+ All Categories
Home > Documents > 1 BGP Convergence Measurement Issues Susan Hares, NextHop Padma Krishnaswamy, NextHop Marianne Lepp,...

1 BGP Convergence Measurement Issues Susan Hares, NextHop Padma Krishnaswamy, NextHop Marianne Lepp,...

Date post: 02-Jan-2016
Category:
Upload: eleanor-dalton
View: 221 times
Download: 1 times
Share this document with a friend
46
1 BGP Convergence BGP Convergence Measurement Measurement Issues Issues Susan Hares, NextHop Padma Krishnaswamy, NextHop Marianne Lepp, Juniper Networks Alvaro Retana, Cisco Howard Berkowitz, Gett Communications Elwyn Davies, Nortel Networks
Transcript

1

BGP ConvergenceBGP ConvergenceMeasurement Measurement IssuesIssues

Susan Hares, NextHop

Padma Krishnaswamy, NextHop

Marianne Lepp, Juniper Networks

Alvaro Retana, Cisco

Howard Berkowitz, Gett Communications

Elwyn Davies, Nortel Networks

2

AS

Convergence? Convergence?

Tester Tester

Internet-wide

AS

AS

AS AS

FlappingAS

He's Dead, Jim

3

Single AS

Convergence: Within an ASConvergence: Within an AS

RR

RTester Tester

AS-wideiBGP

4

Convergence: Within a BoxConvergence: Within a Box

Single BoxTester TesterRouting/ControlForwarding

5

Convergence for BMWG Convergence for BMWG

• Box wide— eBGP initially

— Control Plane initially

— Black box

— Specify begin and end of convergence measurement

— Specify measurement point

6

Send a packet stream from TRSend a packet stream from TR – 3 Measurements – 3 Measurements• Convergence 1: 1st packet sent from Test

Generator to 1st packet received by Test Collector— Transmission in and out plus process time of 1st packet

• Convergence 2: Last Packet sent from Test Generator to last packet received by Test Collector— Transmission in, queuing, processing of preceding updates, tail

end processing, transmission out of last packet

• Convergence 3: 1st packet sent from Test Generator to last packet received by Test Collector— Transmission in and out (relative to DUT), plus back-up in BGP

update and processing of entire stream

7

Measurement 1-3: FactorsMeasurement 1-3: Factors

• Packing matters— Influences number of packets in the train

— Attribute packing– Classification speed– Packetization triggers

• IBGP synchronization turned off

• Turn off Minimum Route Advertisement Interval Timers

• Smoothing in BGP to avoid self-synchronization in the Network

8

BGP Convergence Depends On … BGP Convergence Depends On …

• Route mixtures

• Packet packing

• Timers

• TCP implementations

• Peers types, number of peers, and connectivity

• BGP-specific functionality— Eg. Confederations, use of route reflectors, etc.

• Topology

• Vantage point within the network

• Policy

9

Benchmarking Convergence Benchmarking Convergence ApproachApproach• Must be repeatable

• Must be consistent

• Must be specifiable

• Must take into account— Route mixture (data)

— Peers types and connectivity

— BGP-specific functionality

— Topology

10

GoalsGoals

• Provide a baseline of expected performance in today’s network.

• Test different vendor implementations fairly

• Design tests that can be replicated

• Good results require good data— The amount, type and composition of the information

advertised to the DUT has an impact on the convergence.

11

Route MixturesRoute Mixtures

12

Modeling Route Mixtures: Modeling Route Mixtures: Why not just use a feed?Why not just use a feed?

• The route mixture is highly dependent on the vantage point – Tier 1 ISP, Enterprise, Access, etc.

• Problems with Looking Glass— Vantage point

• Need to test tables larger than current live tables

• Needs to be repeatable, consistent, and specifiable

13

Route MixtureRoute Mixture

• Factors that describe the BGP Table: composition and timing

—Prefix distribution–Node distribution and levels on tree

—AS mixtures and path lengths

—Attribute distribution (nexthop, communities,MED, localpref)

—Packet packing

—Update sequencing (timing)–Packet trains

14

Prefix DistributionPrefix Distribution

• Example: A table of all /32s is not representative of the real world

• Prefixes are distributed across dozens of prefix lengths— For IPv4, the distribution is spread out through the Class A, B,

and C address spaces.

— For IPv6, there is no data

• Need to describe prefix distribution per prefix length— Better characterization for IPv4 if Class also taken into account

• Analyze current Internet table to determine prefix distribution characteristics

15

Prefix DistributionPrefix Distribution

• Example percentages of prefix distribution:

•    Mask   Overall   Class A   Class B   Class C

•      16   0.08114   0.00076   0.06637   0.01401     17   0.00912   0.00030   0.00142   0.00741     18   0.01813   0.00093   0.00113   0.01607     19   0.05910   0.00378   0.00196   0.05336     20   0.03372   0.00152   0.00151   0.03070     21   0.04128   0.00085   0.00127   0.03915     22   0.05574   0.00171   0.00226   0.05176     23   0.07878   0.00235   0.00450   0.07193     24   0.53355   0.00892   0.02366   0.50097

Total prefix length distribution.

IPv4 sample distribution across classes.

16

IP v6 Prefix DistributionIP v6 Prefix Distribution• Example percentages of prefix distribution:

•    Mask   Overall   3FEE 2001 other

•   0-10    0.08114   0.00076   0.06637   0.01401  11-20   0.00912   0.00030   0.00142   0.00741  21-30 0.01813   0.00093   0.00113   0.01607  31-40   0.05910   0.00378   0.00196   0.05336  41-50   0.03372   0.00152   0.00151   0.03070  51-60   0.04128   0.00085   0.00127   0.03915  61-70   0.05574   0.00171   0.00226   0.05176  71-80   0.07878   0.00235   0.00450   0.07193  81-90  0.53355   0.00892   0.02366   0.50097

• 91-100  0.53355   0.00892   0.02366   0.50097

• 100-110 0.53355   0.00892   0.02366   0.50097

• 111-128 0.53355   0.00892   0.02366   0.50097

Total prefix length distribution.

IPv6 sample distribution across currently routed

Addres space

17

Node DistributionNode Distribution

• Is tree dependent

• Width and depth of table are important

• Route mixtures should exercise various choices of trees— A route mixture that minimizes the number of nodes is not

accurate

— A route mixture that maximizes the spread of prefixes creates is not accurate

18

Node DistributionNode Distribution

R O O T

10.0.0.0

192.5.0.0 192.8.0.0

192.8.2.0

192.8.2.0 192.8.2.128

192.0.0.0

54.10.4.054.10.1.0

54.10.0.0

54.0.0.0

10.1.1.1

10.10.5.010.1.1.0

10.1.0.0 10.10.0.0

Levels

Nodes

19

IP v6 Node DistributionIP v6 Node Distribution

ROOT

3FEE::

2001::01 2001:02

2001:0201

2001::

3FEE:0101

3FEE:0100 3FEE:2000::

Levels

Nodes

3FEE:0101:01

3FEE:0101

2001:0201:01 2001:0201:02

20

Node DistributionNode Distribution

• For example, the following tables both contain three Class A /32 prefixes— Table A 1.1.1.1/32, 1.1.1.2/32, 1.1.1.3/32

— Table B 1.1.1.1/32, 2.1.1.1/32, 3.1.1.1/32

— Their distribution in a tree will be different.– Table A represents a narrow distribution, while Table B

represents a wide distribution.

1.0.0.01.0.0.0

1.1.0.01.1.0.0

1.1.1.21.1.1.2

1.1.1.01.1.1.0

1.1.1.21.1.1.21.1.1.11.1.1.1

ROOT

Table A1.0.0.01.0.0.0

1.1.1.11.1.1.1

1.1.1.01.1.1.0

1.1.0.01.1.0.0

2.0.0.02.0.0.0

2.1.1.12.1.1.1

2.1.1.02.1.1.0

2.1.0.02.1.0.0

3.0.0.03.0.0.0

3.1.1.13.1.1.1

3.1.1.03.1.1.0

3.1.0.03.1.0.0

ROOTTable B

21

Node Distribution SummaryNode Distribution Summary

• The width of the table must be measured per prefix distribution and length

• Need to determine how many nodes each address/prefix length combination use in a real table

• Solution: Analyze current Internet table to determine node distribution characteristics

22

Route ComponentsRoute Components

23

BGP Attribute DistributionBGP Attribute Distribution

• A BGP table contains many “attribute combinations”

• Analysis shows:—11.75% of the routes have a unique AS_PATH

—2.5% of the routes have some other unique attribute. 

—0.25% of the table have both a unique AS_PATH and some other unique attribute

24

BGP Attribute DistributionBGP Attribute Distribution

• Prefixes that share an attribute are not necessarily grouped together

• Analysis shows an average of two consecutive NLRI share the same attribute combination

— 1.0.0.0/8 AS_PATH 100 200— 2.0.0.0/8 AS_PATH 100 200— 3.0.0.0/8 AS_PATH 200 300— 4.0.0.0/8 AS_PATH 200 300— 5.0.0.0/8 AS_PATH 200 300— 6.0.0.0/8 AS_PATH 100 200

25

Planes (control),Planes (control),Trains,Trains,and no Automobilesand no Automobiles

26

Packet PackingPacket Packing

• Each packet has attributes and NLRIs

• Attribute packing is the ability to detect and pack NRLIs with the same attributes into a packet

• NLRI packing is:— the number of NLRIs per packet

— MPBGP not considered for 1st draft– IPv6 packing is not different than IPv4– Multicast packing (IP v4 and IP v6) may impact packing

• Specifics are affected by implementation

27

Update Sequencing (Timing)Update Sequencing (Timing)

• Parameters are:— Number of packets in a train

— Interval between packets in a train

— TCP parameters, traffic and implementations affect this

Packet 1 Packet 2 Packet 3 Packet 4

Packet train Packet train

28

TimersTimers

• Key timers— Min-Route Advertisement Interval, Min AS Originations Interval --

best setting still in debate

— Route Flap damping mechanisms– Implementations vary– Shorter prefixes get less damping– RIPE 229 suggest parameters– 1st Bgp Conv draft mandates route flap damping off

— TCP settings

• Operators need to give feedback

29

Peers, not BeersPeers, not Beers

30

Peer type mattersPeer type matters

• EBGP vs IBGP

• EBGP— 3rd party versus 1st party nexthop

— promiscuous versus specific peering

• IBGP - Route Reflection client and Confederations affect convergence patterns— See ietf-idr-route-oscillations-01.txt

• Still single box but these affect work done by box

31

Multiple Peers in test EnvironmentMultiple Peers in test Environment

• Peers can have staggered starts— Most realistic

• Peers can all send simultaneously— Most load on the router

• Peers can have staggered starts in groups

32

Sample topology with 4 PeersSample topology with 4 Peers

TG1 DUT TC

tcpdump tcpdump

TG2

TG3

TG4

tcpdump

tcpdump

tcpdump

33

Peer SpecificsPeer Specifics

• Type of Peer— Promiscuous/Specific

• Sequence— Connection establishment

— Sending 1st data

— Spacing of updates

— Connection up/down

34

Timing & SynchronizationTiming & Synchronization

• Consistency among timestamps taken by different devices is a requirement

• Should be at least 1 order of magnitude better than measured quantity — For BGP convergence, we are time-stamping packets

• NTP? GPS? Other?

• Synchronization between measurements can a significant factor

35

Some Boxes workSome Boxes workHarder than OthersHarder than Others

36

BGP Protocol functions will impact BGP Protocol functions will impact convergenceconvergence

• Route Reflections,

• Confederations

• Add/delete communities

• RFC 2547, Label switching

• Multi-protocol

• Route flap damping

• Min Route Advertisement

37

Parameters we suggest for Protocol Parameters we suggest for Protocol Functions for 1Functions for 1stst Document Document

• No Route Reflectors (no IBGP this version)

• No confederations

• No Add/Delete communities

• No 2547 VPNS or multicast

• Route flap damping OFF

• Min Route Advertisement Interval specified

• Min AS Origination Interval specified

38

TopologyTopology

39

Topology mattersTopology matters

• Exchange point topology

• N star topologies meshed for Route Reflection

• Confederations with particular topologies

• IBGP/EBGP mesh overlay

• Building blocks— single link, line, mesh, partial mesh, star, wheel

40

Single link: 1Single link: 1stst Document Document

……

DUT TResTR1

TR2

TRn

n >= 1

line

41

Line Line

DUT

DUT

DUT

TRes

TR1

Longer line

42

MeshMesh

DUT

TRes TR1

DUT

DUT DUT

TRes TResmesh

43

Partial MeshPartial Mesh

DUT

TRes TR1

DUT

DUT DUT

TRes TRes

44

ReferencesReferences

• IETF51 BMWG talk: http://www.ietf.org/proceedings/01aug/slides/bmwg-4/

• NextHop IETF51 talk: http://www.ietf.org/proceedings/01aug/slides/bmwg-5/index.html

• Howard’s IETF51 talk: http://www.ietf.org/proceedings/01aug/slides/bmwg-6/index.html

• Recommendations for flap damping, Ripe 229: http://www.ripe.net/ripe/docs/ripe-229.html

• BGP Convergence Terminology ID: http://www.ietf.org/internet-drafts/draft-ietf-bmwg-conterm-00.txt

• BGP Convergence Methodology: http://www.ietf.org/internet-drafts/draft-ietf-bmwg-bgpbas-00.txt

45

Thank Thank YouYou

Questions?

46

Route Mixtures Matter!Route Mixtures Matter!

• The amount, type and composition of the information advertised to the DUT has an impact on the convergence.

• Goal is to provide a baseline of expected performance in today’s network.

• Test different vendor implementations fairly

• Design tests that can be replicated

• Good results require good data


Recommended