+ All Categories
Home > Documents > 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status...

1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status...

Date post: 08-Jan-2018
Category:
Upload: logan-pitts
View: 216 times
Download: 0 times
Share this document with a friend
Description:
3 Goal The Node-Voltage and Mesh-Current Methods are powerful tools to compute circuit parameters Cramer’s Rule is especially useful for a large number of unknowns; we practice in ECE 221 just for 3 unknowns Sometimes a circuit can be transformed into another one that is simpler, yet equivalent Generally that will simplify computations We’ll learn a few source transformations here Method 1: remove parallel load from CVS Method 2: remove serial load from CCS Method 3: Transform CVS CCS bilaterally
21
1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology CCUT
Transcript
Page 1: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

1

ECE 221Electric Circuit Analysis I

Chapter 11Source Transformations

Herbert G. Mayer, PSUStatus 11/25/2014

For use at Changchun University of Technology CCUT

Page 2: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

2

Syllabus

Goal CVS With Rp Removed CCS With Rs Removed CVS to CCS Transformation Detailed Sample Conclusion

Page 3: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

3

Goal The Node-Voltage and Mesh-Current Methods are

powerful tools to compute circuit parameters Cramer’s Rule is especially useful for a large

number of unknowns; we practice in ECE 221 just for 3 unknowns

Sometimes a circuit can be transformed into another one that is simpler, yet equivalent

Generally that will simplify computations We’ll learn a few source transformations here Method 1: remove parallel load from CVS Method 2: remove serial load from CCS Method 3: Transform CVS <-> CCS bilaterally

Page 4: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

4

CVS With Rp Removed

Page 5: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

5

CVS With Rp Removed Removing the load Rp parallel to the CVS has

no impact on externally connected loads RL

Such loads RL—not drawn here— will be in series with resistor R

Removal of Rp decreases the amount of current that the CVS has to produce, to deliver equal voltage to both Rp and the series of R plus any load RL

This simplification is one of several source transformations an engineer should look for, before computing all unknowns in a circuit

Page 6: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

6

CCS With Rs Removed

Page 7: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

7

CCS With Rs Removed Removing the load Rs in series with the CCS

has no impact on external loads RL

Such a load RL—not drawn here— will be parallel to resistor R

Removal of Rs will certainly decrease the amount of voltage that the CCS has to produce, to deliver equal current to both Rs in series with R parallel to load RL

This simplification is one of several source transformations to simplify computing unknowns in a circuit

Page 8: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

8

CVS to CCS Bilateral Transformation

Page 9: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

9

CVS to CCS Transformation A given CVS of Vs Volt with resistor R in series

produces a current iL in a load, connected externally That current also flows through connected load RL

iL = Vs / ( R + RL ) A CCS of iS Ampere with parallel resistor R produces

a current iL in an externally connected load RL

For the transformation to be correct, these currents must be equal for all loads RL

iL = is * R / ( R + RL ) Setting the two equations for iL equal, we get:

is = Vs / RVs = is * R

Page 10: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

10

Detailed Sample

We’ll use these simplifications in the next example to generate an equivalent circuit that is minimal

I.e. eliminate all redundancies from right to left This example is taken from [1], page 110-111,

expanded for added detail First we analyze the sample, identifying all

# of Essential nodes ____# of Essential branches ____

Then we compute the power consumed or produced in the 6V CVS

Page 11: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

11

Detailed Sample, Step a

Page 12: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

12

Detailed Sample

identify all:# of Essential nodes __4__

# of Essential branches __6__

Page 13: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

13

,Detailed Sample, Step b

Page 14: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

14

,Detailed Sample, Step c

Page 15: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

15

,Detailed Sample, Step d

Page 16: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

16

,Detailed Sample, Step e

Page 17: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

17

,Detailed Sample, Step f

Page 18: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

18

,Detailed Sample, Step g

Page 19: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

19

,Detailed Sample, Step h

Page 20: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

20

Power in 6 V CVS The current through network h, in the direction of

the 6 V CVS source is:i = ( 19.2 - 6 ) / ( 4 + 12 ) [ V / Ω ]

i = 0.825 [ A ] Power in the 6 V CVS, being current * voltage is:

P = P6V = i * V = 0.825 * 6 P6V = 4.95 W

That power is absorbed in the 6 V source, it is not being delivered by the 6 V source! It is delivered by the higher voltage CVS of 19.2 V

Page 21: 1 ECE 221 Electric Circuit Analysis I Chapter 11 Source Transformations Herbert G. Mayer, PSU Status 11/25/2014 For use at Changchun University of Technology.

21

Conclusion Such source transformations are not always

possible Exploiting them requires that there be a

certain degree of redundancy Frequently that is the case Engineers must check carefully, how much

simplification is feasible, and then simplify But no more


Recommended