+ All Categories
Home > Documents > 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

Date post: 16-Dec-2015
Category:
Upload: reina-bowhay
View: 215 times
Download: 1 times
Share this document with a friend
Popular Tags:
57
1 Chapter 5 Numerical Integration
Transcript
Page 1: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

1

Chapter 5Numerical Integration

Page 2: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

2

A Review of the Definite Integral

Page 3: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

3

Riemann Sum A summation of the

form

is called a Riemann

sum.

Page 4: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

4

5.2 Improving the Trapezoid Rule The trapezoid rule for computing integrals:

The error:

Page 5: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

5

5.2 Improving the Trapezoid Rule

So that

Therefore,

Error estimation:

Improvement of the approximation:

the corrected trapezoid rule

Page 6: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

6

Example 5.1

Page 7: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

7

Example 5.2

Page 8: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

8

h4

Page 9: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

9

Approximate Corrected Trapezoid Rule

Page 10: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

10

Page 11: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

11

5.3 Simpson’s Rule and Degree of Precision

Page 12: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

12

let

Page 13: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

13

Page 14: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

14

Example 5.3

Page 15: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

15

Page 16: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

16

The Composite RuleAssume

Example 5.4

Page 17: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

17

Page 18: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

18

Example 5.5

h4

It’s OK!!

Page 19: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

19

Discussion From our experiments:

From the definition of Simpson’s rule:

Why? Why Simpson’s rule is “more accurate than it ought to be”?

Page 20: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

20

Page 21: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

21

Page 22: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

22

Page 23: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

23

Page 24: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

24

Example 5.6

Page 25: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

25

5.4 The Midpoint Rule Consider the integral:

And the Taylor approximation:

The midpoint rule:

Its composite rule:

because

Page 26: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

26

Page 27: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

27

Page 28: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

28

Example 5.7

Page 29: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

29

Page 30: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

30

Page 31: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

31

5.5 Application: Stirling’s Formula Stirling’s formula is an interest

ing and useful way to approximate the factorial function, n!, for large values of n.

Use Stirling’s formula to show that

for all x.

0!

lim

n

xn

n

Example

Page 32: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

32

5.6 Gaussian Quadrature Gaussian quadrature is a very powerful tool for approximati

ng integrals. The quadrature rules are all base on special values of weigh

ts and abscissas (called Gauss points) The quadrature rule is written in the form

n

i

ni

nin dxxfxfwfG

1

1

1

)()( )()()(

weights Gauss points

Page 33: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

33

Page 34: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

34

Example 5.8

Page 35: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

35

Question

k

×

Page 36: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

36

Discussion The high accuracy of Gaussian quadrature then comes from the f

act that it integrates very-high-degree polynomials exactly.

We should choose N=2n-1, because a polynomial of degree 2n-1 has 2n coefficients, and thus the number of unknowns (n weights plus n abscissas) equals the number of equations.

Taking N=2n will yield a contradiction.

Page 37: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

37

Only to find an example

Page 38: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

38

Page 39: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

39

Finding Gauss Points

Page 40: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

40

Theorem 5.3

Page 41: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

41

Theorem 5.4

Page 42: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

42

Page 43: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

43

Other Intervals, Other Rules

)1)((2

1 zabax

Page 44: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

44

Example 5.9

Table 5.5

Page 45: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

45

Error estimation!! See exercise!!

Page 46: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

46

Example 5.10

Page 47: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

47

Page 48: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

48

5.7 Extrapolation Methods One of the most important ideas in

computational mathematics is— We can take the information from a few

approximations and Use that to both estimate the error in the

approximation and generate a significantly improved approximation

In this section we will embark on a more detailed study of some of these ideas.

Page 49: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

49

Approximation

Page 50: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

50

Estimating p

Page 51: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

51

Example 5.11

Page 52: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

52

Page 53: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

53

Example 5.12

)(",)(',0 when4

1)(",

2

1)(' ,)( 2/32/12/1

xfxfx

xxfxxfxxf

Page 54: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

54

Page 55: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

55

Error Estimation and an Improved Approximation

I2n-In

Page 56: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

56

Example 5.13

Page 57: 1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.

57

Example 5.14

O(h2): Error of trapezoid ruleO(h4): Error of Richardson extrapolation


Recommended