+ All Categories
Home > Documents > 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T....

1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T....

Date post: 05-Jan-2016
Category:
Upload: shannon-kelly
View: 212 times
Download: 0 times
Share this document with a friend
22
1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional de Fusión Asociación Euratom/Ciemat para Fusión Av. Complutense, 22. 28040, Madrid (Spain)
Transcript
Page 1: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

1

Confinement Studies on TJ-II Stellarator with OH

Induced Current

F. Castejón, D. López-Bruna,

T. Estrada, J. Romero and E. AscasíbarLaboratorio Nacional de Fusión

Asociación Euratom/Ciemat para Fusión

Av. Complutense, 22. 28040, Madrid (Spain)

Page 2: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

2

Outline

» TJ-II characteristics

» Description of the experiments: General observations

» Effect of plasma current on confinement:• Negative currents

• Positive currents

» Discriminating E and Ip effects

» Discussion and conclusions

Page 3: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

3

TJ-II stellarator

Rotational transform:0.9 ≤ (0) ≤ 2.1•OH coils allow inducing toroidal current to modify profile.

Rotational transform:0.9 ≤ (0) ≤ 2.1•OH coils allow inducing toroidal current to modify profile.

R = 1.5 m, <a> ≤ 0.22 mB0 < 1.2 TECRH , Pheating ≤ 600 kW<n e> ≤ 1.2 1019 m-3

Helical axis stellarator with high flexibility

TF COILS

HX,CC COILSPLASMA

OH COILS

VF COILS

Page 4: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

4

TJ-II Characteristics

s=dln(q)dr

=−dln(ι /2π)

dr

• TJ-II is a very suitable device to study the influence of Rotational Transform and Magnetic Shear on confinement, since:

– It has high flexibility

– It is an almost shearless device: the plasma current modifies strongly the Vacuum Rotational Transform Profile.

– Non inductive Current Drive (ECCD) allows one to discriminate the influence of plasma current and toroidal electric field on confinement.

• ECRH plasmas: low density, low (0.1-0.2 %), Te>Ti and low collisionality.

• In TJ-II: negative (positive) toroidal currents diminish (increase) value and causes negative (positive) magnetic shear.

• Shear Definition: à la tokamak:

Page 5: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

5

Description of the experiments

-8

-6

-4

-2

0

2

4

6

8

1100 1150 1200 1250 1300

I

OH

, kA

tiempo, ms

t

vértice

0

0.5

1

1.5

-10

-5

0

5

1040 1080 1120 1160 1200 1240 1280

#6864

<ne

> (10

13

cm-3

), Te

(keV)I

p

(kA)

time(ms)

Te

<ne>

Ip

0

0.5

1

1.5

-10

-5

0

5

1040 1080 1120 1160 1200 1240 1280

#6864

<ne

> (10

13

cm-3

), Te

(keV)I

p

(kA)

time(ms)

Te

<ne>

Ip

0

0.5

1

1.5

-5

0

5

10

1050 1100 1150 1200 1250 1300 1350

#8677

<ne

> (10

13

cm-3

), Te

(keV)I

p

(kA)

time(ms)

Te

<ne>

Ip

0

0.5

1

1.5

-5

0

5

10

1050 1100 1150 1200 1250 1300 1350

#8677

<ne

> (10

13

cm-3

), Te

(keV)I

p

(kA)

time(ms)

Te

<ne>

Ip

Plasma current induced by OH coils: Different ramps (different loop voltages)

Page 6: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

6

Description of the experiments

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

Ip=+8.5 kA

Ip=-0.6 kA

Ip=-8.2 kA

Rot

atio

nal t

rans

form

100_44_64

profile is strongly modified by plasma current. crosses the several low order resonances that appear as jumps in the central ECE channels*.

* T. Estrada et al. Plasma Phys. Control. Fusion 44 (2002) 1* T. Estrada et al. Plasma Phys. Control. Fusion 44 (2002) 1

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

0 0.2 0.4 0.6 0.8 1

100_60_68100_56_67100_52_66100_48_65100_44_64100_40_63

Reff

3/

8/5

5/3

Page 7: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

7

General observations

• Distinctive “signature” with OH induction:– Transitions of central ECE signals (due to rational (0) sweeping)

– Confinement changes observed in Density and SXR signals.

– Small jumps for given values of Ip (Vloop)

• High reproducibility

• MHD events clearly distinguishable in Mirnov coils.

• Higher confinement with Ip<0. Lower confinement for Ip>0, up to Ip ≈ 6 kA

• Weaker effects for low densities

Page 8: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

8

Negative current

-8

-6

-4

-2

0#7044

#7045

I p

(kA)

-8

-6

-4

-2

0#7044

#7045

I p

(kA)

0

0.02

0.04

0.06

0.08

0.1

SRX (a.u.)

0

0.02

0.04

0.06

0.08

0.1

SRX (a.u.)

0

0.4

0.8

1.2

1.6

1040 1080 1120 1160 1200

Te

(keV)

time(ms)

0

0.4

0.8

1.2

1.6

1040 1080 1120 1160 1200

Te

(keV)

time(ms)

0.3

0.4

0.5

<ne

> (10

13

cm-3)

0.3

0.4

0.5

<ne

> (10

13

cm-3)

• Strong negative current is induced from t=1100 ms:

dIOH/dt=-28 kA/s

• Confinement is improved as can be seen in:

– Line density

– SXR

– Central ECE channels.

• Two discharges with different densities are compared:

– Different currents are due to bootstrap (more negative for shot #7045, in black)

– The effect of OH current is stronger for higher density.

Page 9: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

9

Moderate negative magnetic shear

Substantial improvement (between 30 and 50 %) of the energy content for negative plasma current (negative magnetic shear)*

Substantial improvement (between 30 and 50 %) of the energy content for negative plasma current (negative magnetic shear)*

* J.A. Romero et al Submitted to Nuclear Fusion* J.A. Romero et al Submitted to Nuclear Fusion

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

#5787: Ip=0 kA#5786: Ip=-5 kA

Pe

(kPa)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

#5787: Ip=0 kA#5786: Ip=-5 kA

Pe

(kPa)

-4

-2

0

2

I p

(kA)

0

0.4

0.8

1.2

<ne

> (10

13

cm-3)

0

0.2

0.4

0.6

0.8

1

Te

(keV)

0

1

2

3

Ha

(a.u.)

-4

-2

0

2

4

1040 1120 1200 1280 1360

dB/dt (a.u.)

time

Page 10: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

10

Negative current

-0.2

0

0.2

0.4

0.6

0.8

-12 -10 -8 -6 -4 -2 0 2 4

# 6880# 6897# 6896

Current (kA)

Evolution of line density vs. current in three discharges with different densities:The more negative the current the higher the density.

(In the lowest density case the maximum value of loop voltage has been limited to avoid XR emission)

Page 11: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

11

Positive current

0.3

0.4

0.5

0.6

0.7

<ne

> (10

13

cm-3)

0.3

0.4

0.5

0.6

0.7

<ne

> (10

13

cm-3)

0

2

4

6

8

10

#7971

#7972

I p

(kA)

0

2

4

6

8

10

#7971

#7972

I p

(kA)

0

0.2

0.4

0.6

0.8

1

1050 1100 1150 1200 1250 1300

Te

(keV)

time(ms)

0

0.2

0.4

0.6

0.8

1

1050 1100 1150 1200 1250 1300

Te

(keV)

time(ms)

• Strong Positive current is induced from t=1120 ms:

dIOH/dt=28 kA/s

• Confinement is first degraded and then restored.

• Two discharges with different densities are compared:

– As before, the effect of OH current is stronger for higher density.

Page 12: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

12

Positive current

Evolution of line density vs. current in three discharges with different densities: # 8681 (low), # 8682 (middle), #8683 (moderate).Effects are stronger for higher densities.The confinement is first degraded and then restored for plasma current larger than about 6 kA.

Page 13: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

13

Positive current

For high positive currents the confinement is similar to the case without OH.

For high positive currents the confinement is similar to the case without OH.

0

0.2

0.4

0.6

0.8

1

1.2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

#7034: Ip=-0.3 kA#7036: Ip=+8.5 kA

Pe

(kPa)

0

0.2

0.4

0.6

0.8

1

1.2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

#7034: Ip=-0.3 kA#7036: Ip=+8.5 kA

Pe

(kPa)

Page 14: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

14

Dynamical evolution

0

0.2

0.4

0.6

0.8

1

1.2

-5

0

5

10

1050 1100 1150 1200 1250 1300 1350

#8679

DensityECE11CX

Ip

n (10

13cm-3

), Te (keV), Ti*2 (keV)

Ip (kA)

time (ms)

Evolution of line density profiles (interferometer) during the current evolution (up to 5 kA; t=1250 ms):

Phase of negative current: confinement improvement.Phase of positive current: confinement degradation.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.9 1

#8679

1120_11221122_11241150_11521152_11541166_11681170_11721172_11741182_11841188_11901196_11981198_12001212_12141214_12161220_12221224_12261228_12301240_12421242_12441250_12521252_1254

Page 15: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

15

Sign of magnetic shear

OH experiments: plasma currents up to +/- 10 kA have been induced.

Negative plasma currents (negative magnetic shear):Improvement of confinement.

Positive plasma current (positive magnetic shear):Confinement degradation up to Ip ≈ 6 kA. For higher plasma currents the confinement is restored.

OH experiments: plasma currents up to +/- 10 kA have been induced.

Negative plasma currents (negative magnetic shear):Improvement of confinement.

Positive plasma current (positive magnetic shear):Confinement degradation up to Ip ≈ 6 kA. For higher plasma currents the confinement is restored.

Non-symmetric dependence of confinement on the sign of the shear

Page 16: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

16

Discriminating E and Ip

Question:

• Are the changes in confinement due the toroidal electric field field (particle orbit modification) or to the current (magnetic shear)?

• Estimation of <ExBp> drift (average on a magnetic surface) shows that it is too low to justify the improvement (degradation) of confinement.

• Experiments performed to uncouple toroidal current and toroidal field using ECCD.

Page 17: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

17

Discriminating E and Ip: ExB drift

• Calculated in 3D Geometry*

• Range ± 0.07 m/s for 1Volt

• Flux averaged is s*0.01m/s for 1 Volt.

• Too small (two orders of magnitude) to account for overall observed effect, considering:

• But it can affect trapped particle confinement.*J. Guasp and M. Liniers. Informe Ciemat 946, Madrid, 2000

Γ =Δn<vEφxB >

Page 18: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

18

Discriminating E and Ip

Ip

Confinement Improvement timeIf the field is the cause.

ECCD

IpE

Confinement Iprovement

Iboot

Iboot

Confinement Improvement timeif the shear is the cause.

E

Page 19: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

19

Discriminating E and Ip

N//=0.2, 0, -0.2, Without OH-10

-8

-6

-4

-2

0

2

4

#6913

#6907

#6921

#6922

Ip

(kA)

-10

-8

-6

-4

-2

0

2

4

#6913

#6907

#6921

#6922

Ip

(kA)

• Four discharges with similar density.

• For the discharges with OH the loop voltage is the same:

dIOH/dt=5.5 kA/s

(t< 1170ms)

dIOH/dt=-32.4 kA/s

(t> 1170ms)

• ECCD is varied from negative to positive values.

• The transition happens for similar values of the current.

• The main responsible is the current (the shear).

0

0.1

0.2

0.3

0.4

0.5

0.6

1050 1100 1150 1200 1250 1300 1350

<ne

> (10

13

cm-3

)

time(ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

1050 1100 1150 1200 1250 1300 1350

<ne

> (10

13

cm-3

)

time(ms)

Page 20: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

20

Discussion and Conclusions

•Current (and magnetic shear) main responsible of confinement changes during OH experiments on TJ-II.

•Weak, if any, effects of toroidal electric field.

•Effect of shear on confinement depending on the sign.

•Look for causes with non symmetric dependence on the shear sign.

Page 21: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

21

Discussion and Conclusions

•Possible causes of transport modification (non exhaustive list):

•Effect of local shear sign on drift waves*? -> Problem: for these low ’s the modification of local shear seems to be very weak.

•Trapped electron modes**: should appear for Te>>Ti, for low collisionality and large fraction of trapped particles. These conditions happen in TJ-II (Fraction of trapped particles about 35 %†)

•Modification of particle orbits due to changes in magnetic topology‡. (Explanation for the restoring of confinement for high positive currents?)

*N. Nadeem, T. Rafiq and M. Persson. Phys. Plasmas 8 (2001) 4375** N. Domínguez, B. Carreras, V. Lynch and P. Diamond. Phys. of Fluids B 4 (1992) 2894†J. Guasp and M. Liniers. Informes Técnicos Ciemat 946. Madrid, 2000.‡ J. Guasp and M. Liniers. Informes Técnicos Ciemat 951. Madrid, 2000.

Page 22: 1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.

22

Thank you!


Recommended