+ All Categories
Home > Documents > 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards...

1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards...

Date post: 14-Dec-2015
Category:
Upload: anne-tisdell
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
22
1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons du Lac d'Annecy, May 26th 2008 Dr Jean-Loup Madre and Christophe Rizet (INRETS- DEST) Prof. Dirk Zumkeller and Peter Ottmann (IFV University of Karlsruhe)
Transcript
Page 1: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

1

ASIF approach and Fuel Price Elasticity

Final Seminar of COST355 WATCH "Changing Behaviour towards a more

Sustainable Transport System"

Les Balcons du Lac d'Annecy, May 26th 2008

Dr Jean-Loup Madre and Christophe Rizet (INRETS-DEST)Prof. Dirk Zumkeller and Peter Ottmann (IFV University of Karlsruhe)

Page 2: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

2

Content

1- Adding a Loading factor to the ASIF approach: from ASIF to DSLI

a) Demand

b) modal Share

c) the Loading factor

d) Fuel Intensity

2- The Elasticity of Fuel Consumption to Fuel Price

a) for Passengers (WG2)

b) for Freight on the Road (WG1)

3- Data Needs (WG3)

4- Outlook

Page 3: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

3

The ASIF approach

For the analysis of energy consumption, the conventional ASIF

approach [Fulton and Eads, 2004] is:

– Activities (in Tkm or passkm or vehkm) ;

– S for modal Share (in %);

– I Intensity (in litres/km);

– F Fuel mix (in CO2/litre)

CO2 = tkm (= Tkm road + Tkm rail +...) * litres/tkm * CO2/litre

Page 4: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

4

Adding a Loading Factor: from ASIF to DSFLIE

Let us add L (Loading factor) = D (Demand or occupancy,in tkm or passkm) / C (Capacity in veh*km)

An alternative approach would be:– D for Demand (in tkm or passkm), which is more precise than

"Activities" ; – SF for modal Share combined with Fuel mix (in %) ;– L for load rate (tkm/vehkm or passkm/vehkm) ; – I for Intensity (litres/vehkm) ; – E for CO2 Emission factor (in CO2/litre); in France 1 l diesel = 2.62 kg

CO2 and 1 l gasoline = 2.32 kg CO2.

Thus, for freight: CO2 = tkm * vehkm/tkm * litres/vehkm * CO2/litre = D * SF * I * E / L with: tkm = tkm diesel truck + tkm electric train + tkm diesel train +...

and for passengers: CO2 = passkm * vehkm/passkm * litres/vehkm * CO2/litre = D * SF * I * E / L with: passkm = passkm petrol car + passkm diesel car + passkm electric train + passkm diesel train +...

Page 5: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

5

Figure 1: Modal Share for Domestic Passenger Transport (Billions of passkm) in France (1970-2006)

Sources: MEDAD-SESP, UTP, RATP, SNCF, DGAC

0

10

20

30

40

50

60

70

80

90

100

1970

1975

1980

1985

1990

1995

2000

2005

Mo

dal

sh

are

(%)

0

50

100

150

200

250

300

350

400

450

500

Bill

ion

s o

f pas

skm

B usR ailP etrol carD iesel car

Page 6: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

6

Figure 2: Development of Modal Split (based on Mileage) in Germany

Source: German Mobility Panel [Zumkeller et al., 2006]

Page 7: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

7

Figure 3: Evolution of average distance per tonne for French heavy duty vehicles

Source: computed from TRM survey (MEDAD-SESP French Ministry of Transport)

Page 8: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

8

Figure 4: Road share in freight transport (% tkm)in several EU countries

Source: Eurostat

Page 9: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

9

L (Loading factor) = D (Demand or occupancy, in tkm or passkm) / T (Traffic in veh*km)

1) Different Measurements

a) Average Number of Persons per Vehicle

* France: 1.56 in 1981-82, 1.57 in 1993-94, ? in 2007-08,

*Germany: around 1.4 from 1995 to 2005

* USA: 1.9 in 1995, 1.6 in 2001 (despite car pooling and HOV lanes)

or b) % of Occupied Seats

* French Private Car: 35.5 % in 1993-94 (from 31% under 8 km to

44% over 200 km)

* PT in Paris Region: 23% in 1975, 17% in 1995 (although all passengers are not "seated")

* TGV and long distance trains: 75%

* Air France: 62% in 1980, 79% in 2005

2) Weighted or not by distance ? e.g. for Private Cars in France

Loading Factor for Passengers

Not Weighted Weighted

1981-82 1.56 1.73

1993-94 1.57 1.76

Page 10: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

10

Figure 5: Development of Car Occupancy Rate in Germany

Source: German Mobility Panel [Zumkeller et al., 2006]

Page 11: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

11

Table 1: Loading Factor of Private Cars in Franceaccording to Trip Distance (1/2)

Trip Distance

Persons/Car Seats/Car Persons/Seat

1981-82 1993-94 1993-94 1993-94

0-7 km 1.51 1.52 4.94 30.8 %

8-19 km 1.57 1.60 4.94 32.6 %

20-49 km 1.73 1.67 4.95 33.9 %

50-199 km 1.93 1.98 4.98 40.7 %

+ 200 km 2.15 2.16 5.01 44.1 %

All 1.56 1.57 4.94 35.5 %

Sources: National Travel Surveys 1981-82 and 1993-94

Page 12: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

12

Table 1: Loading Factor of Private Cars in Franceaccording to Trip Distance (2/2)

N.B. Like in Germany, these data were collected through a 7-days diary; thus, journeys with more than one week away from home (75% of mileage for holidays and half for business) are excluded.

Comment: There are more persons per car for longer trips. The only significant changes of the average number of persons per car between 1981-82 and 1993-94 were:

- a slight increase in the band "8-19 km", - a slight decrease in the band "20-49 km", corresponding to an important urban sprawl during this period, - resulting in a slight overall increase, mainly due to a longer average distance per trip (from 10.2 km in 1981-82 to 11.1 km in 1993-94).

Larger cars are used for longer trips, but there is not much difference in the average number of seats per car according to trip distance. The resulting proportion of occupied seats varies from 31% for trips under 8 km to 44% for trips over 200 km.

Page 13: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

13

Loading Factor for Freight

or rate of capacity used L = tkm/(vehkm*max load) = load rate for loaded trips * (1+ rate of empty running) with:

- max load (e.g. from 41 t to 44 t in the UK)Contrary to passenger cars (5 seats), the distribution of trucks according to their maximum load has an influence on the overall loading factor.

- load rate for loaded trips = (ton / max load) - empty running = emptyKM / loaded KM)

Returning to base carrying packaging, containers or roll cages, is it empty or loaded?

In France, empty running is more important for OA (34%) than for H&R (22%).

Few figures available for the other modes:- best guest estimates for sea container is 50%;- air freight is estimated to be very well loaded (100% in volume).

Page 14: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

14

Table 2: Empty Running in different countries for Freight Road Transport in 2006 (% of veh-km)

Country % Country %

Latvia 12.8% Netherlands 25.7%

Denmark 17.4% France 25.8%

Germany 19.9% Poland 27.6%

Czech Republic 21.8% Austria 27.7%

Sweden 22.0% Finland 27.9%

Lithuania 22.6% Spain 28.3%

Slovenia 23.2% Bulgaria 30.7%

Esthonia 23.9% Greece 35.3%

Slovakia 24.1% Ireland 38.0%

Hungary 25.4% Cyprus 45.2%

Portugal 25.4%

Source: EUROSTAT; http://epp.eurostat.ec.europa.eu

Page 15: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

15

Figure 6: Real fuel consumption (liters per 100 kilometers)

Source: MEDAD-SESP (French National Accounts for Transport)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

6,0

6,5

7,0

7,5

8,0

8,5

9,0

9,5

10,0

1959

1964

1969

1974

1979

1984

1989

1994

1999

2004

TRU

CKS

& B

US'

S A

XIS

CAR

Petrol car Diesel car All cars Trucks Bus

Source : MEDAD-SESP (French National Accounts for Transport)

Page 16: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

16

Elasticity of Fuel Consumption to Fuel Price

for Automobile – for the SHORT RUN: about -0.1 (mainly mileage)– for the LONG RUN: about -0.7, due:

• marginally (for about -0.1) to a slower increase in the number of cars,

• for about -0.2 to the annual mileage per car, • and more substantially (for about the half) to a better fuel

efficiency (km/litre).

High fuel price pushes car manufacturers and consumers toproduce and choose more efficient vehicles, rather than limitingtraffic growth.

It prepares motorists for a future in which fuel will be scarcer,while at the same time delaying the onset of that future.

Page 17: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

17

What about the Loading Factor ?

Elasticities: Demand Change in % after 1% Fuel Price Increase

Car as driver Car as passenger Public Transport Walking / Bike

-0.38 -0.16 0.04 0.02

The elasticity for car passengers is much weaker than for car drivers.

with increasing fuel prices, load factor increases as well. However, the occupancy rate is pushed downward by structural factors:- smaller household size, more people living alone,- and shifts towards more trips to work alone

Time and Fuel Cost of carpooling >> Saved FuelAnd carpools arise among people living in dense surroundings, i.e. where mass transit is likely to serve.

Carpooling has been promoted more in the US (e.g. High Occupancy Vehicles lines on motorways), while Europeans are in favour of modal shift.

Table 3: Fuel Price Elasticities for Different Modes (adapted from [Hautzinger et al., 2004]) in Germany

Page 18: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

18

Elasticity of Fuel Consumption to Fuel Price for French Heavy Goods Vehicles

In terms of tkm: * -0.14 for Own Account transport (OA)* -0.05 for Hire and Reward (H&R)

Promoting efficient logistics is easier for transport firms (by optimising loading, avoiding empty running, etc.) than for firms from other sectors implementing their own transport. The elasticity of traffic (in veh-km) to fuel price is -0.24 (almost the same for H&R and for OA); its sensitivity is increasing over time, because

– fuel represents a growing share of transport cost (up to 25%), – and hauliers are more and more aware that fuel price will continue to

rise.

Thus, when fuel price is increasing, the market share of H&R is also increasing: e.g. between 1998 and 2007

* from 71.7% to 74.8% in terms of tkm* and from 83.4% to 85.4% in terms of vehkm.

Page 19: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

19

Loading Factor for Trucks

For trucks registered in France, the loading factor is in 2007:* 5.8 tons/veh for OA

* 11.4 tons/veh for H&R

Between 1994 and 2005, fuel efficiency of French trucks has

increased less (by only 2%) than the loading factor (+7%

for tons/veh).

Thus by optimising logistics, it seems possible to moderate

road traffic without reducing transport demand, which would

play against economic growth.

Page 20: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

20

Data Needs

White spots still exist, both at national and European level.

a) FreightSurveys on Road Freight Transport are harmonised by EUROSTAT, but theydon't always provide information on energy consumption. Time series are split mode by mode, but information is lacking on inter-modality.

In the US:– the vehicle-based Road Freight Transport survey is stopped,– while the Commodity Flow Survey (a shipment survey not so heavy as in

France) is conducted every 5 years.

b) PassengersMost of EU countries are collecting traffic counts and have conducted a NationalTravel Survey, but they are not harmonised; DATELINE: first attempt on long distance travelContinuous surveys would be useful, e.g. to analyse the relationship betweenchanges in fuel price and in the rate of occupancy of private cars. (exist only in the Netherlands, the U.K., Germany and Denmark)

Page 21: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

21

Outlook (1/2) Sustainability issues discussed in the WGs of COST355 (e.g. decouplingeconomic growth from increasing transport demand).

Empty running applies to both freight and passenger: if loading factors can be increased, the same quantities of passengersand goods can be shipped with less emissions.

For road traffic, long term effects of fuel price increase seem quitedifferent for passengers and for freight:

– for automobile with an energy efficiency improving by about 1% per year and no evidence for the loading factor (passkm/seatkm),

– and for trucks with very slow improvement of energy efficiency, but a notable increase of the loading factor.

There is still a lot of potential to increase loading factors and thusEfficiency and sustainability of the transport system.

Page 22: 1 ASIF approach and Fuel Price Elasticity Final Seminar of COST355 WATCH "Changing Behaviour towards a more Sustainable Transport System" Les Balcons.

22

Outlook (2/2)

The largest potential, but maybe also the most difficult one torealize, are empty runs on short distances.

On the passenger side, many activities related to short tripsare undertaken individually, while long-distance trips are moreoften undertaken in company.

Local freight transport is often very specific and thereforeneeds special vehicles, while long-distance transports tend tobe more standardized (containers). WG1 has analysed different

improvements in urban freight, mainly through innovations in deliveries


Recommended