+ All Categories
Home > Documents > 1 Economic forest production with consideration of the forest- and energy- industries Presentation...

1 Economic forest production with consideration of the forest- and energy- industries Presentation...

Date post: 16-Jan-2016
Category:
Upload: tiffany-bishop
View: 215 times
Download: 0 times
Share this document with a friend
Popular Tags:
150
1 Economic forest production with consideration of the forest- and energy- industries Presentation at the E.On Conference in Malmö, Sweden, 2008-10-30 Peter Lohmander Professor of Forest Management and Economic Optimization SLU, Swedish University of Agricultural Sciences Umea, Sweden http ://www.Lohmander.com
Transcript
  • Economic forest production with consideration of the forest- and energy- industries

    Presentation at the E.On Conference in Malm, Sweden, 2008-10-30

    Peter Lohmander Professor of Forest Management and Economic OptimizationSLU, Swedish University of Agricultural SciencesUmea, Swedenhttp://www.Lohmander.com

  • Structure of the presentation:#01. Objectives#02. Key questions #03. Recent developments in the world#04. The present state#05. Forests, CO2, CCS and risk management#06. The forest harvest level and industrial expansion#07. Integrated regional study and risk management#08. Conclusions and plans for the future #09. Thanks to E.On#10. References

  • #01. ObjectivesTo describe the analyzed system.

    To describe the most important problems.

    To describe and motivate selected solution approaches and obtained results. To serve as a starting point in an extended discussion of important problems, solutions approaches and future cooperation.

  • #02. Key questionsHow should we define the system to be analyzed?Spatial definition? Time horizon?Included organizations?Uncertainty, risk or certainty?Objective function?

    How should we manage the analyzed system in order to optimize the total result?

  • #03. Recent developments in the world

  • Recent developments in the world with very strong impacts on the key questionsA. The Financial Crisis:Extreme risk and uncertainty in the general global economic system.B. The Global Warming:The CO2 emission level has become the dominating environmental concern in the world. C. The CCS Technology: - Extremely promising method that can handle the global warming problem. Strong support from E.C., British Gov. and several large energy coorporations.

  • #04. The present state

  • Sweden is a country that is dominated by the forests.

  • The Initial Physical StateThe information from the Swedish Board of Forestry (Yearbook of Forest Statistics and Internet) clearly shows that the stock of wood in the Swedish forest has increased very much since 1920. This is true for pine, spruce and birch.

    Source:The Swedish Board of Forestry 2007-10-26:http://www.svo.se/episerver4/templates/SFileListing.aspx?id=16583

  • Source: www.svo.se 2008-01-02

    Diagram2

    57.870.403571412.6035714

    58.371.167142812.8671428

    54.771.930714217.2307142

    55.372.694285617.3942856

    51.273.45785722.257857

    49.574.221428424.7214284

    48.174.984999826.8849998

    47.375.748571228.4485712

    47.176.512142629.4121426

    49.177.27571428.175714

    49.978.039285428.1392854

    49.878.802856829.0028568

    51.48230.6

    50.38231.7

    50.98332.1

    51.68331.4

    538330

    53.88228.2

    57.18224.9

    58.88122.2

    608020

    62.18017.9

    63.37915.7

    63.87814.2

    66.17811.9

    69.8777.2

    70.280.310.1

    72.882.39.5

    75816

    74.181.57.4

    71.581.510

    68.584.215.7

    6587.522.5

    61.289.228

    58.992.133.2

    57.893.535.7

    58.997.438.5

    60.799.138.4

    62.3100.237.9

    63.295.532.3

    63.797.834.1

    64.296.432.2

    64.3101.136.8

    64.7101.436.7

    65.2100.335.1

    65.4102.136.7

    65.8100.634.8

    66.198.732.6

    66.5104.738.2

    68.910233.1

    7010030

    71.799.227.5

    73.1100.927.8

    73.710430.3

    73.9104.730.8

    75.6109.934.3

    77.1111.234.1

    79123.844.8

    81.9120.238.3

    90.6111.220.6

    Gross Felling

    Increment

    Net Growth

    Year

    Million M3sk

    Fellings, Increment and Net Growth

    Diagram1

    194457.870.403571412.6035714

    194558.371.167142812.8671428

    194654.771.930714217.2307142

    194755.372.694285617.3942856

    194851.273.45785722.257857

    194949.574.221428424.7214284

    195048.174.984999826.8849998

    195147.375.748571228.4485712

    195247.176.512142629.4121426

    195349.177.27571428.175714

    195449.978.039285428.1392854

    195549.878.802856829.0028568

    195651.48230.6

    195750.38231.7

    195850.98332.1

    195951.68331.4

    1960538330

    196153.88228.2

    196257.18224.9

    196358.88122.2

    1964608020

    196562.18017.9

    196663.37915.7

    196763.87814.2

    196866.17811.9

    196969.8777.2

    197070.280.310.1

    197172.882.39.5

    197275816

    197374.181.57.4

    197471.581.510

    197568.584.215.7

    19766587.522.5

    197761.289.228

    197858.992.133.2

    197957.893.535.7

    198058.997.438.5

    198160.799.138.4

    198262.3100.237.9

    198363.295.532.3

    198463.797.834.1

    198564.296.432.2

    198664.3101.136.8

    198764.7101.436.7

    198865.2100.335.1

    198965.4102.136.7

    199065.8100.634.8

    199166.198.732.6

    199266.5104.738.2

    199368.910233.1

    19947010030

    199571.799.227.5

    199673.1100.927.8

    199773.710430.3

    199873.9104.730.8

    199975.6109.934.3

    200077.1111.234.1

    200179123.844.8

    200281.9120.238.3

    200390.6111.220.6

    Gross Felling

    Increment

    Net Growth

    Year

    Million M3sk

    Fellings, Increment and Net Growth

    data

    Berknad rlig tillvxt sedan 1926 och bruttoavverkning sedan 1853

    Calculated annual increment since 1926 and gross fellings since 1853

    Avverkningen fr 1944 och framt r glidande femrsmedeltal

    Fellings since 1944 are 5-year averages

    185326.33

    185828.18

    186331.02

    186835.35

    187337.82

    187837.82

    188340.17

    188842.52

    189344.87

    189848.2

    190349.07

    190849.19

    191352.28

    191855.25

    192348.95

    192652.858

    192855.3759.37

    193352.0461.42

    193854.8864.84

    194355.7469.64

    194853.5473.46

    195352.0477.27

    194457.870.4035714

    194558.371.1671428

    194654.771.9307142

    194755.372.6942856

    194851.273.457857

    194949.574.2214284

    195048.174.9849998

    195147.375.7485712

    195247.176.5121426

    195349.177.275714

    195449.978.0392854

    195549.878.8028568

    195651.482

    195750.382

    195850.983

    195951.683

    19605383

    196153.882

    196257.182

    196358.881

    19646080

    196562.180

    196663.379

    196763.878

    196866.178

    196969.877

    197070.280.3

    197172.882.3

    19727581

    197374.181.5

    197471.581.5

    197568.584.2

    19766587.5

    197761.289.2

    197858.992.1

    197957.893.5

    198058.997.4

    198160.799.1

    198262.3100.2

    198363.295.5

    198463.797.8

    198564.296.4

    198664.3101.1

    198764.7101.4

    198865.2100.3

    198965.4102.1

    199065.8100.6

    199166.198.7

    199266.5104.7

    199368.9102

    199470100

    199571.799.2

    199673.1100.9

    199773.7104

    199873.9104.7

    199975.6109.9

    200077.1111.2

    200179123.8

    200281.9120.2

    200390.6111.2

    YearGross FellingIncrementNet Growth

    194457.870.403571412.6035714

    194558.371.167142812.8671428

    194654.771.930714217.2307142

    194755.372.694285617.3942856

    194851.273.45785722.257857

    194949.574.221428424.7214284

    195048.174.984999826.8849998

    195147.375.748571228.4485712

    195247.176.512142629.4121426

    195349.177.27571428.175714

    195449.978.039285428.1392854

    195549.878.802856829.0028568

    195651.48230.6

    195750.38231.7

    195850.98332.1

    195951.68331.4

    1960538330

    196153.88228.2

    196257.18224.9

    196358.88122.2

    1964608020

    196562.18017.9

    196663.37915.7

    196763.87814.2

    196866.17811.9

    196969.8777.2

    197070.280.310.1

    197172.882.39.5

    197275816

    197374.181.57.4

    197471.581.510

    197568.584.215.7

    19766587.522.5

    197761.289.228

    197858.992.133.2

    197957.893.535.7

    198058.997.438.5

    198160.799.138.4

    198262.3100.237.9

    198363.295.532.3

    198463.797.834.1

    198564.296.432.2

    198664.3101.136.8

    198764.7101.436.7

    198865.2100.335.1

    198965.4102.136.7

    199065.8100.634.8

    199166.198.732.6

    199266.5104.738.2

    199368.910233.1

    19947010030

    199571.799.227.5

    199673.1100.927.8

    199773.710430.3

    199873.9104.730.8

    199975.6109.934.3

    200077.1111.234.1

    200179123.844.8

    200281.9120.238.3

    200390.6111.220.6

    &F

    Sida &P

    data

    Gross Felling

    Increment

    Net Growth

    Year

    Million M3sk

    Fellings, Increment and Net Growth

  • Age distribution in the county of Gvleborg (2001-2005).Thousands of hectares in different age classes (years).

  • From the forest to the energy plants and forest industry mills

  • A harvester

  • A forwarder

  • A harvester in action

  • After harvesting and before forwarding

  • GROT prepared for energy production

  • A liner mill consuming wood of low dimensions. SCA.

  • A saw mill consuming wood of larger dimensions and high quality. SCA.

  • A flexible combined heat and power plant consuming wood, GROT, peat and other raw materials. E.ON Sweden.

  • Energy in Sweden

    Bioenergy in Sweden

    Biomass flows in Sweden

    Distribution of the forest harvest with respect to forest industry, energi industry, stock level changes and others

  • Total Energy Supply, Sweden (2006)Bio Energy incl. Peat, 116 TWhNuclear Power, 194 TWhOil, 201 TWhHydro Energy, 62 TWh

  • Diagram1

    10.1

    37.7

    21.1

    15

    13

    13.3

    Klla: Energimyndigheten, Energilget i siffror 2006Source: Swedish Energy Agency, Energy in Sweden, Facts and figures 2006

    Totalt 110 TWhTotal

    Anvndning av biobrnslen, torv mm fr energindaml 2005Utilisation of biofuels, peat etc, for energy production year 2005

    Returlutar i massaind och fjrrvrmeverk. Spent liquors in pulp industry and district heating plants34%

    Biobrnslen i bostadssektorn och vrigt Biofuels in residence sector and other12%

    Biobrnslen fr elproduktion Biofules for electricity production9%

    Trdbrnslsen i skogs- och trindustri. Wood fuels in forest and wood industry12%

    Avfall, torv mm huvudsakligen i fjrrvrmeverk. Waste material, peat etc. mainly in district heating plants14%

    Trdbrnslen i fjrrvrmeverk. Wood fuels in district heating plants19%

    2005

    Fig 11.4 Anvndning av biobrnslen, torv m.m. fr energindaml

    Use of biofules, peat etc. for energy production

    2005%9%34%19%14%12%12%100%

    TWh10.137.721.115.013.013.3110.2

    Klla: Energimyndigheten: "Energilget i siffor 2006"

    Source: Swedish Energy Agency: "Energy in Sweden, Fact and Figures 2006"

    2005

    Klla: Energimyndigheten, Energilget i siffror 2006Source: Swedish Energy Agency, Energy in Sweden, Facts and figures 2006

    Totalt 110 TWhTotal

    Anvndning av biobrnslen, torv mm fr energindaml 2005Utilisation of biofuels, peat etc, for energy production year 2005

    Trdbrnslen i fjrrvrmeverk. Wood fuels in district heating plants19%

    Avfall, torv mm huvudsakligen i fjrrvrmeverk. Waste material, peat etc. mainly in district heating plants14%

    Trdbrnslsen i skogs- och trindustri. Wood fuels in forest and wood industry12%

    Biobrnslen fr elproduktion Biofules for electricity production9%

    Biobrnslen i bostadssektorn och vrigt Biofuels in residence sector and other12%

    Returlutar i massaind och fjrrvrmeverk. Spent liquors in pulp industry and district heating plants34%

    2001-2004

    Fig 11.4 Anvndning av biobrnslen, torv m.m. fr energindaml

    Use of biofules, peat etc. for energy production

    2004%10%39%10%15%19%13%105%

    TWh10.339.410.415.419.112.8107.4

    2003%6%38%10%15%19%12%100%

    TWh5.738.710.515.619.212.4102.1

    2002%5%36%9%20%18%12%100%

    TWh5.235.88.92017.91299.8

    2001%5%40%9%17%19%11%100%

    TWh4.836.88.215.717.31092.8

    Klla: Energimyndigheten: "Energilget i siffor 2004"

    Source: Swedish Energy Agency: "Energy in Sweden, Fact and Figures 2004"

    2001-2004

    0

    0

    0

    0

    0

    0

    Klla: Energimyndigheten, Energilget i siffror 2005Source: Swedish Energy Agency, Energy in Sweden, Facts and figures 2005

    Totalt 107 TWhTotal

    Anvndning av biobrnslen, torv mm fr energindaml 2004Utilisation of biofuels, peat etc, for energy production year 2004

    2001-2003

    Fig 11.4 Anvndning av biobrnslen, torv m.m. fr energindaml

    Use of biofules, peat etc. for energy production

    2003%6%38%10%15%19%12%100%

    TWh5.738.710.515.619.212.4102.1

    2002%5%36%9%20%18%12%100%

    TWh5.235.88.92017.91299.8

    2001%5%40%9%17%19%11%100%

    TWh4.836.88.215.717.31092.8

    Klla: Energimyndigheten: "Energilget i siffor 2004"

    Source: Swedish Energy Agency: "Energy in Sweden, Fact and Figures 2004"

    2001-2003

    0

    0

    0

    0

    0

    0

    Klla: Enegerimyndigheten, Energilget i siffror 2004Source: Swedish Energy Agency, Energy in Sweden, Facts and figures 2004

    Totalt 103 TWhTotal

    Anvndning av biobrnslen, torv mm fr energindaml 2003

    1999-2001

    Anvndning av biobrnslen, torv m.m. fr energindaml.

    Use of biofuels, peat etc. for energy production

    2002%

    TWh

    2001%8.5%9.2%20.6%10.3%38.3%18.3%100

    TWh8.18.719.69.836.417.495

    2000%7.1%10.3%15.4%10.8%40.3%16.0%100

    TWh6.91014.910.53915.596.8

    1999%7.210.519.512.838.611.4100

    TWh6.89.918.312.036.310.794

    1999-2001

    00

    00

    00

    00

    00

    00

    Avfall, torv m.m. Refuse, peat etc. 17%

    Trdbrnslen i massa- och pappersindustrin Wood fuels in pulp and paper industry8%

    Trdbrnslen i sgverk Wood fuels in sawmills9%

    Ved i smhus Wood fuel in dwellings 10%

    Returlutar inom massaindustrin Black liquor in pulp industry36%

    Klla: Energimyndigheten Source: Swedish Energy Agency

    Totalt 95 TWh

    Trdbrnslen i fjrrvrmeverk Wood fuels in district heating plants 20%

    Anvndning av biobrnslen, torv m.m. fr energindaml under 2001Use of biofuel, peat etc. for energy purposes, 2001

  • Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    Diagram5

    9.81.636.948.3

    11.6237.551.1

    11.32.833.948

    11.93.74055.6

    134.943.861.7

    13.46.745.265.3

    12.4845.866.2

    12.99.246.768.8

    9.99.148.167.1

    9.69.345.864.7

    12.210.645.268

    11.112.846.870.7

    10.913.546.771.1

    11.815.848.375.9

    10.618.449.678.6

    11.321.451.484.1

    11.22450.785.9

    1125.35490.3

    10.826.454.291.4

    1125.254.290.4

    10.525.355.190.9

    9.329.453.492.1

    9.930.657.297.7

    1232.760.4105.1

    1138.557.4106.9

    Small houses

    District heating

    Industry

    Total

    Year

    TWh

    Use of Bio Energy (office heating etc. not included)

    Totalt

    Anvndning av biobrnsle, torv m.m. fr energindaml (inkl elproduktion), TWh. Anvndingen i lokaler ingr ej.

    Use of biofuel, peat etc. for energy purpose incl. electricity prodktion, TWh. The use in officies, servcie promise etc premises is not included

    rYearSmhusOne- or two dwelling housesFjrrvrmeDistrict heatingIndustrinIndustryTotaltTotal

    TWh

    197012.1......

    19718.8......

    19727.6......

    19736.7......

    19746.8......

    19756.0......

    19766.3......

    19776.9......

    19787.8......

    19798.8......

    19809.81.636.948.3

    198111.62.037.551.1

    198211.32.833.948.0

    198311.93.740.055.6

    198413.04.943.861.7

    198513.46.745.265.3

    198612.48.045.866.2

    198712.99.246.768.8

    19889.99.148.167.1

    19899.69.345.864.7

    199012.210.645.268.0

    199111.112.846.870.7

    199210.913.546.771.1

    199311.815.848.375.9

    199410.618.449.678.6

    199511.321.451.484.1

    199611.224.050.785.9

    199711.025.354.090.3

    199810.826.454.291.4

    199911.025.254.290.4

    200010.525.355.190.9

    20019.329.453.492.1

    20029.930.657.297.7

    2003 112.032.760.4105.1

    200411.038.557.4106.9

    1 Vissa siffror korrigerade

    1 Some figures are corrected

    Klla: Energimyndigheten: "Energilget i siffor 2005"

    Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    YearSmall housesDistrict heatingIndustryTotal

    19809.81.636.948.3

    198111.62.037.551.1

    198211.32.833.948.0

    198311.93.740.055.6

    198413.04.943.861.7

    198513.46.745.265.3

    198612.48.045.866.2

    198712.99.246.768.8

    19889.99.148.167.1

    19899.69.345.864.7

    199012.210.645.268.0

    199111.112.846.870.7

    199210.913.546.771.1

    199311.815.848.375.9

    199410.618.449.678.6

    199511.321.451.484.1

    199611.224.050.785.9

    199711.025.354.090.3

    199810.826.454.291.4

    199911.025.254.290.4

    200010.525.355.190.9

    20019.329.453.492.1

    20029.930.657.297.7

    200312.032.760.4105.1

    200411.038.557.4106.9

    Totalt

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    0000

    Small houses

    District heating

    Industry

    Total

    Year

    TWh

    Use of biofuels for energy including electricity (office heating etc. not included)

    Fjrrvrme

    Anvndning av biobrnsle, torv m.m. fr energindaml inom fjrrvrmesektorn, TWh

    Use of biofuel, peat etc. for energy purpose in the district heating sector, TWh

    rYearAvfallRefuseTrdbrnsleWood fuelReturlutar och rtallolja Black liquor, crude tall oilTorvPeatBiobrnslen fr elproduktion Biofuels for electricity prod.vriga brnslenOther fuelsSummaSum

    TWh

    19801.30.31.6

    19811.60.42.0

    19822.00.80.02.8

    19832.41.30.03.7

    19843.01.60.34.9

    19853.32.70.76.7

    19863.83.11.18.0

    19874.23.31.70.19.2

    19883.93.61.50.19.1

    19893.63.32.10.29.3

    19904.03.62.60.30.110.6

    19914.24.83.10.40.212.8

    19924.15.43.30.30.313.5

    19934.27.00.73.10.50.415.8

    19944.39.11.32.80.40.518.4

    19954.510.31.43.71.00.621.4

    19964.512.41.63.51.00.924.0

    19974.813.71.43.01.41.025.3

    19985.113.72.03.81.50.326.4

    19994.714.02.22.81.50.025.2

    20005.614.31.52.41.50.025.3

    20015.517.31.92.72.00.029.4

    20025.217.91.83.72.00.030.6

    2003 16.517.71.73.60.23.032.7

    20047.219.11.23.22.25.638.5

    1 Siffror fr o m 1997 r reviderade

    1 Figures from 1997 onwards are revised

    Klla: Energimyndigheten: "Energilget i siffor 2005"

    Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    YearReuseWood fuelBlack licourPeatBio for electricityOther fuels

    19801.30.3

    19811.60.4

    19822.00.80.0

    19832.41.30.0

    19843.01.60.3

    19853.32.70.7

    19863.83.11.1

    19874.23.31.70.1

    19883.93.61.50.1

    19893.63.32.10.2

    19904.03.62.60.30.1

    19914.24.83.10.40.2

    19924.15.43.30.30.3

    19934.27.00.73.10.50.4

    19944.39.11.32.80.40.5

    19954.510.31.43.71.00.6

    19964.512.41.63.51.00.9

    19974.813.71.43.01.41.0

    19985.113.72.03.81.50.3

    19994.714.02.22.81.50.0

    20005.614.31.52.41.50.0

    20015.517.31.92.72.00.0

    20025.217.91.83.72.00.0

    20036.517.71.73.60.23.0

    20047.219.11.23.22.25.6

    Fjrrvrme

    1.30.31980198019801980

    1.60.41981198119811981

    20.81982019821982

    2.41.31983019831983

    31.619840.319841984

    3.32.719850.719851985

    3.83.119861.119861986

    4.23.319871.70.11987

    3.93.619881.50.11988

    3.63.319892.10.21989

    43.619902.60.30.1

    4.24.819913.10.40.2

    4.15.419923.30.30.3

    4.270.73.10.50.4

    4.39.11.32.80.40.5

    4.510.31.43.710.6

    4.512.41.63.510.9

    4.813.71.431.41

    5.113.723.81.50.3

    4.7142.22.81.50

    5.614.31.52.41.50

    5.517.31.92.720

    5.217.91.83.720

    6.517.71.73.60.23

    7.219.11.23.22.25.6

    Reuse

    Wood fuel

    Black licour

    Peat

    Bio for electricity

    Other fuels

    Year

    TWh

    Use of different fuels in district heating

    Industri

    Anvndning av biobrnsle, torv m.m. fr energindaml inom industrin, TWh

    Use of biofuel, peat etc. for energy purpose in the industry, TWh

    rYearMassaindustrins returlutarCellulose industry, black liquorMassaindustrins vriga biprodukterCellulose industry, other byproductsSgverksindustrins biprodukterSawmill industry byproductsBiobrnslen fr elproduktion i industrinBiofuels for electricity productionvriga branscherOther sectorsSummaSum

    TWh

    198026.04.64.80.7-36.9

    198125.66.84.10.80.237.5

    198222.46.34.11.00.333.9

    198326.27.45.21.10.140.0

    198428.78.25.42.40.143.8

    198528.19.05.82.10.245.2

    198628.39.16.12.40.145.8

    198728.69.36.22.50.146.7

    198829.010.06.42.60.148.1

    198929.07.56.52.50.345.8

    199027.68.26.42.20.845.2

    199128.68.47.02.20.646.8

    199228.38.37.12.40.646.7

    199329.78.67.32.20.548.3

    199429.88.18.02.11.549.6

    199531.47.68.42.31.751.4

    199630.96.98.92.11.950.7

    199733.26.99.72.51.754.0

    199833.06.99.82.52.054.2

    199933.96.79.82.01.854.2

    200036.88.65.43.40.955.1

    200134.97.74.32.83.753.4

    200234.06.94.93.28.257.2

    2003 135.37.55.03.78.960.4

    200439.47.54.84.70.957.3

    1 Vissa vrden korrigerade

    1 Some figures are corrected

    Klla: Energimyndigheten: "Energilget i siffor 2005"

    Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    YearCel ind Black liqourCel ind other byprodSaw ind byprodBiofuels for electrOther sectors

    198026.04.64.80.736.9

    198125.66.84.10.80.237.5

    198222.46.34.11.00.333.9

    198326.27.45.21.10.140.0

    198428.78.25.42.40.143.8

    198528.19.05.82.10.245.2

    198628.39.16.12.40.145.8

    198728.69.36.22.50.146.7

    198829.010.06.42.60.148.1

    198929.07.56.52.50.345.8

    199027.68.26.42.20.845.2

    199128.68.47.02.20.646.8

    199228.38.37.12.40.646.7

    199329.78.67.32.20.548.3

    199429.88.18.02.11.549.6

    199531.47.68.42.31.751.4

    199630.96.98.92.11.950.7

    199733.26.99.72.51.754.0

    199833.06.99.82.52.054.2

    199933.96.79.82.01.854.2

    200036.88.65.43.40.955.1

    200134.97.74.32.83.753.4

    200234.06.94.93.28.257.2

    200335.37.55.03.78.960.4

    200439.47.54.84.70.957.3

    &F

    Industri

    264.64.80.71980

    25.66.84.10.80.2

    22.46.34.110.3

    26.27.45.21.10.1

    28.78.25.42.40.1

    28.195.82.10.2

    28.39.16.12.40.1

    28.69.36.22.50.1

    29106.42.60.1

    297.56.52.50.3

    27.68.26.42.20.8

    28.68.472.20.6

    28.38.37.12.40.6

    29.78.67.32.20.5

    29.88.182.11.5

    31.47.68.42.31.7

    30.96.98.92.11.9

    33.26.99.72.51.7

    336.99.82.52

    33.96.79.821.8

    36.88.65.43.40.9

    34.97.74.32.83.7

    346.94.93.28.2

    35.37.553.78.9

    39.47.54.84.70.9

    Cel ind Black liqour

    Cel ind other byprod

    Saw ind byprod

    Biofuels for electr

    Other sectors

    Year

    TWh

    Use of fuels for bioenergy in industry

    MBD002090CF.bin

    MBD00209245.bin

    MBD00208B1C.bin

  • Diagram2

    1.30.31980198019801980

    1.60.41981198119811981

    20.81982019821982

    2.41.31983019831983

    31.619840.319841984

    3.32.719850.719851985

    3.83.119861.119861986

    4.23.319871.70.11987

    3.93.619881.50.11988

    3.63.319892.10.21989

    43.619902.60.30.1

    4.24.819913.10.40.2

    4.15.419923.30.30.3

    4.270.73.10.50.4

    4.39.11.32.80.40.5

    4.510.31.43.710.6

    4.512.41.63.510.9

    4.813.71.431.41

    5.113.723.81.50.3

    4.7142.22.81.50

    5.614.31.52.41.50

    5.517.31.92.720

    5.217.91.83.720

    6.517.71.73.60.23

    7.219.11.23.22.25.6

    Reuse

    Wood fuel

    Black licour

    Peat

    Bio for electricity

    Other fuels

    Year

    TWh

    Use of different fuels in district heating

    Totalt

    Anvndning av biobrnsle, torv m.m. fr energindaml (inkl elproduktion), TWh. Anvndingen i lokaler ingr ej.

    Use of biofuel, peat etc. for energy purpose incl. electricity prodktion, TWh. The use in officies, servcie promise etc premises is not included

    TWh

    197012.1......

    19718.8......

    19727.6......

    19736.7......

    19746.8......

    19756.0......

    19766.3......

    19776.9......

    19787.8......

    19798.8......

    19809.81.636.948.3

    198111.62.037.551.1

    198211.32.833.948.0

    198311.93.740.055.6

    198413.04.943.861.7

    198513.46.745.265.3

    198612.48.045.866.2

    198712.99.246.768.8

    19889.99.148.167.1

    19899.69.345.864.7

    199012.210.645.268.0

    199111.112.846.870.7

    199210.913.546.771.1

    199311.815.848.375.9

    199410.618.449.678.6

    199511.321.451.484.1

    199611.224.050.785.9

    199711.025.354.090.3

    199810.826.454.291.4

    199911.025.254.290.4

    200010.525.355.190.9

    20019.329.453.492.1

    20029.930.657.297.7

    12.032.760.4105.1

    200411.038.557.4106.9

    Klla: Energimyndigheten: "Energilget i siffor 2005"

    Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    Fjrrvrme

    Anvndning av biobrnsle, torv m.m. fr energindaml inom fjrrvrmesektorn, TWh

    Use of biofuel, peat etc. for energy purpose in the district heating sector, TWh

    TWh

    19801.30.31.6

    19811.60.42.0

    19822.00.80.02.8

    19832.41.30.03.7

    19843.01.60.34.9

    19853.32.70.76.7

    19863.83.11.18.0

    19874.23.31.70.19.2

    19883.93.61.50.19.1

    19893.63.32.10.29.3

    19904.03.62.60.30.110.6

    19914.24.83.10.40.212.8

    19924.15.43.30.30.313.5

    19934.27.00.73.10.50.415.8

    19944.39.11.32.80.40.518.4

    19954.510.31.43.71.00.621.4

    19964.512.41.63.51.00.924.0

    19974.813.71.43.01.41.025.3

    19985.113.72.03.81.50.326.4

    19994.714.02.22.81.50.025.2

    20005.614.31.52.41.50.025.3

    20015.517.31.92.72.00.029.4

    20025.217.91.83.72.00.030.6

    6.517.71.73.60.23.032.7

    20047.219.11.23.22.25.638.5

    Klla: Energimyndigheten: "Energilget i siffor 2005"

    Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    YearReuseWood fuelBlack licourPeatBio for electricityOther fuels

    19801.30.3

    19811.60.4

    19822.00.80.0

    19832.41.30.0

    19843.01.60.3

    19853.32.70.7

    19863.83.11.1

    19874.23.31.70.1

    19883.93.61.50.1

    19893.63.32.10.2

    19904.03.62.60.30.1

    19914.24.83.10.40.2

    19924.15.43.30.30.3

    19934.27.00.73.10.50.4

    19944.39.11.32.80.40.5

    19954.510.31.43.71.00.6

    19964.512.41.63.51.00.9

    19974.813.71.43.01.41.0

    19985.113.72.03.81.50.3

    19994.714.02.22.81.50.0

    20005.614.31.52.41.50.0

    20015.517.31.92.72.00.0

    20025.217.91.83.72.00.0

    20036.517.71.73.60.23.0

    20047.219.11.23.22.25.6

    Fjrrvrme

    Reuse

    Wood fuel

    Black licour

    Peat

    Bio for electricity

    Other fuels

    Year

    TWh

    Use of different fuels in district heating

    Industri

    Anvndning av biobrnsle, torv m.m. fr energindaml inom industrin, TWh

    Use of biofuel, peat etc. for energy purpose in the industry, TWh

    TWh

    198026.04.64.80.7-36.9

    198125.66.84.10.80.237.5

    198222.46.34.11.00.333.9

    198326.27.45.21.10.140.0

    198428.78.25.42.40.143.8

    198528.19.05.82.10.245.2

    198628.39.16.12.40.145.8

    198728.69.36.22.50.146.7

    198829.010.06.42.60.148.1

    198929.07.56.52.50.345.8

    199027.68.26.42.20.845.2

    199128.68.47.02.20.646.8

    199228.38.37.12.40.646.7

    199329.78.67.32.20.548.3

    199429.88.18.02.11.549.6

    199531.47.68.42.31.751.4

    199630.96.98.92.11.950.7

    199733.26.99.72.51.754.0

    199833.06.99.82.52.054.2

    199933.96.79.82.01.854.2

    200036.88.65.43.40.955.1

    200134.97.74.32.83.753.4

    200234.06.94.93.28.257.2

    35.37.55.03.78.960.4

    200439.47.54.84.70.957.3

    Klla: Energimyndigheten: "Energilget i siffor 2005"

    Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    &F

    MBD002090CF.bin

    MBD00209245.bin

    MBD00208B1C.bin

  • Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    Diagram4

    264.64.80.71980

    25.66.84.10.80.2

    22.46.34.110.3

    26.27.45.21.10.1

    28.78.25.42.40.1

    28.195.82.10.2

    28.39.16.12.40.1

    28.69.36.22.50.1

    29106.42.60.1

    297.56.52.50.3

    27.68.26.42.20.8

    28.68.472.20.6

    28.38.37.12.40.6

    29.78.67.32.20.5

    29.88.182.11.5

    31.47.68.42.31.7

    30.96.98.92.11.9

    33.26.99.72.51.7

    336.99.82.52

    33.96.79.821.8

    36.88.65.43.40.9

    34.97.74.32.83.7

    346.94.93.28.2

    35.37.553.78.9

    39.47.54.84.70.9

    Cel ind Black liqour

    Cel ind other byprod

    Saw ind byprod

    Biofuels for electr

    Other sectors

    Year

    TWh

    Use of fuels for bioenergy in industry

    Totalt

    Anvndning av biobrnsle, torv m.m. fr energindaml (inkl elproduktion), TWh. Anvndingen i lokaler ingr ej.

    Use of biofuel, peat etc. for energy purpose incl. electricity prodktion, TWh. The use in officies, servcie promise etc premises is not included

    TWh

    197012.1......

    19718.8......

    19727.6......

    19736.7......

    19746.8......

    19756.0......

    19766.3......

    19776.9......

    19787.8......

    19798.8......

    19809.81.636.948.3

    198111.62.037.551.1

    198211.32.833.948.0

    198311.93.740.055.6

    198413.04.943.861.7

    198513.46.745.265.3

    198612.48.045.866.2

    198712.99.246.768.8

    19889.99.148.167.1

    19899.69.345.864.7

    199012.210.645.268.0

    199111.112.846.870.7

    199210.913.546.771.1

    199311.815.848.375.9

    199410.618.449.678.6

    199511.321.451.484.1

    199611.224.050.785.9

    199711.025.354.090.3

    199810.826.454.291.4

    199911.025.254.290.4

    200010.525.355.190.9

    20019.329.453.492.1

    20029.930.657.297.7

    12.032.760.4105.1

    200411.038.557.4106.9

    Klla: Energimyndigheten: "Energilget i siffor 2005"

    Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    Fjrrvrme

    Anvndning av biobrnsle, torv m.m. fr energindaml inom fjrrvrmesektorn, TWh

    Use of biofuel, peat etc. for energy purpose in the district heating sector, TWh

    TWh

    19801.30.31.6

    19811.60.42.0

    19822.00.80.02.8

    19832.41.30.03.7

    19843.01.60.34.9

    19853.32.70.76.7

    19863.83.11.18.0

    19874.23.31.70.19.2

    19883.93.61.50.19.1

    19893.63.32.10.29.3

    19904.03.62.60.30.110.6

    19914.24.83.10.40.212.8

    19924.15.43.30.30.313.5

    19934.27.00.73.10.50.415.8

    19944.39.11.32.80.40.518.4

    19954.510.31.43.71.00.621.4

    19964.512.41.63.51.00.924.0

    19974.813.71.43.01.41.025.3

    19985.113.72.03.81.50.326.4

    19994.714.02.22.81.50.025.2

    20005.614.31.52.41.50.025.3

    20015.517.31.92.72.00.029.4

    20025.217.91.83.72.00.030.6

    6.517.71.73.60.23.032.7

    20047.219.11.23.22.25.638.5

    Klla: Energimyndigheten: "Energilget i siffor 2005"

    Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    YearReuseWood fuelBlack licourPeatBio for electricityOther fuels

    19801.30.3

    19811.60.4

    19822.00.80.0

    19832.41.30.0

    19843.01.60.3

    19853.32.70.7

    19863.83.11.1

    19874.23.31.70.1

    19883.93.61.50.1

    19893.63.32.10.2

    19904.03.62.60.30.1

    19914.24.83.10.40.2

    19924.15.43.30.30.3

    19934.27.00.73.10.50.4

    19944.39.11.32.80.40.5

    19954.510.31.43.71.00.6

    19964.512.41.63.51.00.9

    19974.813.71.43.01.41.0

    19985.113.72.03.81.50.3

    19994.714.02.22.81.50.0

    20005.614.31.52.41.50.0

    20015.517.31.92.72.00.0

    20025.217.91.83.72.00.0

    20036.517.71.73.60.23.0

    20047.219.11.23.22.25.6

    Fjrrvrme

    1.30.31980198019801980

    1.60.41981198119811981

    20.81982019821982

    2.41.31983019831983

    31.619840.319841984

    3.32.719850.719851985

    3.83.119861.119861986

    4.23.319871.70.11987

    3.93.619881.50.11988

    3.63.319892.10.21989

    43.619902.60.30.1

    4.24.819913.10.40.2

    4.15.419923.30.30.3

    4.270.73.10.50.4

    4.39.11.32.80.40.5

    4.510.31.43.710.6

    4.512.41.63.510.9

    4.813.71.431.41

    5.113.723.81.50.3

    4.7142.22.81.50

    5.614.31.52.41.50

    5.517.31.92.720

    5.217.91.83.720

    6.517.71.73.60.23

    7.219.11.23.22.25.6

    Reuse

    Wood fuel

    Black licour

    Peat

    Bio for electricity

    Other fuels

    Year

    TWh

    Use of different fuels in district heating

    Industri

    Anvndning av biobrnsle, torv m.m. fr energindaml inom industrin, TWh

    Use of biofuel, peat etc. for energy purpose in the industry, TWh

    TWh

    198026.04.64.80.7-36.9

    198125.66.84.10.80.237.5

    198222.46.34.11.00.333.9

    198326.27.45.21.10.140.0

    198428.78.25.42.40.143.8

    198528.19.05.82.10.245.2

    198628.39.16.12.40.145.8

    198728.69.36.22.50.146.7

    198829.010.06.42.60.148.1

    198929.07.56.52.50.345.8

    199027.68.26.42.20.845.2

    199128.68.47.02.20.646.8

    199228.38.37.12.40.646.7

    199329.78.67.32.20.548.3

    199429.88.18.02.11.549.6

    199531.47.68.42.31.751.4

    199630.96.98.92.11.950.7

    199733.26.99.72.51.754.0

    199833.06.99.82.52.054.2

    199933.96.79.82.01.854.2

    200036.88.65.43.40.955.1

    200134.97.74.32.83.753.4

    200234.06.94.93.28.257.2

    35.37.55.03.78.960.4

    200439.47.54.84.70.957.3

    Klla: Energimyndigheten: "Energilget i siffor 2005"

    Source: Swedish Energy Agency: "Energy in Sweden, Facts and Figures 2005"

    YearCel ind Black liqourCel ind other byprodSaw ind byprodBiofuels for electrOther sectors

    198026.04.64.80.736.9

    198125.66.84.10.80.237.5

    198222.46.34.11.00.333.9

    198326.27.45.21.10.140.0

    198428.78.25.42.40.143.8

    198528.19.05.82.10.245.2

    198628.39.16.12.40.145.8

    198728.69.36.22.50.146.7

    198829.010.06.42.60.148.1

    198929.07.56.52.50.345.8

    199027.68.26.42.20.845.2

    199128.68.47.02.20.646.8

    199228.38.37.12.40.646.7

    199329.78.67.32.20.548.3

    199429.88.18.02.11.549.6

    199531.47.68.42.31.751.4

    199630.96.98.92.11.950.7

    199733.26.99.72.51.754.0

    199833.06.99.82.52.054.2

    199933.96.79.82.01.854.2

    200036.88.65.43.40.955.1

    200134.97.74.32.83.753.4

    200234.06.94.93.28.257.2

    200335.37.55.03.78.960.4

    200439.47.54.84.70.957.3

    &F

    Industri

    Cel ind Black liqour

    Cel ind other byprod

    Saw ind byprod

    Biofuels for electr

    Other sectors

    Year

    TWh

    Use of fuels for bioenergy in industry

    MBD002090CF.bin

    MBD00209245.bin

    MBD00208B1C.bin

  • http://www.svo.se/episerver4/dokument/sks/Statistik/dokumenten/Produktion/Tradbransle/ProjTradbr/Biomassaflden%20i%20svensk%20skogsnring%202004-2(frf%20P-O%20Nilsson,%20prof%20emer).pdf

    Biomass flows in the Swedish Forest Sector 2004 (translated)

  • Increase of the forest stockEnergyForestIndustryProductsRaw materialleft in the forest

  • Increase of the forest stockEnergyRaw materialleft in the forestForestIndustryProducts

  • Final fellingsIncrease of the forest stockCommercialThinningsPartial harvest

  • #05. Forests, CO2, CCS and risk management

  • Optimal dynamic control of the forest resource with changing energy demand functions and valuation of CO2 storage

    Presentation at the Conference:

    The European Forest-based Sector: Bio-Responses to Address New Climate and Energy Challenges?Nancy, France, November 6-8, 2008Peter Lohmander Professor of Forest Management and Economic OptimizationSLU, Swedish University of Agricultural SciencesUmea, Swedenhttp://www.Lohmander.com

  • Structure of the presentation:#1. Introduction to rational use of the forest when we consider CO2 and energy production

    #2. Optimal dynamic control of the forest resource with changing energy demand functions and valuation of CO2 storage

    #3. Optimal CCS, Carbon Capture and Storage, Under Risk

    #4. Conclusions

  • #1. Introduction to rational use of the forest when we consider CO2 and energy production

  • The role of the forest?The best way to reduce the CO2 in the atmosphere may be to increase harvesting of the presently existing forests (!), to produce energy with CCS and to increase forest production in the new forest generations.

    We capture and store more CO2!

  • The role of the forest?The best way to reduce the CO2 in the atmosphere may be to increase harvesting of the presently existing forests (!), to produce energy with CCS and to increase forest production in the new forest generations.

    We capture and store more CO2!

  • Permanent storage of CO2Coal mineOil fieldNatural gasCCS, Carbon Capture and Storage, has alreadybecome the main future emissionreduction method of the fossile fuel energy industry Energy plant with CO2 capture and separation

  • BBC World News 2008-10-17:The British government declares that the CO2 emissions will be reduced by 80% by 2050!CCS is the method to be used in combination with fossile fuels such as coal.

  • Reference to CCS in the energy industry and EU policy2nd Annual EMISSIONS REDUCTION FORUM: - Establishing Effective CO2, NOx, SOx Mitigation Strategies for the Power Industry, CD, Marcus Evans Ltd, Madrid, Spain, 29th & 30th September 2008

    The CD (above) includes presentations where several dominating European energy companies show how they develop and use CCS and where the European Commission gives the general European emission and energy policy perspective.

    Conference programme:

    http://www.lohmander.com/Madrid08/MadridProg08.pdf

  • Lohmander, P., Guidelines for Economically Rational and Coordinated Dynamic Development of the Forest and Bio Energy Sectors with CO2 constraints, Proceedings from the 16th European Biomass Conference and Exhibition, Valencia, Spain, 02-06 June, 2008 (In the version in the link, below, an earlier misprint has been corrected. ) http://www.Lohmander.com/Valencia2008.pdf

    Lohmander, P., Economically Optimal Joint Strategy for Sustainable Bioenergy and Forest Sectors with CO2 Constraints, European Biomass Forum, Exploring Future Markets, Financing and Technology for Power Generation, CD, Marcus Evans Ltd, Amsterdam, 16th-17th June, 2008 http://www.Lohmander.com/Amsterdam2008.ppt

  • Lohmander, P., Tools for optimal coordination of CCS, power industry capacity expansion and bio energy raw material production and harvesting, 2nd Annual EMISSIONS REDUCTION FORUM: - Establishing Effective CO2, NOx, SOx Mitigation Strategies for the Power Industry, CD, Marcus Evans Ltd, Madrid, Spain, 29th & 30th September 2008http://www.lohmander.com/Madrid08/Madrid_2008_Lohmander.ppt

    Lohmander, P., Optimal CCS, Carbon Capture and Storage, Under Risk, International Seminars in Life Sciences, UPV, Universidad Politcnica de Valencia, Thursday 2008-10-16http://www.Lohmander.com/OptCCS/OptCCS.ppt

  • CO2Permanent storage of CO2How to reduce the CO2 level in the atmosphere,

    not only to decrease the emission of CO2 Energy plant with CO2 capture and separation

  • The role of the forest in the CO2 and energy systemThe following six pictures show that it is necessary to intensify the use of the forest for energy production in combination with CCS in order to reduce the CO2 in atmosphere! All figures and graphs have been simplified as much as possible, keeping the big picture correct, in order to make the main point obvious. In all cases, we keep the total energy production constant.

  • CO2Permanent storage of CO2Coal, oil, gasThe present situation.41501CO2 increase in the atmosphere:5-1 = 4

  • CO2Permanent storage of CO2Coal, oil, gasIf we do not use the forest for energy production but use it as a carbon sink. Before the forest has reached equilibrium, this happens:5501CO2 increase in the atmosphere:5-1 = 4

  • CO2Permanent storage of CO2Coal, oil, gasIf we do not use the forest for energy production but use it as a carbon sink. When the forest has reached equilibrium, this happens:51501CO2 increase in the atmosphere:5+1-1 = 5

  • CO2Permanent storage of CO2Coal, oil, gasIf we use CCS with 80% efficiency and let the forest grow until it reaches equilibrium.51141CO2 increase in the atmosphere:1+1-1 = 1

  • CO2Permanent storage of CO2Coal, oil, gasIf we use CCS with 80% efficiency and use the forest with traditional low intensity harvesting and silviculture. 41141CO2 increase in the atmosphere:1-1 = 0

  • CO2Permanent storage of CO2Coal, oil, gasIf we use CCS with 80% efficiency and use the forest with increased harvesting and high intensity silviculture. 32142CO2 increase in the atmosphere:1-2 = -1

  • General conclusions:The best way to reduce the CO2 in the atmosphere may be to increase harvesting of the presently existing forests (!), to produce energy with CCS and to increase forest production in the new forest generations.

    We capture and store more CO2!

  • #2. Optimal dynamic control of the forest resource with changing energy demand functions and valuation of CO2 storage

  • The optimal control derivations and the software are found here:Lohmander, P., Optimal resource control model & General continuous time optimal control model of a forest resource, comparative dynamics and CO2 consideration effects, Seminar at SLU, Umea, Sweden, 2008-09-18 http://www.lohmander.com/CM/CMLohmander.ppt

    Software:http://www.lohmander.com/CM/CM.htm

  • The Total EconomicResult (Present Value)The Stock LevelThe Control LevelEconomic valuation of CO2 storage in the natural resourceEconomic Valuation of the Production of Energy and Other Industrial Products

  • Initial stock levelTerminal stock levelThe change of the stock level during a marginaltime interval

  • V0Time0StockThe forest stock level has increased very much in Sweden during 80 years!

  • If the forest owner gets paid for the CO2 stored in the forest, it becomes optimal for the forest owner to harvest less and increase the stock level. Still, it may be even better for society to harvest more, decrease the wood stock and use CCS to store the CO2. The stored CO2 is rewarded.

    The stored CO2 is not rewarded.

    Diagram2

    310031003100

    296429203008

    283727612913

    272126282814

    262325332712

    254624852607

    250025002500

    x_f1=5

    x_f1=0

    x_f1=10

    Time (Years)

    Optimal Stock (Mm3sk)

    Optimal Stock Path

    Blad1

    CM results 080905 f

    Peter Lohmander

    CASE 1CASE 2CASE 3

    t1t2r

    CASE 1

    txuLambdaJ

    f1f2031001341981433.4404787432

    52964131166

    102837128141

    k1k2k3152721124121

    202623119105

    25254611392

    g0g1g230250010682

    x1x2CASE 2

    txuLambdaJ

    031001431391216.3440051854

    52920138132

    J1433.4404787432J1216.3440051854J1655.0435182073102761132126

    152628124120

    txuLambdatxuLambdatxuLambda202533115114

    031001341980310014313903100124256252485104108

    52964131166529201381325300812420030250090103

    102837128141102761132126102913124157

    152721124121152628124120152814123123

    20262311910520253311511420271212397CASE 3

    2525461139225248510410825260712276txuLambdaJ

    302500106823025009010330250012260031001242561655.0435182073

    53008124200

    102913124157

    152814123123

    20271212397

    25260712276

    30250012260

    tx_f1=0x_f1=5x_f1=10

    0310031003100

    5292029643008

    10276128372913

    15262827212814

    20253326232712

    25248525462607

    30250025002500

    tu_f1=0u_f1=5u_f1=10

    0143134124

    5138131124

    10132128124

    15124124123

    20115119123

    25104113122

    3090106122

    tSP_f1=0SP_f1=5SP_f1=10

    0139198256

    5132166200

    10126141157

    15120121123

    2011410597

    CASE 2251089276

    301038260

    J_f1=0J_f1=5J_f1=10

    VALUE1216.34400518541433.44047874321655.0435182073

    CASE 2

    CASE 2

    Blad1

    x

    Time (Years)

    Optimal Stock (Mm3sk)

    Optimal Stock Path

    Blad2

    u

    Time (Years)

    Optimal Control (Mm3sk)

    Optimal Control Path

    Blad3

    Lambda

    Time (Years)

    Optimal Shadow Price (Relevant Currency)

    Optimal Shadow Price Path

    VALUE

    Alternative

    Objective Value (Relevant Currency)

    Optimal Objective Function Values

    x_f1=5

    x_f1=0

    x_f1=10

    Time (Years)

    Optimal Stock (Mm3sk)

    Optimal Stock Path

    u_f1=5

    u_f1=0

    u_f1=10

    Time (Years)

    Optimal Control (Mm3sk)

    Optimal Control Path

    SP_f1=5

    SP_f1=0

    SP_f1=10

    Time (Years)

    Shadow Price (Relevant Currency)

    Optimal Shadow Price Path

    MBD00000632.unknown

    MBD00000CF8.unknown

    MBD0000106C.unknown

    MBD0000123C.unknown

    MBD0006EA07.unknown

    MBD000012B4.unknown

    MBD0000132C.unknown

    MBD00001154.unknown

    MBD000011CA.unknown

    MBD000010E0.unknown

    MBD00000EC6.unknown

    MBD00000F82.unknown

    MBD00000FFA.unknown

    MBD00000F38.unknown

    MBD00000DDE.unknown

    MBD00000E52.unknown

    MBD00000D6A.unknown

    MBD0000097C.unknown

    MBD00000B4C.unknown

    MBD00000C36.unknown

    MBD00000CAE.unknown

    MBD00000BBE.unknown

    MBD00000A62.unknown

    MBD00000AD6.unknown

    MBD000009EE.unknown

    MBD000007D6.unknown

    MBD000008BA.unknown

    MBD00000904.unknown

    MBD00000848.unknown

    MBD000006EE.unknown

    MBD00000762.unknown

    MBD0000067C.unknown

    MBD00000288.unknown

    MBD0000045A.unknown

    MBD00000542.unknown

    MBD000005BA.unknown

    MBD000004D0.unknown

    MBD00000372.unknown

    MBD000003E6.unknown

    MBD00000300.unknown

    MBD000000E6.unknown

    MBD000001CC.unknown

    MBD0000023E.unknown

    MBD0000015A.unknown

    MBD00000072.unknown

  • #3. Optimal CCS, Carbon Capture and Storage, Under Risk

  • The stochastic optimal control derivations of CCS are found here:Lohmander, P., Optimal CCS, Carbon Capture and Storage, Under Risk, International Seminars in Life Sciences, Universidad Politcnica de Valencia, Thursday 2008-10-16http://www.Lohmander.com/OptCCS/OptCCS.ppt

  • Optimal CCS, Carbon Capture and Storage, Under RiskThe objective function is the total present value of CO2 storage minus CCS costs.Discountingfactoru = control = CCS levelx = The total storage level of CO2

  • The controlled storageA stochastic differential equation:Change of theCO2 storage level.Control =CCS level.Expected CO2 leakage. The CO2 storage level is to some extent affected by stochastic leakage and other stochastic events. Z = standard Wiener process.

  • The optimal CCS objective function for different risk levels. The details are found in the reference.V(x,t)xt

  • #4. Conclusions

  • Optimal Forest management conclusions:If the forest owner gets paid for the CO2 stored in the forest, it becomes optimal for the forest owner to harvest less and increase the stock level. Still, it may be even better for society to harvest more, decrease the present wood stock and use CCS to store the CO2.The best way to reduce the CO2 in the atmosphere may be to increase harvesting of the presently existing forests (!), to produce energy with CCS and to increase forest production in the new forest generations.

  • Optimal CCS Conclusions:A mathematical approach to optimal CCS control has been developed that can handle risk.Possible leakage is an important issue that has to be carefully investigated in the future.It is important that the future management decisions are based on a decision model consistent with the structure of this model and that the parameter values are carefully estimated before practical management decisions are calculated.

  • #06. The forest harvest level and industrial expansion

  • Operations Research with Economic Optimization:

    Raw material PerspectiveTotal Perspective ITotal Perspective II

  • Raw Material PerspectiveThe present value as a function of the time of the final felling, t:

    Discounting factorValue of the forest standValue of the bare landPresent valueof the stand and the land

  • Figure 1. The Present ValueEXP(- 0.03t)(20000 + 1000t + 2000)Present Value (SEK/Hectare)Number of Years from the Present

  • The Raw Material Perspective and OptimizationYou may instantly calculate the economically optimal decisions, from a raw material perspective, using software available from the Internet:

    http://www.lohmander.com/program/Faust_Slut/InFaust3.html

    http://www.lohmander.com/program/Stump02/InStump022.html

  • = Stock level= Growth= Net Price = Net Price Growth= Land Value= Interest Rate(%)Optimize!Web Software for Economic Optimization from a Raw Material Perspective

  • Optimal ResultsOptimal Harvest YearOptimal Present Value

  • Harvest Year Present Value Present Value Difference

  • Web Software for Economic Optimization from a Raw Material Perspective = Stock levelWeb Software for Economic Optimization from a Raw Material Perspective = Growth= Net Price = Net Price Growth= Land Value= Interest Rate(%)Optimize!

  • Optimal ResultsOptimal Harvest YearOptimal Present Value

  • Harvest Year Present Value Present Value Difference

  • ObservationsFrom a pure raw material perspective, you may show that a very large part of the Swedish forest should be instantly harvested, even if the real rate of interest is not higher than 3%. If the real rate of interest exceeds 3%, you should if possible harvest even more. If the growth rate of the next forest generation increases, you should also harvest the present forest earlier.

  • Age distribution in the county of Gvleborg (2001-2005).Thousands of hectares in different age classes (years). A large part of the forest is much older than the optimal harvest age

  • Total perspective I

  • V0Time0Stock

  • h0 < gh1 > gh2 = g

  • Appendix 1: General proof that the total economic value is a strictly increasing function of the production (and capacity) level in the next industry generation (as as long as the time when the capacity will be utilized is not sufficiently short to give extraordinary capacity costs.)

    This approach represents Total Perspective I.

  • Derivations and parameters (I)

  • http://www.lohmander.com/EF2008/EF2008.htm Web software for Total Perspective I

  • vfutureh1t2totval3000106 inf168030001085517033000110301718300011221,61727300011417,517323000116151735

  • ObservationsEven if we do not accept to decrease the stock level below the very high level of today, we should strongly increase harvesting during a considerable time interval.In this first derivation, the improved growth rate in new plantations has not been considered.

  • vfutureh1t2totval2500106 inf168025001166518002500126351886250013625193925001462019732500156171997

  • ObservationsIf we are prepared to adjust the stock level to the stock level of the year 1985, (approximately 2 500 Mm3sk), we should increase harvesting very much during a long time period.Then, the total economic value strongly improves.In this derivation, the improved growth rate in new plantations has not been considered.

  • Diagram1

    106106

    55108

    30110

    21.6112

    17.5114

    15116

    106106

    11665

    12635

    13625

    14620

    15617

    t2(Vf=3000)

    t2(Vf=2500)

    h1 (Million M3sk/Year)

    t2 (Years)

    t2(h1, Vfuture)

    Blad1

    Model_1

    20080103

    Peter Lohmander

    r0.06

    g106

    t15

    v03000

    h086

    z01

    z11

    z21

    vfutureh1t2totval

    3000106inf1680

    3000108551703

    3000110301718

    300011221.61727

    300011417.51732

    3000116151735

    vfutureh1t2totval

    2500106inf1680

    2500116651800

    2500126351886

    2500136251939

    2500146201973

    2500156171997

    h1t2(Vf=3000)t2(Vf=2500)

    106

    10855

    11030

    11221.6

    11417.5

    11615

    106

    11665

    12635

    13625

    14620

    15617

    Blad1

    t2 inf

    h1

    t2

    t2(h1) if Vfuture = 3000

    Blad2

    t2 inf

    h1

    t2

    t2(h1) if Vfuture = 2500

    Blad3

    t2(Vf=3000)

    t2(Vf=2500)

    h1 (Million M3sk/Year)

    t2 (Years)

    t2(h1, Vfuture)

  • Diagram2

    1680106

    1703108

    1718110

    1727112

    1732114

    1735116

    1061680

    1161800

    1261886

    1361939

    1461973

    1561997

    TV(Vf=3000)

    TV(Vf=2500)

    h1 (Million M3sk/Year)

    Total Value

    Blad1

    Model_1

    20080103

    Peter Lohmander

    r0.06

    g106

    t15

    v03000

    h086

    z01

    z11

    z21

    vfutureh1t2totval

    3000106inf1680

    3000108551703

    3000110301718

    300011221.61727

    300011417.51732

    3000116151735

    vfutureh1t2totval

    2500106inf1680

    2500116651800

    2500126351886

    2500136251939

    2500146201973

    2500156171997

    h1t2(Vf=3000)t2(Vf=2500)TV(Vf=3000)TV(Vf=2500)

    1061680

    108551703

    110301718

    11221.61727

    11417.51732

    116151735

    1061680

    116651800

    126351886

    136251939

    146201973

    156171997

    Blad1

    t2 inf

    h1

    t2

    t2(h1) if Vfuture = 3000

    Blad2

    t2 inf

    h1

    t2

    t2(h1) if Vfuture = 2500

    Blad3

    t2(Vf=3000)

    t2(Vf=2500)

    h1 (Million M3sk/Year)

    t2 (Years)

    t2(h1, Vfuture)

    TV(Vf=3000)

    TV(Vf=2500)

    h1 (Million M3sk/Year)

    Total Value

  • Total perspective II

  • Appendix 2: Derivations of exlicit functions for the stock levels at different points in time under the influence of changing harvest levels and production in dynamically introduced new plantations.

    This approach represents Total Perspective II.

  • How rapidly will new forests grow?Example: Pine:Director of silviculture Dr. Per Persson, SCA says: Pinus contorta on average grows 40% faster than Scots pine.

    Source: Jgmstarnas frenings hstexkursion, Skogsakademikern, rgng 21, Nr 4, 2007

  • How rapidly will new forests grow?Example: Spruce: Dr. Bo Karlsson, Skogforsk: Improved spruce plants already today give 15% better growth than naturally regenerated plants, but the potential is even higher. It should not be impossible to obtain up to 40% growth improvements.

    Source: Skogsvrdsstyrelsens seminarium "Granen i fokus" i Bors,Tidningen Skogsvrden, Nr 4, 2005 http://www.skogssallskapet.se/skogsvarden/2005_4/sv13.php

  • How rapidly will new forests grow?

    Example: Intensive plantations:

    - Treat forestry seriously! Start with intensive forest management! These are the words of Fredrik Klang, district manager at Sveaskog, Vstra Gtaland. He says that a production increase of 20 procent is easy to obtain if you really want to. With fertilization, the production could even increase by 150%.

    - Perhaps we can use 2-5% of the land for more intensive production. If 10% of the forest land is used for intensive production (that is the size of the area today set aside for environmental purposes), this would improve the national forest production by 15%. - This, in turn, would improve employment, the environment and the growth. Source: Skogsvrdsstyrelsens seminarium "Granen i fokus" i Bors,Tidningen Skogsvrden, Nr 4, 2005 http://www.skogssallskapet.se/skogsvarden/2005_4/sv13.php

  • If harvested areas are replanted with more rapidly growing seedlings, the stock path becomes strictly convex (during time periods with constant harvesting)

  • Derivations and parameters (II)

  • http://www.lohmander.com/EF2008/EFchange2008.htm Web software for Total Perspective II

  • h1t2totvalvfuture11665180630551263519062666136251966258614620200425561561720292541

  • Diagram4

    65

    35

    25

    20

    17

    t2

    h1 (Million M3sk/Year)

    t2 Years

    t2(h1)

    Blad1

    Model_1

    20080103

    Peter Lohmander

    r0.06

    g106

    t15

    v03000

    h086

    z01

    z11

    z21

    vfutureh1t2totval

    3000106inf1680

    3000108551703

    3000110301718

    300011221.61727

    300011417.51732

    3000116151735

    vfutureh1t2totval

    2500106inf1680

    2500116651800

    2500126351886

    2500136251939

    2500146201973

    2500156171997

    h1t2(Vf=3000)t2(Vf=2500)TV(Vf=3000)TV(Vf=2500)

    1061680

    108551703

    110301718

    11221.61727

    11417.51732

    116151735

    1061680

    116651800

    126351886

    136251939

    146201973

    156171997

    Model_2

    20080103

    Peter Lohmander

    r0.06

    g0106

    g1126

    t15

    v03000

    h086

    z01

    z11

    z21

    ATKvot80

    vfutureh1t2totval

    106

    10855

    11030

    11221.6

    11417.5

    11615

    vfutureh1t2totval

    3055116651806

    2666126351906

    2586136251966

    2556146202004

    2541156172029

    Blad1

    55

    30

    21.6

    17.5

    15

    t2 inf

    h1

    t2

    t2(h1) if Vfuture = 3000

    Blad2

    65

    35

    25

    20

    17

    t2 inf

    h1

    t2

    t2(h1) if Vfuture = 2500

    Blad3

    t2(Vf=3000)

    t2(Vf=2500)

    h1 (Million M3sk/Year)

    t2 (Years)

    t2(h1, Vfuture)

    TV(Vf=3000)

    TV(Vf=2500)

    h1 (Million M3sk/Year)

    Total Value

    totval

    h1 (Million M3sk/Year)

    Total Value

    t2

    h1 (Million M3sk/Year)

    t2 Years

    t2(h1)

  • Diagram5

    3055

    2666

    2586

    2556

    2541

    vfuture

    h1 (Million M3sk/Year)

    Vfuture (Million M3sk)

    Vfuture = Stock level at t2

    Blad1

    Model_1

    20080103

    Peter Lohmander

    r0.06

    g106

    t15

    v03000

    h086

    z01

    z11

    z21

    vfutureh1t2totval

    3000106inf1680

    3000108551703

    3000110301718

    300011221.61727

    300011417.51732

    3000116151735

    vfutureh1t2totval

    2500106inf1680

    2500116651800

    2500126351886

    2500136251939

    2500146201973

    2500156171997

    h1t2(Vf=3000)t2(Vf=2500)TV(Vf=3000)TV(Vf=2500)

    1061680

    108551703

    110301718

    11221.61727

    11417.51732

    116151735

    1061680

    116651800

    126351886

    136251939

    146201973

    156171997

    Model_2

    20080103

    Peter Lohmander

    r0.06

    g0106

    g1126

    t15

    v03000

    h086

    z01

    z11

    z21

    ATKvot80

    vfutureh1t2totval

    106

    10855

    11030

    11221.6

    11417.5

    11615

    vfutureh1t2totvalh1vfuture

    30551166518061163055

    26661263519061262666

    25861362519661362586

    25561462020041462556

    25411561720291562541

    Blad1

    55

    30

    21.6

    17.5

    15

    t2 inf

    h1

    t2

    t2(h1) if Vfuture = 3000

    Blad2

    65

    35

    25

    20

    17

    t2 inf

    h1

    t2

    t2(h1) if Vfuture = 2500

    Blad3

    t2(Vf=3000)

    t2(Vf=2500)

    h1 (Million M3sk/Year)

    t2 (Years)

    t2(h1, Vfuture)

    TV(Vf=3000)

    TV(Vf=2500)

    h1 (Million M3sk/Year)

    Total Value

    totval

    h1 (Million M3sk/Year)

    Total Value

    t2

    h1 (Million M3sk/Year)

    t2 Years

    t2(h1)

    vfuture

    h1 (Million M3sk/Year)

    Vfuture (Million M3sk)

    Vfuture = Stock level at t2

  • Diagram3

    1806

    1906

    1966

    2004

    2029

    totval

    h1 (Million M3sk/Year)

    Total Value

    Blad1

    Model_1

    20080103

    Peter Lohmander

    r0.06

    g106

    t15

    v03000

    h086

    z01

    z11

    z21

    vfutureh1t2totval

    3000106inf1680

    3000108551703

    3000110301718

    300011221.61727

    300011417.51732

    3000116151735

    vfutureh1t2totval

    2500106inf1680

    2500116651800

    2500126351886

    2500136251939

    2500146201973

    2500156171997

    h1t2(Vf=3000)t2(Vf=2500)TV(Vf=3000)TV(Vf=2500)

    1061680

    108551703

    110301718

    11221.61727

    11417.51732

    116151735

    1061680

    116651800

    126351886

    136251939

    146201973

    156171997

    Model_2

    20080103

    Peter Lohmander

    r0.06

    g0106

    g1126

    t15

    v03000

    h086

    z01

    z11

    z21

    ATKvot80

    vfutureh1t2totval

    106

    10855

    11030

    11221.6

    11417.5

    11615

    vfutureh1t2totval

    3055116651806

    2666126351906

    2586136251966

    2556146202004

    2541156172029

    Blad1

    55

    30

    21.6

    17.5

    15

    t2 inf

    h1

    t2

    t2(h1) if Vfuture = 3000

    Blad2

    65

    35

    25

    20

    17

    t2 inf

    h1

    t2

    t2(h1) if Vfuture = 2500

    Blad3

    106106

    55108

    30110

    21.6112

    17.5114

    15116

    106106

    11665

    12635

    13625

    14620

    15617

    t2(Vf=3000)

    t2(Vf=2500)

    h1 (Million M3sk/Year)

    t2 (Years)

    t2(h1, Vfuture)

    1680106

    1703108

    1718110

    1727112

    1732114

    1735116

    1061680

    1161800

    1261886

    1361939

    1461973

    1561997

    TV(Vf=3000)

    TV(Vf=2500)

    h1 (Million M3sk/Year)

    Total Value

    totval

    h1 (Million M3sk/Year)

    Total Value

  • ObservationsIn this derivation, a growth improvement of 19% in future forest generations has been assumed. (126/106 -1 = 19%). The maximum potential future growth, 40% or much more with intensive management, has not at all been utilized or assumed. Still, we should strongly increase harvesting during a long period.

    For instance, we may harvest 136 Miljon m3sk per year during 20 years. This period starts in five years. 25 years from now, we will have 2.6 billion cubic metres in the forest (which is the same as the stock level in 1985). Harvesting increases by 58%!!!

    The total economic value strongly improves.

    Industrial capacity of different kinds that utilize forest raw material should be very much expanded.

    The employment improves for a long time.

  • New observationsThe forest policy and regulations are not optimally chosen with respect to the economy of Sweden, employment and the environment.

    If we want to get the best possible forest sector and energy policy, coordinated activities of a new kind are necessary.

  • Eon investsts billions in Sverige2008-01-02|07:41

    The new director of E.ON Nordic, Hkan Buskhe, informs about large investments in Sweden during the next years.

    Between 2007 and 2013, the investment plans represent almost 50 billion SEK (=5 billion Euro) (Dagens Industri). Between 2007 and 2010, we are talking about 37 billion SEK, Buskhe says. With the investments in nuclear power, where Eon partly owns all ten Swedish reactors, a CCP power station in Malm, wind power and four bioenergy power stations, the new investments will give 8,5 terawatt hours. This roughly corresponds to the two nuclear reactors that have been shut down in Barsebck.

    www.realtid.se

  • General observationsThe harvest level in Sweden is absolutely not too high! Sweden would, in every way, benefit if the harvest level strongly increased during a long time period. We do not need the expensive roundwood import from Russia.We should not shut down the pulp mills. The unemployment in the Gvle region is quite unneccesary.The forest industry and the energy industry utilizing raw material from the forest should be strongly expanded.

    Sources:Lohmander, P., Ekonomiskt rationell utveckling fr skogs- och energisektorn i Sverige, Nordisk Papper och Massa, Nr 3, 40-41, 2008, http://www.Lohmander.com/ERD2008/ERD2008.pdfLohmander, P., Lgg inte ned Svensk skogsindustri p grund av virkesbrist, Krnika, Nordisk Papper och Massa 8/2007 http://www.Lohmander.com/kronika_NPM07.pdf

  • Suggestions for the futureWe need a special commission with this task:Create a coordinated development plan for the forest-, energy- and car- industry sectors in Sweden that is rational with respect to total economics, employment and the environment. The comission should report directly to the government, once a year, 2009 2011, and have a budget of 50 MSEK (5 M EURO). Organization: Peter Lohmander (Chair), The Forest Sector, The Energy Sector, The Car Industry and the Department of the Environment.

  • #07. Integrated regional study and risk management

  • The optimal joint management strategy of the forests, the energy plants and the forest industry mills will be determined in a region.

    Three coorporations are involved:E.ON Sweden, Holmen and Sveaskog.

  • Integrated regional study and risk management

    Preliminary map of the locations of the main energy plants (red filled circles) and forest industry mills (black filled squares) that will be included in the total optimization.

    Coorporations: E.ON Sweden, Holmen and Sveaskog.

  • Risk is an important property of the real world!

    Where do we have risk?Future market prices of energy and raw materials.The properties of the capital market.Future environental regulations.Technological options and future costs.

  • Consequences for optimal strategies: The management strategy must be optimal when we consider risk.

    Flexible strategies must be defined and optimized!

    Long term predictions and detailed long term plans are not relevant in a world influenced by risk.

    Adaptive optimization, stochastic dynamic programming and stochastic optimal control are the only relevant approaches.

  • Stochastic Dynamic Optimization of Forest Industry Company Management

    INFORMSInternational Meeting 2007 Puerto RicoPeter LohmanderProfessor SLU Umea, SE-901 83, Sweden, http://www.Lohmander.comVersion 2007-06-21

  • AbstractForest industry production, capacity and harvest levels are optimized. Adaptive full system optimization is necessary for consistent results. The stochastic dynamic programming problem of a complete forest industry company is solved. The raw material stock level and the main product prices are state variables. In each state and at each stage, a linear programming profit maximization problem of the forest company is solved. Parameters from the Swedish forest industry are used as illustration.

  • QuestionHow should these activities in a typical forest industry company be optimized and coordinated in the presence of stochastic markets? *Pulp, paper and liner production and sales,*Sawn wood production and sales,*Raw material procurement and sales,*Harvest operations*Transport

  • Optimal stock and purchase policy with stochastic external deliveries in different markets

    12th Symposium for Systems Analysis in Forest Resources, Burlington, Vermont, USA, September 5-8, 2006

    Peter Lohmander

    Professor of Forest Management and Economic Optimization, Swedish University of Agricultural Sciences, Faculty of Forestry, Dept. of Forest Economics, 901 83 Umea, Sweden, http://www.lohmander.com/

    Version 060830

  • Optimally controlled stochastic stock path under monopsony when the entering stock level state is 6.

  • Optimally controlled stochastic stock path under perfect raw material market when the entering stock level state is 6.

  • #08. Conclusions and plans for the future

  • International Project Development: Title (prel.):Rational European Forest Management with Increasing Bioenergy Demand and Risk

    Coordination:Sweden (Peter Lohmander)

    Cooperators (prel.):France, Germany, Spain, Sweden, Switzerland

  • Future discussions:

    Peter Lohmander is organizing the conference stream Optimal Forest Management with Increasing Bioenergy Demand within The 23rd European Conference on Operational Research (EURO XXIII), July 5-8, 2009, Bonn, Germany. http://www.lohmander.com/Bonn2009/Bonn2009.pdf

    Let us continue our discussions and meet there!

  • #09. Thanks to E.On

  • My warmest Thanks to E.ON Sweden for economic support to the project Economic forest production with consideration of the forest- and energy- industries!Peter Lohmander Professor of Forest Management and Economic Optimization, Swedish University of Agricultural Sciences

    http://[email protected]

  • #10. Referenceshttp://www.lohmander.com/Information/Ref.htm

    More options:Go to http://www.Lohmander.com Click on:Economic Optimization Software,Courses and Conferences,or Information

  • Some of the latest referencesKrr, P (Interview with Peter Lohmander): Skogsprofessor tonar ned Skogsstyrelsens larm: "Det r inget katastroflge", Vsterbottningen - Jord och Skog, 7 Juni, 2007, http://www.lohmander.com/information/Vasterbottningen070607.doc Lohmander, P., Stochastic Dynamic Optimization of Forest Industry Company Management, INFORMSInternational Meeting 2007, Puerto Rico, Power Point Presentation, http://www.Lohmander.com/SDO.ppt Lohmander, P., A Stochastic Differential (Difference) Game Model With an LP Subroutine for Mixed and Pure Strategy Optimization, INFORMSInternational Meeting 2007, Puerto Rico, Power Point Presentation, http://www.Lohmander.com/SDG.ppt

  • Lohmander, P., Adaptive Optimization of Forest Management in a Stochastic World, in Weintraub A. et al (Editors), Handbook of Operations Research in Natural Resources, Springer, Springer Science, International Series in Operations Research and Management Science, New York, USA, pp 525-544, 2007 http://www.amazon.ca/gp/reader/0387718141/ref=sib_dp_pt/701-0734992-1741115#reader-link

    Lohmander, P., Fatta beslut med hjlp av spelteori, Hemvrnet - Nationella Skyddsstyrkorna, 2007-10-26 http://tidningenhemvarnet.se/ http://webnews.textalk.com/se/article.php?id=281997

    Mohammadi, L.S., Lohmander, P., Stumpage Prices in the Iranian Caspian Forests, Asian Journal of Plant Sciences, 6 (7): 1027-1036, 2007, ISSN 1682-3974, 2007 Asian Network for Scientific Information, http://ansijournals.com/ajps/2007/1027-1036.pdf http://www.Lohmander.com/MoLo2007.pdf

  • Ekman, S-O., (Interview with Peter Lohmander): Fabriken lggs ner helt i ondan, Gefle Dagblad, 2007-10-30 http://www.gd.se/start.jsp http://www.gd.se/Article.jsp?article=116927

    Lohmander, P., Skapa inte arbetslshet nr industrikapaciteten borde expanderas! (SVT Nyheter, 2007-10-30, 19.10) http://svt.se/svt/play/video.jsp?a=379740 Lohmander, P., kad avverkning skulle kunna rdda Norrsundet, Nordic Paper Journal, 2007-10-30 http://www.papernet.se/iuware.aspx?pageid=395&ssoid=69620

  • Lohmander, P., Fabriken lggs ned helt i ondan, Skogsindustrierna, 2007-10-31 http://www.skogsindustrierna.org/litiuminformation/site/page.asp?Page=10&IncPage=578&Destination=227&IncPage2=236&Destination2=226&PKNews=5935

    Lohmander, P., Norrsundet lggs ner helt i ondan, Nordisk Papper och Massa, 2007-11-01 http://www.branschnyheter.se/article11497.php Lohmander, P., Lgg inte ned Svensk skogsindustri p grund av virkesbrist, Krnika, Nordisk Papper och Massa 8/2007 http://www.Lohmander.com/kronika_NPM07.pdf

  • Lohmander, P,. Energy Forum, Stockholm, 6-7 February 2008, Conference program with links to report and software by Peter Lohmander: http://www.energyforum.com/events/conferences/2008/c802/program.php http://www.lohmander.com/EF2008/EF2008Lohmander.htm

    Lohmander, P., Ekonomiskt rationell dynamisk utveckling fr skogen, skogsindustrin och energiindustrin i Sverige (Manuscript 2008-03-03) http://www.Lohmander.com/ERD2008/ERD2008.pdf

    Lohmander, P., Ekonomiskt rationell utveckling fr skogs- och energisektorn i Sverige, Nordisk Papper och Massa, Nr 3, 2008

  • Lohmander, P., Mohammadi, S., Optimal Continuous Cover Forest Management in an Uneven-Aged Forest in the North of Iran, Journal of Applied Sciences 8(11), 2008 http://ansijournals.com/jas/2008/1995-2007.pdf http://www.Lohmander.com/LoMoOCC.pdf Mohammadi, L.S., Lohmander, P., A game theory approach to the Iranian forest industry raw material market, Caspian Journal of Environmental Sciences, Vol 6, No1, pp. 59-71, 2008 http://research.guilan.ac.ir/cjes/.papers/969.pdf http://www.Lohmander.com/MoLoAGTA.pdf Lohmander, P., (Eng: Peter Lohmander (in white jacket and black tie) explains that the forest growth strongly exceeds the harvest. Lohmander motivates increased harvesting and increased capacity expansion in bioenergy plants and the forest products industry), Swe: Skogsavverkningen kan kas enligt forskare! (Swedish Television, News, 2008-05-29, 19.15) http://svt.se/svt/play/video.jsp?a=1158529

  • Lohmander, P., Guidelines for Economically Rational and Coordinated Dynamic Development of the Forest and Bio Energy Sectors with CO2 constraints, Proceedings from the 16th European Biomass Conference and Exhibition, Valencia, Spain, 02-06 June, 2008 (In the version in the link, below, an earlier misprint has been corrected. ) http://www.Lohmander.com/Valencia2008.pdf Lohmander, P., Economically Optimal Joint Strategy for Sustainable Bioenergy and Forest Sectors with CO2 Constraints, European Biomass Forum, Exploring Future Markets, Financing and Technology for Power Generation, CD, Marcus Evans Ltd, Amsterdam, 16th-17th June, 2008 http://www.Lohmander.com/Amsterdam2008.ppt Lohmander, P., Ekonomiskt rationell utveckling fr skogs- och energisektorn, Nordisk Energi, Nr. 4, 2008

  • Lohmander, P., Tools for optimal coordination of CCS, power industry capacity expansion and bio energy raw material production and harvesting, 2nd Annual EMISSIONS REDUCTION FORUM: - Establishing Effective CO2, NOx, SOx Mitigation Strategies for the Power Industry, CD, Marcus Evans Ltd, Madrid, Spain, 29th & 30th September 2008 http://www.lohmander.com/Madrid08/Madrid_2008_Lohmander.ppt Lohmander, P., Optimal CCS, Carbon Capture and Storage, Under Risk, International Seminars in Life Sciences, UPV, Universidad Politcnica de Valencia, Thursday 2008-10-16http://www.Lohmander.com/OptCCS/OptCCS.ppt

  • Thank you for listening!Here you may reach me in the future:Peter LohmanderProfessor of Forest Management and Economic Optimization,SLU, Swedish University of Agricultural Sciences, Faculty of Forest Sciences, Dept. of Forest Economics, SE-901 83 Umea, Sweden

    http://www.Lohmander.com

    [email protected] [email protected]


Recommended