback

– Rank, CQI, PMI, and eigenvector calculation based on wideband midamble– Ideal DL channel estimation for Rank adaptation, CQI, PMI selection, and

eigenvector calculation– Rank-one feedback for MU-MIMO (for both PMI and eigenvector)

Page 19: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

19

System Simulation Setup (3/3)• UL models for PMI & AFB:

– Ideal (PMI and AFB known at BS)– Realistic

• Includes UL CCH power control, realistic UL interference environment, realistic channel estimation and UL RX processing

• Codebook: MOT FFB proposal (PMI error rate between 0.5% and 1.5%)• AFB: Proposal in this set of slides is simulated (MUB matrix A for D=4 used by all MSs)

• UL Models for Rank and CQI feedback– Rank feedback for SU-MIMO is Ideal– CQI feedback is ideal

• Link adaptation (identical for PMI & AFB)– Realistic: based on wideband CQI feedback from the MS; 1 frame delay– Chase HARQ is modeled (max 3 attempts)

• Feedback delays: – 5 ms (1 frame) delay for both PMI and analog feedback– 50 ms (10 frames) delay for covariance matrix feedback to enable A-CBOOK

• A-CBOOK: Covariance matrix estimation and feedback is ideal, done at the midamble, interference-free, and quantized according to AWD

• UL power control SINR target: pre-CDM/MRC combining, per tone, per antenna– Varied for AFB: 0, 2, 4, 6 dB

• Link-to-system mapping: EESM• The effect of precoded interference seen on the DL data versus the midamble-

only interference seen during CQI and PMI/AFB calculations is captured

Page 20: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

202020

System Level Results (16m EMD)

UL Model Ideal UL Complete UL

Feedback method

EigenvectorLTE

CBOOKLTE

A-CBOOKEigenvector

LTE CBOOK (~1%)

LTE A-CBOOK

(~1%)

SU-MIMO

105.9 100.0 106.8 98.8 (0 dB PC target)

100.2 (2 dB PC target)

101.9 (4 dB PC target)

102.0 (6 dB PC target)

99.7 106.4

MU-MIMO

166.7 136.2 146.9 136.2 (0 dB PC target)

139.8 (2 dB PC target)

149.7 (4 dB PC target)

152.1 (6 dB PC target)

135.9 146.5

Sector throughput (Mbps) – 16m EMD

12%

4%

Note: throughput results are normalized: SU-MIMO w/ ideal UL CBOOK = 100

4 Transmit Antennas

Page 21: 1 Analog Feedback for IEEE 802.16m - Performance Evaluation and Design Details Document Number: IEEE S802.16m-09/0912 Date Submitted: 2009-04-27 Source:

21

Summary• For SU-MIMO, analog feedback shows comparable performance to

base codebook and adaptive codebook methods• For MU-MIMO, analog feedback shows large gains over base

codebook– Gain over codebooks even with calibrated transmit chains– Much larger gains over codebooks with uncalibrated transmit chains– Analog feedback-based methods are not affected by uncalibrated

transmit chains• Analog feedback shows a gain over adaptive codebooks for MU-

MIMO– Adaptive codebooks are very promising and appear to provide gains

over standard-mode codebooks– Analog feedback still better than the adaptive codebooks

• Proposal for Analog feedback has half the overhead of PMI feedback– And doesn’t require the long-term covariance matrix feedback that is

required by the adaptive codebooks• Analog feedback can easily be included as an additional feedback

channel type in the UL feedback channels


Recommended