+ All Categories
Home > Documents > 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation...

1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation...

Date post: 17-Jun-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
44
1 1 Electrophilic Alkylation of Arenes 1.1 General Aspects For large-scale industrial organic syntheses, electrophilic alkylations of arenes are essential (Scheme 1.1). Their attractive features include the absence of waste when alcohols or olefins are used as electrophiles, the large scope of available starting materials, and the high structural complexity attainable in a single step. The main issues are low regioselectivity, overalkylations, and isomerization of the intermediate carbocations. Important products resulting from this chemistry include isopropylbenzene (cumene – starting material for phenol and acetone), ethylbenzene (starting material for styrene), methylphenols, geminal diarylalkanes (monomers for polymer production), trityl chloride (from CCl 4 and benzene [1]), dichlorodiphenyltrichloroethane (DDT) (from chloral and chlorobenzene), and triarylmethane dyes. To obtain acceptable yields, careful optimization of most reaction parameters is often required. Because the reactivity of an arene increases upon alkylation (around 2–3-fold for each new alkyl group), multiple alkylation can be a problem. This may be prevented by keeping the conversion low, or by modifying the reaction temperature, the concentration, the rate of stirring, or the solvent used (e.g., to provide for a homogeneous reaction mixture). In dedicated plants, processes are usually run at low conversion if the starting materials can be recycled. In the laboratory or when working with complex, high-boiling compounds, though, electrophilic alkylations of arenes can be more difficult to perform. Typical electrophilic alkylating reagents for arenes include aliphatic alcohols, alkenes, halides, carboxylic and sulfonic esters, ethers, aldehydes, ketones, and imines. Examples of alkylations with carbonates [2], ureas [3], nitroalkanes [4], azides [5], diazoalkanes [6], aminoalcohols [7], cyclopropanes [8], and thioethers (Scheme 1.14) have also been reported. Amines can be used as alkylating agents either via intermediate conversion to N-alkylpyridinium salts [9] or by transient dehydrogenation to imines [10]. Some examples of Friedel–Crafts alkylation are given in Scheme 1.2. In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary halides or alcohols is usually observed. Only if neighboring groups are present and capable of forming Side Reactions in Organic Synthesis II: Aromatic Substitutions, First Edition. Florencio Zaragoza D¨ orwald. c 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.
Transcript
Page 1: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1

1Electrophilic Alkylation of Arenes

1.1General Aspects

For large-scale industrial organic syntheses, electrophilic alkylations of arenesare essential (Scheme 1.1). Their attractive features include the absence of wastewhen alcohols or olefins are used as electrophiles, the large scope of availablestarting materials, and the high structural complexity attainable in a single step.The main issues are low regioselectivity, overalkylations, and isomerization ofthe intermediate carbocations. Important products resulting from this chemistryinclude isopropylbenzene (cumene – starting material for phenol and acetone),ethylbenzene (starting material for styrene), methylphenols, geminal diarylalkanes(monomers for polymer production), trityl chloride (from CCl4 and benzene [1]),dichlorodiphenyltrichloroethane (DDT) (from chloral and chlorobenzene), andtriarylmethane dyes.

To obtain acceptable yields, careful optimization of most reaction parameters isoften required. Because the reactivity of an arene increases upon alkylation (around2–3-fold for each new alkyl group), multiple alkylation can be a problem. Thismay be prevented by keeping the conversion low, or by modifying the reactiontemperature, the concentration, the rate of stirring, or the solvent used (e.g.,to provide for a homogeneous reaction mixture). In dedicated plants, processesare usually run at low conversion if the starting materials can be recycled. Inthe laboratory or when working with complex, high-boiling compounds, though,electrophilic alkylations of arenes can be more difficult to perform.

Typical electrophilic alkylating reagents for arenes include aliphatic alcohols,alkenes, halides, carboxylic and sulfonic esters, ethers, aldehydes, ketones, andimines. Examples of alkylations with carbonates [2], ureas [3], nitroalkanes [4],azides [5], diazoalkanes [6], aminoalcohols [7], cyclopropanes [8], and thioethers(Scheme 1.14) have also been reported. Amines can be used as alkylating agentseither via intermediate conversion to N-alkylpyridinium salts [9] or by transientdehydrogenation to imines [10]. Some examples of Friedel–Crafts alkylation aregiven in Scheme 1.2.

In most instances, the electrophilic alkylation of arenes proceeds viacarbocations, and complete racemization of chiral secondary halides or alcohols isusually observed. Only if neighboring groups are present and capable of forming

Side Reactions in Organic Synthesis II: Aromatic Substitutions, First Edition. Florencio Zaragoza Dorwald.c© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.

Page 2: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

2 1 Electrophilic Alkylation of Arenes

− H

R

OH

R

X

R

R

RR

R

O

R

N

R′RR

H

RR

R

R

Scheme 1.1 Mechanism of the Friedel–Crafts alkylation.

cyclic configurationally stable cations, arylations can occur with retention ofconfiguration [18].

Stabilized carbocations (e.g., tertiary carbocations) are easy to generate, but theyare less reactive (and more selective) than less stable cations. Thus, the trityl ortropylium (C7H7

+) cations react with anisole but not with benzene. On the otherhand, carbocations destabilized by a further positively charged group in closeproximity will show an increased reactivity [7, 19]. Highly stabilized cations mayeven be generated and arylated under almost neutral reaction conditions [20].

1.1.1Catalysis by Transition-Metal Complexes

Electrophilic alkylations of arenes by olefins or alkyl halides can be catalyzedby soft electrophilic transition metals, for example, by Pd, Rh, or Ru complexes(Scheme 1.3). Most of the reported examples proceed via aromatic metallationthrough chelate formation. With Ru-based catalysts, selective meta-alkylation canbe achieved when using sterically demanding electrophiles (fifth equation inScheme 1.3).

Reactions where carbocation formation is the slowest (rate-determining) step canbe catalyzed by any compound capable of stabilizing the intermediate carbocation(and thereby promote its formation). This form of catalysis should be mostpronounced in nonpolar solvents, in which free carbocations are only slightlystabilized by solvation. Some transition-metal complexes, for example, IrCl3 andH2[PtCl6], catalyze Friedel–Crafts alkylations with benzyl acetates, probably by

Page 3: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.1 General Aspects 3

+Cl

1 eq 4 eq

1.2% AlCl345 °C, 1 h

+

65% 33%

08joc4956

(CH2O)n, ZnBr2HBr (33% in AcOH)

90 °C, 16 h

94%80−90%

BrBr

Br

10joc6416, 05syn2080

1.06 eq AlCl33.06 eq EtBr

0−20 °C, 12 h

OH+

3 eq MeSO3HMeNO2

80 °C, 6−12 hOMe

61%

N

SH2N

N

SH2N

1 eq 2 eq09ol5154

OMe

S

S OH

CN

+

OMe1 eq AlCl3

CH2Cl220 °C, 0.5 h

S

S

CN

S

S

CNOMe

OMe87%

80 : 20

+

1 eq 4 eq08joc2264

O

N3

OAc

AcO

+O

1.1 eq BF3OEt2MeCN, 20 °C, 0.5 hthen K2CO3, MeOH

O

N3

HO

O

60%

5 eq1 eq 10ja15528

OO

+Cl

F

2 eq 1 eq

1.05 eq ZnCl2H2O, 85 °C, 6 h

OO

F

OO

F

+ + O

F F70% 5% 5%

07oprd1059

Scheme 1.2 Examples of Friedel–Crafts alkylations [11–17].

Page 4: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

4 1 Electrophilic Alkylation of Arenes

NH

5% PdCl2(MeCN)23 eq CuCl2, CO, MeOH

25 °C, 3 h

85% NH

CO2Me06cej2371

MeO

HN

O

N+ I

1 eq 3 eq

5% Pd(OAc)22 eq K2CO3

3 eq NaOTf, O2EtMe2COH 125 °C, 36 h

MeO

HN

O

N

84%11ol4850

N2.5% [RuCl2(p-cymene)]2

30% 1-AdaCO2HK2CO3, NMP, 100 °C, 20 h+

N

5%

N2.5% [RuCl2(p-cymene)]2

30% 1-AdaCO2HK2CO3, NMP, 100 °C, 20 h+

N

74%Br

09ang6045

09ang6045

N

N+

Br

5% [RuCl2(p-cymene)]230% MesCO2H

2 eq K2CO3dioxane, 100 °C, 20 h

3 eq1 eq

N

N

54%

13ja5877

NMeO

+AcO

5% [RhCl2Cp*]220% AgSbF6

2.1 eq Cu(OAc)2THF, 75 °C, 20 h

NMeO

1 eq 3 eq

46%

NMeO

RhCp*X NMeO

OAc

RhCp*X

10ol540

O

N+

HN

1.0 eq 1.2 eq

1.1 eq CH2Cl2, 10% CuCl1.2 eq DBU

MeCN, 85 °C, 12 h O

N

N87%

12asc1672

Scheme 1.3 Transitions-metal-catalyzed arene alkylations [21–26].

Page 5: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.1 General Aspects 5

Excess

+AcO

10% catalyst80 °C, 20 h

Catalyst:HCl or AcOH or H2SO4

RhCl3 hydrate (50 °C)IrCl3 hydrate

PtCl2H2[PdCl4] hexahydrateH2[PtCl6] hexahydrate

Yield:0%79%99%7%99%99%

05ang238

Ph Me

X

Ph Me

Ph Me

Cat

Cat

Ph Me

Cat

Energy

+ Cat

− X

− X

Ph Me

Ar

Scheme 1.4 Catalysis of Friedel–Crafts alkylations [28].

transient formation of benzylic metal complexes (Scheme 1.4). Because racemi-zation is also observed in these instances, the intermediate complexes are likelyto undergo fast transmetallation. Ru-based catalysts have been developed thatenable the preparation of enantiomerically enriched alkylbenzenes and alkylatedheteroarenes from racemic alcohols [27] (Scheme 1.18).

1.1.2Typical Side Reactions

The rearrangement of intermediate carbocations is a common side reaction inFriedel–Crafts chemistry (Scheme 1.5). Rearrangements can sometimes be avoidedwith the aid of transition-metal-based catalysts, because the intermediate complexesare less reactive than uncomplexed carbocations.

Carbocations can also act as oxidants and abstract hydride from other molecules[31]. The newly formed carbocations may also alkylate arenes and lead to theformation of complex product mixtures (Scheme 1.6).

When using noble metal halides as catalysts, or α-haloketones, α-haloesters(Section 1.3.5), or perhaloalkanes as electrophiles, arenes may undergohalogenation instead of alkylation (Scheme 1.7). Alkyl halides with the halogen

Page 6: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

6 1 Electrophilic Alkylation of Arenes

+ F Br

BF3

0−20 °C, 2 h

89%

Br

64joc23174 eq 1 eq

+ TfO

1 eq 2 eq

5% AuCl3/3 AgOTf

120 °C, DCE, 48 h+

40% 50%

04ja13596

Scheme 1.5 Rearrangement of carbocations during Friedel–Crafts alkylations [29, 30].

+Cl

+

5 eq 1 eq 1 eq

10% AlCl322 °C, 1 h

+ H

11%

+ +

60% 10%

63joc1624

Scheme 1.6 Hydride abstraction by carbocations as side reaction during Friedel–Craftsalkylations [32].

OH

+CO2EtEtO2C

Br

OH

+ CO2EtEtO2C

Br

neat, 100 °C82%

01bcsj179

CO2Me

OH

+

O

Cl

ClCl

Cl

Cl

Cl

1.1 eq1.0 eq

DMF, CCl420 °C, 24 h

CO2Me

OH

Cl

34%

US 2011306621

TfO+

0.2 eq AuCl30.6 eq AgOTf

DCE120 °C, 1 h

35% conversion

04ja13596

+

Cl

12% 20%

Scheme 1.7 Halogenation of arenes by alkyl halides and by AuCl3 [30, 33, 34].

Page 7: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.2 Problematic Arenes 7

bound to good leaving groups (positions where a carbanion would be stabilized)are electrophilic halogenating reagents.

If the concentration of alkylating reagent is too low, arenes may undergoacid-catalyzed oxidative dimerization (Scholl reaction) [35]. This reaction occursparticularly easily with electron-rich arenes, such as phenols and anilines.

1.2Problematic Arenes

1.2.1Electron-Deficient Arenes

Yields of alkylations of electron-deficient arenes by carbocations are usually low.This is mainly because the reaction is too slow, and the carbocation undergoes rear-rangement and polymerization before attacking the arene. If no alternative reactionpathways are available for the carbocation, though, high-yielding Friedel–Craftsalkylations of electron-deficient arenes can be achieved (Scheme 1.8).

O

+ OH

H2SO4

90 °C, 1.2 h

O O O

+ +

25% conversionof benzophenone

0.6% 19% 3.2%

+dialkylatedproducts

2.4%

1 eq 2 eq91joc7160

HO2C

CO2H

+O

O

O

H2SO4 (27% SO3)

135 °C, 6 h

HO2C

O

O

65%

0.85 eq1.00 eqEP 1118614

NO2

+ OCl Cl

2.4 eq 1.0 eq

H2SO4

50 °C, 1 week

35%

NO2Cl

US 2758137

Scheme 1.8 Friedel–Crafts alkylation of electron-deficient arenes [36–38].

Page 8: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

8 1 Electrophilic Alkylation of Arenes

Electron-deficient arenes can be alkylated by olefins or alkyl halides via inter-mediate arene metallation. Chelate formation is usually required and crucial forthe regioselectivity of transition-metal-catalyzed reactions (Scheme 1.9). The Ru-and Rh-catalyzed ortho-alkylation of acetophenones and acetophenone-imines byalkenes can even proceed at room temperature [39]. With sterically demanding alkylhalides, Ru complexes can mediate meta-alkylations [24]. When conducted in thepresence of oxidants, these reactions can yield styrenes instead of alkylbenzenes[40–42] (see also Section 2.3).

Cl

Oethylene (30 bar), PhMe

10% RuH2(H2)2(PCy3)2

23 °C, 24 h

Cl

O

+

Cl

O

89% 7%

01asc192

NO

+

Cl

OMe

O

2.5% [RuCl2(p-cymene)]230% 1-AdaCO2H

2 eq K2CO3

PhMe, 100 °C, 20 h

1.0 eq 1.5 eq

NOOMe

O

61%

09ol4966

N Ph

+

2% RhCl(PPh3)3

PhMe, 150 °C, 2 hthen hydrolysis

O

95%

02cej485

N

N

20% Pd(OAc)21 eq Cu(OAc)2

10 eq TFA

DCE, 110 °C, 48 h+

S

CF3BF4

1.0 eq 1.5 eq

N

N

CF353%

10ja3648

Scheme 1.9 Ru-, Rh-, and Pd-catalyzed, chelate-mediated alkylation of electron-deficientarenes [43–46].

The metals used as catalysts for this ortho-alkylation of acetophenones insertnot only into C–H bonds but also at similar rates into C–O and C–N bonds(Scheme 1.10). The selectivity can sometimes be improved by the precise choice ofthe catalyst [47]. Another potential side reaction of the alkylations described above

Page 9: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.2 Problematic Arenes 9

OMeO

+ Si(OEt)3

1 eq 2 eq

2.5% [RuCl2(p-cym)]215% PPh3

30% NaHCO3

PhMe, 140 °C, 60 h

OMeO

Si(OEt)3

+

O

20% 25%

(EtO)3Si

09ja7887

ONH

+O

BO

Ph

1.0 eq 1.2 eq

4% RuH2(CO)(PPh3)3

PhMe, 111 °C, 20 h

OPh

87%

ON

+O

BO

Ph

1.0 eq 2.0 eq

OPh

+ SiMe3

as above

99%SiMe3

2.0 eq

07ja6098

Scheme 1.10 Ru-catalyzed ortho-alkylation and -arylation of acetophenones [50, 51]. Furtherexamples: [52, 53].

is aromatic hydroxylation, which can readily occur if oxidants are present in thereaction mixture [48, 49].

Some heteroarenes, such as pyridine N-oxides, thiazoles, or imidazoles, arestrongly C–H acidic, and can be metallated catalytically even without chelateformation. In the examples in Scheme 1.11, the intermediates are, in fact, metalcarbene complexes.

Under forcing conditions, fluoro- or nitrobenzenes can also be metallated with-out chelate formation, and trapped in situ with a number of electrophiles, includingaldehydes and ketones (Scheme 1.12). Owing to the competing Cannizzaro reactionand the potential cleavage of ketones by strong nucleophiles (e.g., Haller–Bauerreaction), these reactions may require a large excess of electrophile andcareful optimization.

Electron-deficient arenes and heteroarenes, such as pyridinium salts, can reactwith carbon-centered, electron-rich radicals. These can be generated from alkanes,alkyl halides, carboxylic acids, and some diacylperoxides [58] (Scheme 1.13), orby oxidation of boranes [59]. The regioselectivity of such alkylations is, however,often poor.

1.2.2Phenols

Phenols are inherently problematic nucleophiles in Friedel–Crafts type chemistrybecause the free hydroxyl group can deactivate Lewis acids and because phenols

Page 10: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

10 1 Electrophilic Alkylation of Arenes

N

O

+O

O

2% [Rh(cod)Cl]25% Ph2PCH2CH2PPh2

0.25 eq CsOAc, PhMe

120 °C, 24 h

1 eq 5 eq

N

O

O

O

O

O

86%

N

N+

O

O

2% [Rh(cod)Cl]25% Ph2PCH2CH2PPh2

0.25 eq CsOAc, PhMe

120 °C, 12 h

2 eq

72%

1 eq

N

N

O

O

12ang3677

12ang3677

NO

Ph

+S

O

solvent1 eq

10% PdCl2(MeCN)2

2 eq Bu4NOAc

2 eq ZnO, 2 eq NBu3

air, 120 °C, 36 h

N

Ph

75%

12asc1890

S+ Br

13% ligand

5% FeCl3TMPMgCl−LiCl

THF, 20 °C, 6 h

74% S

1.0 eq1.8 eq

ligand:

HN

NH10ol4277

Scheme 1.11 Metallation and alkylation of C–H acidic heteroarenes [54–56].

MeO

F

F

F

F

+

1 eq 3 eq

Cl

O1.5 eq t-BuOLi

DMF, 20 °C, 2 h

93%MeO

F

F

F

F

OH

Cl

SCl +

O

3 eq1 eq

1.5 eq t-BuOLi

DMF, 105 °C, 20 h

41%SCl

OH

09joc8309

09joc8309

Scheme 1.12 Metallation and alkylation of C–H acidic arenes [57].

Page 11: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.2 Problematic Arenes 11

are tautomers of enones and may themselves act as electrophiles (see below).Moreover, phenols readily dimerize to biaryls in the presence of oxidants.

Under suitable reaction conditions, though, phenols can be alkylated at carbon,without extensive O-alkylation. Stabilized carbocations are soft electrophiles, andreact preferentially with soft nucleophiles, such as arenes or olefins. PhenolO-alkylation under acidic conditions is observed only with hard alkylating reagents(diazomethane, dimethyl carbonate, methanol, methyl esters, alkoxyphosphoniumsalts (Mitsunobu reaction), or acetals). O-Alkylated phenols sometimes rearrangeto C-alkylated phenols in the presence of acids [66] (Scheme 1.14).

At high temperatures, phenols and aluminum phenolates are C-alkylated byolefins (Scheme 1.15). This reaction proceeds less readily and has a narrower scope

O

O

OH

OH

OH

HO

O

O

OH

OH

OH

HO

O

O

OH

OH

OH

HO

O

O

O

t-BuOH, 82 °C60% conversion

02tet1751

+

51% 6%

O

CO2H

+

1 eq 9 eq

10% Ru3(CO)12

5% dppb, 2 eq (t-BuO)2

air, 135 °C, 12 h

CO2H

65%

dppb: 1,4-bis(diphenylphosphino)butane

N

9 eq C6H12, 10% Ru3(CO)12

5% dppb, 2 eq (t-BuO)2

135 °C, 12 h NN+

70% 10%

11ol4977

11ol4977

N

+I

1 eq 3 eq

3 eq H2O2 (30% in H2O)

1 eq H2SO4, DMSO

0.2 eq FeSO4-7H2O

20 °C, 20 min

N84%

89joc5224

Scheme 1.13 Alkylation of arenes with radicals [59–64]. Further examples: [65].

Page 12: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

12 1 Electrophilic Alkylation of Arenes

+

N

N

CO2HHO2C

CO2H

1 eq 10 eq

0.6 eq AgNO3

10 eq NH4S2O8

excess 10% aq H2SO4

80 °C24%

N

N

N

NN

N

WO 2008048967

N

N

OH

+

KF3B

1 eq 1 eq

2.5 eq Mn(OAc)3

1 eq TFA

AcOH/H2O 1 : 1

50 °C, 18 h

59%N

N

OH

11ol1852

N

+

N

I

Boc

1 eq 2 eq

0.9 eq FeSO4

6 eq H2O2 (30% in H2O)

2 eq H2SO4, DMSO

40 °C, 3 h

50%

N

N

Boc

09joc6354

Scheme 1.13 (Continued)

than the corresponding reaction of aluminum anilides (see next section). Althoughortho-alkylation occurs first, upon prolonged reaction with an excess of olefin,2,4,6-trialkylated and higher alkylated phenols result [72, 73]. At high pressure,even Diels–Alder reactions with the olefin may occur [74]. Today, a number ofimportant alkylphenols are prepared by high-temperature alkylations with olefinsin the presence of heterogeneous catalysts [73, 75].

Some bis-electrophiles can alkylate phenols both at oxygen and at carbon. 1,3-Dienes, for instance, react with phenols in the presence of acids [78] or Rhcomplexes [79] to yield chromanes (Scheme 1.16).

Phenols are tautomers of cyclohexadienones, and may react as such. In particu-lar, 1- or 2-naphthols, 1,3-dihydroxybenzenes, and 1,3,5-trihydroxybenzenes showstrong cyclohexenone character. Phenols and arylethers react with arenes in thepresence of aluminum halides or HF/SbF5 to yield 3- or 4-arylcyclohexenones[81–83]. The precise outcome of these reactions is difficult to predict; depending onthe amount of acid used and the basicity of the phenol, either conjugate arylationof an enone or arylation of a dication can occur (Scheme 1.17). Moreover, 4,4-disubstituted cyclohexenones, which also may be formed, undergo acid-mediatedrearrangement to 3,4-disubstituted cyclohexanones. Phenols substituted with leav-ing groups (halides, hydroxyl groups) can undergo elimination after the arylationand yield 3- or 4-arylphenols.

Page 13: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.2 Problematic Arenes 13

10sl261

O

SMe

NH

NO2

+

EtOH

79 °C, 12 h

88%

O NH

NO2

HO

11tet8146HO

OH

MeO

+ HOPh

1% [PhH(PCy3)(CO)RuH]BF4

10% cyclopentene

PhMe, 100 °C, 8 h

92%

Ph

OH

MeO12ja7325

1.0 eq 1.2 eq

OH

MeO

+

OMe OMeO

OH

OH

1 eq2 eq

0.2 eq Me3SiOTf

CH2Cl225 °C, 1 h

O

OH

OHOH

OMeMeO

98%

98joc2307

HS

+

NO2

CHO3 eq1 eq

0.01 eq [Ir(cod)Cl]20.04 eq SnCl4

90 °C, 1 h

NO2

HS SH

74%

07joc3100

SH

1.1 eq

HO Ph +

0.1 eq CuBr2

0.2 eq Fe

DCE, 84 °C, 20 h

72%

SH

Ph

1.0 eq

Scheme 1.14 C-Alkylation of phenols and thiophenols under acidic conditions [67–71].

1.2.3Anilines

Regardless of being N-protonated by acids, anilines can be alkylated at carbon andat nitrogen under acidic reaction conditions. Suitable alkylating reagents includealcohols, ethers, alkenes, aldehydes, ketones, and alkyl halides.

Despite the electron-withdrawing effect of ammonium groups, Friedel–Craftsalkylations of anilines usually proceed with ortho and para selectivity, and more

Page 14: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

14 1 Electrophilic Alkylation of Arenes

OH

+

4% Al(OPh)3

320 °C, 60 bar, 10 hOH

+

OH

24% 8%

OH

+

4% Al(OPh)3

240 °C, 38 bar, 2 hOH

61%

56joc712

56joc712

OH

Ph

Al, 220 °C, 1.5 h

then cyclohexene

180 °C, 11 h

OH

PhPd/C

340 °C, 4 h

OH

Ph Ph

62%(two steps)

JP 2009269868

Scheme 1.15 Alkylation of aluminum phenolates with alkenes [76, 77].

OH

+

0.5% TfOH

DCE, 20 °C, 2 h

1.0 eq 1.5 eq

63%

O

11joc9353

OHO

+HO

HO

1.0 eq 1.2 eq

1% RuH(PhH)(PCy3)(CO)BF4

3 eq cyclopentene

PhMe, 100 °C, 12 h

43%

12ja7325

Scheme 1.16 Formation of chromanes from phenols [68, 80].

readily than Friedel–Crafts alkylations of the corresponding benzenes. Thus,although aniline hydrochloride can be para-tritylated in acetic acid (first examplein Scheme 1.18), benzene does not react with the trityl cation.

The precise outcome of the reaction of anilines with alkylating reagents canbe difficult to predict. Stoichiometric amounts of strong acids usually favor C-alkylations. At high temperatures or in the presence of acids, N-alkylanilinesmay be dealkylated and act as alkylating agents themselves [91–93]. Occasionally,mixtures of N- and C-alkylated products are obtained (Scheme 1.19).

If anilines are treated with aldehydes or ketones in the presence of acids atroom temperature, reversible aminal, imine, or enamine formation usually occurs.Upon heating, irreversible alkylation at carbon can take place. Thus, if aniline is

Page 15: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.2 Problematic Arenes 15

OH

AlCl3

OAlCl3

O

ArH

OAlCl3

Ar

H

− H

O

Ar

+ H

OAlCl3

ArH − H

OAlCl3

Ar

O

Ar

OH1.5 eq AlBr3

1.5 eq C6H6

70 °C, 5 h

O

Ph

12%

+

O

Ph

Ph34%

73zok2158

73zok2158

OH 1.5 eq AlCl3excess C6H620 °C, 52 h

O

Ph

75%

OHAlCl3, C6H6

20 °C, 16 h

O

Ph

90%

OHAlCl3, C6H6

80 °C, 1 h

OH

75%

Cl

Ph

04cc1754

04cc1754

Scheme 1.17 Acid-mediated arylation of phenols [84, 85].

treated with formaldehyde at a low temperature, only aminals, benzylamines, orTroger’s base are formed. At higher temperatures, though, diarylmethanes arethe main products (Scheme 1.20). Hydride transfer from aldehydes or anilines tointermediate iminium salts causes the formation of N-alkylanilines as byproducts.

Page 16: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

16 1 Electrophilic Alkylation of Arenes

OH

+

5% cat*, 10% NH4BF4

DCE, 60 °C, 3 h

NMe2

NMe2

Cl

Cl

46%

83% ee

cat*:

0.5 {Cp*RuCl}4 + S S

Ph

Ph

Ph

Ph

Ph

Ph

07ang6488

NH2

S

CF3

NO2+

1 eq 1 eq

DMF, 80 °C, 6 h

78%

NH2

+

NH2

CF3

CF384 : 16TfO 09ejoc1390

N+

F3CO2S

F3CO2S

SO2CF3

SO2CF3 MeCN, 80 °C N

F3CO2S

F3CO2SH

87%

13ang1530

+

NH3Cl AcOH

118 °C, 3 h

then NaOH

70%

OH

PhPhPh

NH2

Ph PhPh2.1 eq1.0 eq oscv(4)47

H2N

10 eq

O

1 eq

0.6 eq MsOH

175 °C, 24 h+

H2N NH2

85%

EP 0203828

NH2

+

1 eq 1 eq

0.2 eq F3CSO3H

160 °C, 16 h

53%

NH2

05ol5135

Scheme 1.18 Examples of C-alkylations of anilines [27, 86–90].

Page 17: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.2 Problematic Arenes 17

+O

Al2O3

330 °CNH2

N

83−90%

oscv(4)7952 eq 1 eq

NH

+ ClBr

5 eq1 eq

150−160 °C, 20 h

N77−81%

oscv(3)504

H2N

2 eq

+

NN

1 eq

0.05 eq BF3OEt2135 °C, 24 h

NH

58 : 42

83%H2N

+

Tf2N

06thl6775

H2N

2 eq

+

1 eq

OH

montmorilloniteheptane

80 °C, 24 h

88% NH

86 : 10 : 4

H2N

+

H2N

+

07joc6006

Scheme 1.19 Examples of C- and N-alkylations of anilines [94–97]. Further examples:[98, 99].

H2N

2 eq (HCHO)nCF3CO2H

20 °C, 48 h

78%N

N

Tröger’s base07ejoc3905

H2N

HCHO, H2O

<70 °C

NH

NH

SiO2, Al2O3

90 °C

H2N

NH

zeolites

125 °C

H2N NH2

04cc2008, WO 2010072504

H2N

O2N

2 eq

1 eq (HCHO)n25% HClheat, 5 h

90%H2N

O2N

NH2

NO2

07cej9515

Scheme 1.20 Formation of diarylmethanes from anilines and formaldehyde [100–103].

Page 18: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

18 1 Electrophilic Alkylation of Arenes

One side reaction often observed during the preparation of diarylmethanes fromanilines is the formation of triarylmethane dyes. A suitable oxidant is air, andthe oxidation can be catalyzed by vanadates (Scheme 1.21). Even if oxygen isrigorously excluded, small amounts of these dyes will result from oxidation by theintermediate iminium salts.

Anilines can be selectively ortho-alkylated with olefins under basic reactionconditions. This requires conversion of the aniline into an aluminum anilide bytreatment with Al/AlCl3 (Scheme 1.22). This interesting reaction is, however, oflittle scope, and not well suited to alkylate phenols [76].

H2N

10 eq

1.4 eq HCl (25%)1.0 eq HCHO (35%)

130 °C, 3 h

H2N NH2

0.002 eq (NaVO3)4air, 110 °C, 3 h

H2N NH2

NH

Pararosaniline

EP 0909794

Scheme 1.21 Formation of triarylmethane dyes from diarylmethanes [104].

NH2

4−7% (PhNH)3Al

ethylene, 40−60 bar

330 °C, 7 h

>99% conversion

NH2 NH2

+

1.2% 89%56joc711

NH2

+

0.07 eq Et3Al2Cl3262 °C, 17 h

1.0 eq 0.7 eq

56% conversionof aniline

NH2

68%WO 2009029383

NH2

HN

0.25% RhCl3-3H2O

0.5% PPh3

ethylene (100 bar)

200 °C, 3 dN

+

2.5%7.5%

79ja490

Scheme 1.22 Alkylation of anilines with olefins [105–107]. Further examples: [108].

Page 19: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.3 Problematic Electrophiles 19

1.2.4Azoles

Azoles with a free NH group can be alkylated at nitrogen or at carbon. The outcomeof such reactions is barely predictable, in particular for substrates containing arenes(e.g., indoles, benzimidazoles, etc.). Azoles may also be alkylated after stoichio-metric metallation, which enhances the scope of regioselectivities even further.N-Alkylation is favored by hard electrophiles (e.g., methylating reagents), whilesoft electrophiles (e.g., olefins) lead sometimes to clean C-alkylations. Illustrativeexamples of the alkylation of non-metallated azoles are given in Scheme 1.23.

N

NH

N

HN

1.1 eq 1N NaOHEtOH, 79 °C, 1 h, then

0.7 eq PhCH2Br79 °C, 24 h

N

NH

N

HN Ph

+N

NH

N

N

Ph

16% 23%

+N

N N

N

Ph

Ph 17%

EP 0301456

NH

N

+

2.5% [RhCl(coe)2]27.5% PCy3

5% lutidine-HClTHF, 150 °C, 15 h

80%coe: cis-cyclooctene

NH

N

04joc7329

NH

+

4% PdCl2(MeCN)2

2 eq norbornene

2 eq K2CO3

DMA, H2O, 70 °C

65% NH

CO2EtBr CO2Et

12ja14563

Scheme 1.23 Alkylation of azoles [109–111].

1.3Problematic Electrophiles

1.3.1Methylations

Because Friedel–Crafts alkylations require the formation of free carbocations orcarbocation-like intermediates, methylations do not proceed readily. Phenols can

Page 20: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

20 1 Electrophilic Alkylation of Arenes

OHMeOH, Al2O3

530 °C, gas phase

65−67%

oscv(4)520

mixture ofisomers

0.25 eq AlCl3excess MeCl

100 °C, 100 h

52%

+

16%

+

18%

mixture ofisomers

mixture ofisomers

oscv(2)248

17% MeCl, 9% B(OTf)3

CH2Cl2, 25 °C, 1 h

17 : 58 : 25

+ +11%

88ja2560

N +Ph O

O Ph

1 eq 2 eq

5% Pd(OAc)2

130 °C, 12 hN N+

60% 20%

08ja2900

Scheme 1.24 Methylation of arenes with methanol, methyl chloride, and methyl radicals[112–115].

be C-methylated with MeOH, but high temperatures are required (Scheme 1.24).In acid-catalyzed methylations, free methyl cations are probably not formed, and acomplex of catalyst with the methylating reagent is more likely to be the reactiveintermediate [112].

1.3.2Olefins

Upon reaction with an arene under acidic reaction conditions, unsymmetric olefinscan yield two different products: the one resulting from the more stable carbocation(the Markovnikov product), or the one resulting from the less stable but morereactive carbocation (the anti-Markovnikov product). As with other acid-mediatedadditions to alkenes, arenes are usually alkylated by the predominant, more stablecarbocation. This can also be the case for transition-metal-catalyzed alkylations[116]. Catalysts have been developed, however, that enable the preparation of linearalkylarenes from terminal olefins [117, 118] (Scheme 1.3).

Page 21: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.3 Problematic Electrophiles 21

Olefins substituted with electron-withdrawing groups (Michael acceptors) alky-late arenes with the more electrophilic β-carbon (e.g., [119]). Nitroalkenes do so,too, but may be hydrolyzed to ketones upon treatment with strong aqueous acids(Scheme 1.25).

Cl

SNH

O O% SbF5

HF, −20 °C, 10 min

Cl

SNH

O O

F+

Cl

SNH

O O

13%55%64%

71%17%0%

% SbF5

3.8%8.4%27%10ol868

+

NO2

30 eq 1 eq

10 eq F3CSO3H

−40 °C, 1 min NHO OH

O O+

92%

57 : 43

89joc733

Scheme 1.25 Aromatic alkylations with olefins [120, 121].

A typical side reaction of acid-mediated alkylations with olefins is the oligomer-ization of the alkene. Styrenes and acrylates polymerize particularly easily. This cansometimes be avoided by keeping the concentration of alkene low, because olefinsrequire a minimum concentration to polymerize. In the presence of oxidants ortransition metals, the reaction of arenes with olefins can yield styrenes instead ofalkylarenes (Section 2.3).

1.3.3Allylic Electrophiles

The reaction of arenes with allylic electrophiles often yields mixtures of isomericproducts. It is not always the dominant (more stable but less reactive) resonanceformula that controls regioselectivity; steric effects also influence the course of thereaction (Scheme 1.26). The results may always be rationalized somehow, but thepredictive value of such rationalizations is limited.

In the presence of acids, allylic electrophiles are synthetic equivalents of the1,3-propylene dication. Accordingly, one potential side reaction is the cyclizationof the product to yield indanes. Such cyclizations can sometimes be avoided by alarge excess of arene. If Pd-based catalysts are used, Heck-type vinylations (insteadof allylic substitution) are a further side reaction to be expected (Scheme 1.27).

Page 22: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

22 1 Electrophilic Alkylation of Arenes

OF3C

O

37 eq benzene7 eq TFA80 °C, 8 h

1.5 mmol

++

78% 3% 1%84joc4309

F

F

F

F

F

+ OO

O

2 eq 1 eq

5% Pd(OAc)2

10% PPh3, 5% CuI-phen

1.2 eq Cs2CO3

PhMe, 120 °C, 12 h

48%

F

F

F

F

F

F

F

F

F

F

+

85 : 15

11ang5918

NPh

O

+

Ph

OPO(OEt)2

1.0 eq1.2 eq

10% CuCl

1 eq LiOtBu

THF, 40 °C, 10 h

92%NPh

O

Ph

12ang4122

Scheme 1.26 Examples of the alkylation of arenes with allylic electrophiles [122–124]. Fur-ther examples: [125, 126].

+ Br

1 eq 1 eq

1 eq AlCl3CH2Cl2

20 °C, 12 h

36%

EP 0826654

+Cl

1.0 eq 1.1 eq

0.05 eq Cu(OTf)2CH2Cl2

60 °C, 16 h

78%

11asc1055

F

F

F

F

F

+ AcO

3 eq

1 eq

5% Pd(OAc)22 eq AgOAc

5% DMSO in THF110 °C, 20 h

78%

F

F

F

F

F

OAc

F

F

F

F

F OAc

F

F

F

F

F

OAc

+ +

86 : 9 : 5

12ol74

Scheme 1.27 Cyclizations and Heck reaction of allylic electrophiles [126–128].

Page 23: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.3 Problematic Electrophiles 23

Acrylates are a further type of 1,3-dielectrophile that can cause the formation ofbicyclic products upon acid-mediated reaction with arenes (Scheme 1.28).

CO2H

1 eq

+

5 eq

17 eq F3CSO3H

20 °C, 4 h

O

+

O35% 12%

CO2H

1 eq

+

5 eq

17 eq F3CSO3H

75 °C, 24 h

O93%

CF3

CO2H

1 eq

+

5 eq

17 eq F3CSO3H

20 °C, 4 h

O

CF3

90%

CF3

CO2H

1 eq

+

5 eq

17 eq F3CSO3H

45 °C, 7 h

68%

CF3

CO2H

10joc2219

10joc2219

10joc2219

10joc2219

Scheme 1.28 Acid-mediated reactions of acrylic acids with arenes [129].

1.3.4Epoxides

Arenes are usually alkylated by epoxides at the carbon atom that forms themore stable carbocation. Alkyl-, aryl-, or alkenylepoxides will therefore mostlyyield primary alcohols, while epoxides substituted with electron-withdrawinggroups will mostly yield secondary alcohols. Epichlorohydrin and glycidyl ethersalso tend to yield secondary alcohols upon acid-mediated reaction with arenes(Scheme 1.29).

Epoxides are reactive intermediates and may lead to product mixtures ifthe reaction conditions are not carefully chosen. Typical side reactions includerearrangement of the oxiranes to aldehydes or ketones, dimerization or oligomer-ization of the oxirane, and alkylation of the arene by the newly formed alcohol(Scheme 1.30).

Page 24: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

24 1 Electrophilic Alkylation of Arenes

NH

+Cl

O

montmorillonite

SbCl320 °C, 0.3 h

70%NH

OH

Cl

09thl916

O

O

2.5% AuCl3/3 AgOTf

DCE, 83 °C, 4 h

65%

O

OH

04ja5964

HN

HN

HNS

Tol

OO

(racemic)

N

STol

O

O

+

0.1 eq InCl3CH2Cl2

20 °C, 6.5 h

74%

1.0 eq 1.4 eq02thl1565

Scheme 1.29 Examples of the alkylation of arenes with epoxides and aziridines [130–132].Further examples: [133].

O PhMe, 0.4 eq SnCl40 °C, 1.5 h

OH

Tol

ortho/para 28 : 72

+ +

OO

O

43% 33% 13%

83joc592

O+

CF3CO2H

CF3SO3H

20 °C, 3 h

44%

78 : 19 : 3

+ +

03catl1

O

Cl

CO2Me

Oct

C6H6, AlCl320 °C, 1 h

77%Oct

Cl

HO Ph

CO2Me

Oct: C8H17

Oct

Cl

HO Ph

CO2Me

81 : 19

+

O

Cl

CO2Me

Oct

AlCl3O

CO2MeOct

Cl

AlCl3

03tet1781

Scheme 1.30 Side reactions during the alkylation of arenes by epoxides [134–136].

Page 25: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.3 Problematic Electrophiles 25

1.3.5𝛂-Haloketones and Related Electrophiles

Alkylhalides with the halogen attached to a C–H acidic position (α-haloketones,α-haloesters, α-halonitriles, etc.) display a peculiar reactivity. Removal of the halideto produce a (destabilized) carbocation is difficult, and only a few examples ofacid-catalyzed arene alkylations with such electrophiles have been reported [137,138] (Scheme 1.31). Nucleophilic substitutions at such alkyl halides, however, canproceed with ease. Initial addition of the nucleophile to the carbonyl group is apossible reason for the enhanced reactivity of these electrophiles [139].

+

O

Cl

7.5 eq 1 eq

2 eq AlCl380 °C, 5 h

32%

O

40ja1622

CO2Me

OS

O O

4 eq C6H6, 2 eq AlCl380 °C, 6 h

80%

CO2Me

85joc3945

OCO2HO

O

S

O O

+

1 eq

3 eq AlCl345 °C, 16 h

then NaOH

then HCl

83%

EP 0665212solvent

+ CO2HCl

2% KBr, 0.4% Fe2O3

200−218 °C, 20 h

1 eq3 eq

CO2H

70% (crude)

34% (purified)

50ja4302

Scheme 1.31 Electrophilic alkylation of arenes with α-haloketones and related electrophiles[140–143].

Because arenes can also react with ketones, esters, and nitriles, this is a sidereaction to be expected when alkylating arenes with α-haloketones and relatedelectrophiles (Scheme 1.32). Moreover, α-haloketones may also act as halogenatingreagents or oxidants [144], and can dimerize or trimerize in the presence of bases.

Ketones and esters may also be converted to radicals, which can then add toarenes or heteroarenes. The most common strategies to generate these radicalsinclude the photolysis of α-haloketones or -esters, and the oxidation of ketones(Scheme 1.33). Because aliphatic α-haloesters absorb UV light of short wavelengths

Page 26: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

26 1 Electrophilic Alkylation of Arenes

+ CNCl

2% KBr, 0.4% Fe2O3

177−220 °C, 20 h

1 eq3 eq

CN

42%

51joc239

NH2

F

+ CNCl

1 eq 2 eq

1.1 eq AlCl31.1 eq BCl3

CH2Cl2, 40 °C, 14 h

57%NH2

F

O

Cl

12oprd1832

but:

OH

+

O

Cl

4 eq 1 eq

7 eq MeSO3H

CH2Cl2, −10 °C

OH

HO

Cl

>78%

WO 9811043

OMe

+

O

Cl

H2SO4

0 °C, 5 h

OMe

MeO

78%

54jcs3360

Scheme 1.32 Arene alkylation or acylation with α-chloroketones and -nitriles [145–148].

only, the arene cannot usually be used as solvent, because it would not allow therequired UV light to reach the haloester (second example in Scheme 1.33).α-Diazoketones or α-diazoesters are precursors to metal carbene complexes,

which can undergo direct insertion into aromatic C–H bonds (Scheme 1.34).The intermediate carbene complexes, though, are highly reactive and electrophilic,and can alkylate many functional groups and abstract hydride and cyclopropanatealkenes, alkynes, and even arenes. For this reason, diazocarbonyl compounds (ordiazoalkanes [6]) are only rarely used as electrophilic alkylating reagents for arenes.

The arylation of α-haloketones and related electrophiles via vicarious nucleophilicsubstitution is discussed in Section 8.2.3.

1.3.6Nitroalkanes

A few examples have been reported of the alkylation of arenes with nitroalkanes,with the nitro group acting as leaving group [4] (Scheme 1.35). This reactionis complicated by numerous potential side reactions. Nitro groups can act ascarbon electrophiles without loss of the nitro group. Moreover, in the presence

Page 27: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.3 Problematic Electrophiles 27

N+ CO2EtI

1 eq20 eq

12 eq H2O2 (35%)

0.6 eq FeSO4−7H2O

DMSO, 20 °C

NCO2Et

55%

92joc6817

+ CO2EtCl

hν (254 nm)25 °C

1 eq solvent

CO2Et+ CO2Et

EtO2C

78% 1%

69bcsj794

Mn(OAc)3

1 eq

+

excess

+

O

excess

AcOH, 56 °C

O O+

O+

O

Obyproduct

14 : 20 : 66

51% yield

+84joc1603

Scheme 1.33 Arylation of α-haloesters and ketones via radicals [149–151].

of strong acids, nitro groups can react with arenes at oxygen. For instance,2-aryl-1-nitroethanes are converted to O-aryloximes when treated with triflic acid(Scheme 1.35). In this type of reactions, nitro groups become electrophilic atoxygen. Examples have also been reported of electrophilic aromatic aminationswith nitro groups (last example, Scheme 1.35).

In the presence of dehydrating reagents, primary nitroalkanes (RCH2NO2) canbe converted to nitrile oxides, which are highly reactive and readily dimerize,polymerize, rearrange to isocyanates, react with nucleophiles, or undergo 1,3-dipolar cycloadditions.

1.3.7Ketones

Upon catalysis by acids, simple dialkylketones react cleanly with only electron-richarenes, such as phenols, anilines, or pyrroles, but not with benzene or toluene.The resulting tertiary benzylic alcohols usually alkylate a second arene molecule,to yield geminal diaryl alkanes. Dehydratization of the intermediate alcohols andoligomerization of the resulting olefin are also occasionally observed. If the alcohol

Page 28: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

28 1 Electrophilic Alkylation of Arenes

NO

O

Ph +

CO2Me

PhN2

2% Cu(OTf)2

CH2Cl2, 20 °C, 12 h

NO

O

Ph

Ph

CO2Me

85%

10ejoc6719

N

CO2Me

Ph

Ph

PhO

N2

O

2.7% Rh2(OAc)4

DCE, 84 °C, 9 h

N

CO2MePh

O

Ph

Ph

O

+N

CO2Me

Ph

Ph

Ph

N

CO2Me

Ph

PhO

O

+N

CO2Me

Ph

O

O

Ph

Ph+

12% 22% 18% 16%

95tet8829

Scheme 1.34 Reaction of α-diazoesters with arenes [152, 153].

is the desired product, a mildly acidic catalyst and carefully optimized conditionswill often be required.

Isopropenylbenzene, for instance, cannot be directly prepared from acetone andbenzene (for recent research, see [159]) because the readily formed cumyl cationreacts with benzene [160]. The direct preparation of isopropenylbenzene fromacetone would be valuable because, during the production of phenol from cumenehydroperoxide, one equivalent of acetone is formed, which cannot currently beused directly for the preparation of cumene. Processes have been developed inwhich acetone is hydrogenated to isopropanol, which is then converted to propeneand used to alkylate benzene (Scheme 1.36). The direct alkylation of benzenewith isopropyl alcohol is possible [161, 162], but most catalysts for Friedel–Craftsalkylations are deactivated by water, and isopropylations with propene are thereforemore convenient than isopropylations with isopropanol.

Only ketones substituted with electron-withdrawing groups, such as trifluo-romethylketones, 1,2-diketones, or α-ketocarboxylic esters, react with unactivatedarenes. Fluorenones are also quite reactive because O-protonated fluorenones areantiaromatic. The initially formed alcohols do not form carbocations readily andcan often be isolated (Scheme 1.37).

Potential side reactions of the Friedel–Crafts alkylation with ketones is theformation of diarylmethanes, the oligomerization of the products, and aldol con-densation of the starting ketone. Moreover, in the presence of oxidants, ketonesmay be α-arylated via intermediate radical formation [151]. If Friedel–Crafts alky-lations with ketones are conducted in the presence of hydride donors, a reductivealkylation of arenes can occur (Scheme 1.38).

Page 29: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.3 Problematic Electrophiles 29

MeO

MeO

SPh

NO2

O2 eq SnCl4

CH2Cl2, 20 °C, 3 h

86%

MeO

MeO SPh

O

87joc4133

CO2Me

NO2

10 eq F3CSO3H

CHCl3, 50 °C, 0.5 h CO2Me

NO

85%

CO2Me

NO2

10 eq F3CSO3H

CHCl3, 50 °C, 0.5 h

55%MeO

ON

O

CO2Me

07ja1724

07ja1724

Br

O

NO2

50 eq C6H6

10 eq F3CSO3H

CH2Cl2, 0 °C, 20 min

Br

O

NOH Br

O

NOH

OH+ +

66% 13% 11%

09syn4129

NH

SMe

NO2

POCl3, MeCN

80 °C, 4 h

50%N SMe

N Cl

05ol2169

Scheme 1.35 Reactions of nitroalkanes with arenes [154–157]. Further examples: [158].

Strongly C–H acidic ketones, such as β-ketoesters, are readily palladated atcarbon. The resulting intermediates can undergo β-hydride elimination to yieldα,β-unsaturated ketones. The latter are Michael acceptors, capable of alkylatingelectron-rich arenes (Scheme 1.39).

Occasionally, benzylic electrophiles are attacked by nucleophiles not at thebenzylic position but at the arene (e.g., first equation in Scheme 1.37). Exampleshave been reported of the electrophilic arylation of unsubstituted arenes withtetralones and related aryl ketones (Scheme 1.40).

Page 30: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

30 1 Electrophilic Alkylation of Arenes

+

acidiccatalyst

cumene

air

OOH

OH

+

O

phenol(high demand)

acetone(low demand)

H2

catalystOH

+

O

or

OH

Scheme 1.36 Preparation of phenol and acetone from benzene.

NCF3

O

excess C6H6

22 eq CF3SO3H

25 °C, 2 h

79%N

CF3

HO

C6H6

CF3SO3H

60 °C86%

NCF3

Ph

10ja3266

F3C CF3

O O

excess C6H6

22 eq CF3SO3H

25 °C, 2 h

F3C CF3

Ph Ph83%

but:

O OC6H6

CF3SO3Hno reaction

10ja3266

10ja3266

N

O

O

TFA (0.9 M)20 °C

NO

HO

+ NO

HO

N O

11ol5536

Scheme 1.37 Alkylation of arenes and heteroarenes by ketones [163–167].

Page 31: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.3 Problematic Electrophiles 31

EtO

+CO2Et

O

1.0 eq 1.1 eq

1.0 eq TiCl4CH2Cl2, 0 °C, 4 h

EtO

OH

CO2Et

+

EtO

CO2Et

OEt

+

EtO

CO2Et CO2Et

OEtOEt

15% 60% 11%

EtO

+CO2Et

O

1.0 eq 1.1 eq

1.0 eq TiCl42.5 eq Al2O3, CH2Cl2

−15 °C, 8 h

EtO

OH

CO2Et

85%

06asc898

06asc898

NH

+

O

1 eq 1 eq

0.5 eq TFACH2Cl2, 20 °C, 18 h

N

NH

79%

11ol5846

NH

+

AcOH, 2N H3PO480 °C, 13 h

40%

1.0 eq

NO

CO2Et

1.5 eq

N

CO2EtNH75joc2525

Scheme 1.37 (Continued)

+

O

excess

Me2SiClH

5% InCl3110 °C, 3 h

99%

99tet1017

Scheme 1.38 Reductive aromatic alkylation with ketones [168].

Page 32: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

32 1 Electrophilic Alkylation of Arenes

O

CO2Et

1.5 eq

+

OMe

MeO OMe

1.0 eq

0.5 eq ( PhO)2PO(OH)

10% Pd(OAc)2

AcOH, DCE, 25 °C, 24 h

OMe

MeO OMe

CO2EtO

OMe

MeO OMe

CO2EtO

+

87% 3%

O

CO2Et

PdOAc

O

CO2Et

12cej12590

Scheme 1.39 Dehydrogenation as side reaction of the Pd-catalyzed arylation of ketones[169].

O6 eq AlCl3

C6H6, 25 °C, 48 h

O

56% 10%

7% 5%

+ +

+

90joc4036

Scheme 1.40 Arylation of benzene with tetralone [83].

1.3.8Alcohols

Alcohols are widely used electrophiles for Friedel–Crafts alkylations. Alcohols areoften more reactive than alkyl halides, but require more acid to alkylate arenes.Primary, non-benzylic alcohols are rarely used as alkylating reagents, owing to theirfast rearrangement to more stable secondary or tertiary cations.

As is the case with other electrophiles, alcohols that do not readily form carbo-cations are not well suited for arene alkylation. No examples for cationic arenealkylations with 2,2,2-trihaloethanols or cyanohydrins, for instance, could be found.Only a few examples have been reported of alkylations with α-hydroxycarboxylicacids or α-hydroxyketones, and most of these examples were alcohols withcarbocation-stabilizing α-substituents (e.g., benzylic alcohols).

Under strongly basic conditions, indole can be alkylated at C-3 with glycolicacid, but this reaction proceeds by oxidation of the alcohol to an intermediatealdehyde (Scheme 1.41). A similar alkylation of fluorene with alcohols at thebenzylic methylene group has also been reported [170, 171].

Page 33: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

1.3 Problematic Electrophiles 33

NH

+

1 eq

F3C

NN

CO2H

NHAc

AcO

Ac2O, AcOH

20 °C, 1.5 h

NH

F3C

NN

CO2H

NHAc

25%

2 eq 12joc8581

NH

+ CO2HHO

1.0 eq 1.1 eq

1.4 eq KOH

H2O, 250 °C,18 h

then HCl

NH

CO2H

87−93%

CO2KON

H

CO2K

OH

N

CO2K

− H2+ H2 + HCl

oscv(5)654

NH

O

OOH

OH

+

AcOH, 2N H3PO4

reflux, 0.5 h

NH

O

50%

1.0 eq 0.7 eq WO 2008095835

Scheme 1.41 Alkylation of indoles with alcohols and esters [172–174].

OH

NPh

20 eq PhMe2 eq AlCl3

CH2Cl2, 60 °C, 24 h NPh

85%

10cej50

NOH

S

PPA, 160 °C, 6 h N

S

56%

06jmc760

NH

+ OHHO

19 eq1 eq

25% Ba(OH)2−8H2O

250 °C, 20 h

NH

OH

70%

US 3197479

Scheme 1.42 Alkylation of arenes with 2-aminoalcohols and ethylene glycol [175–177].

Page 34: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

34 1 Electrophilic Alkylation of Arenes

Alcohols or esters thereof, which upon dehydratization yield Michael acceptors,react as soft electrophiles, and are well suited for the alkylation of electron-richarenes (first equation, Scheme 1.41).

2-Amino- and 2-alkoxyethanols are further types of alcohol that do not readilyalkylate arenes under acidic conditions. Oxygen and nitrogen are more electro-negative than carbon, and the corresponding carbocations are destabilized by aninductive effect. Moreover, the acids will protonate amines and ethers, and thusfurther slow down the formation of the required dications. Otherwise, only activatedalcohols (e.g., benzylic or allylic alcohols) or intramolecular alkylations proceed inacceptable yields (Scheme 1.42).

References

1. Bachmann, W.E. (1955) Triphenyl-chloromethane. Org. Synth., Coll. Vol.3, 841–845.

2. Xu, X., Xu, X., Li, H., Xie, X., and Li,Y. (2010) Iron-catalyzed, microwave-promoted, one-pot synthesis of9-substituted xanthenes by a cascadebenzylation-cyclization process. Org.Lett., 12, 100–103.

3. Chung, K.H., Kim, J.N., and Ryu,E.K. (1994) Friedel–Crafts alkylationreactions of benzene with amide bondcontaining compounds. TetrahedronLett., 35, 2913–2914.

4. Bonvino, V., Casini, G., Ferappi, M.,Cingolani, G.M., and Pietroni, B.R.(1981) Nitro compounds as alkylatingreagents in Friedel–Crafts condi-tions: reaction of 2-nitropropane withbenzene. Tetrahedron, 37, 615–620.

5. Margosian, D., Speier, J., andKovacic, P. (1981) Formation of(1-adamantylcarbinyl)arenes from 3-azidohomoadamantane–aluminumchloride–aromatic substrates. J. Org.Chem., 46, 1346–1350.

6. Zhao, X., Wu, G., Zhang, Y., andWang, J. (2011) Copper-catalyzed directbenzylation or allylation of 1,3-azoleswith N-tosylhydrazones. J. Am. Chem.Soc., 133, 3296–3299.

7. Klumpp, D.A., Aguirre, S.L., Sanchez,G.V. Jr., and de Leon, S.J. (2001) Reac-tions of amino alcohols in superacid:the direct observation of dicationicintermediates and their application insynthesis. Org. Lett., 3, 2781–2784.

8. Ohwada, T., Kasuga, M., and Shudo, K.(1990) Direct observation of an inter-mediate in the oxygen atom rearrange-ment of 2-cyclopropylnitrobenzenein a strong acid. J. Org. Chem., 55,2717–2719.

9. Katritzky, A.R., Lopez Rodriguez,M.L., Keay, J.G., and King, R.W.(1985) Nucleophilic displacementwith heterocycles as leaving groups.Part 16. Reactions of secondary alkylprimary amines with 5,6,8,9-tetrahydro-7-phenyldibenzo[c,h]xanthyliumtrifluoromethanesulfonate to giveintermediates solvolysing without rear-rangement. J. Chem. Soc., Perkin Trans.2, 165–169.

10. Imm, S., Bahn, S., Tillack, A., Mevius,K., Neubert, L., and Beller, M. (2010)Selective ruthenium-catalyzed alkylationof indoles by using amines. Chem. Eur.J., 16, 2705–2709.

11. Quast, H., Nudling, W., Klemm, G.,Kirschfeld, A., Neuhaus, P., Sander,W., Hrovat, D.A., and Borden, W.T.(2008) A perimidine-derived non-Kekule triplet diradical. J. Org. Chem.,73, 4956–4961.

12. Mazik, M. and Sonnenberg, C. (2010)Isopropylamino and isobutylaminogroups as recognition sites for carbohy-drates: acyclic receptors with enhancedbinding affinity toward β-galactosides.J. Org. Chem., 75, 6416–6423.

13. Wallace, K.J., Hanes, R., Anslyn,E., Morey, J., Kilway, K.V., andSiegel, J. (2005) Preparation of

Page 35: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

References 35

1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene from two versatile1,3,5-tri(halosubstituted) 2,4,6-triethylbenzene derivatives. Synthesis,2080–2083.

14. Saulnier, G., Dodier, M., Frennesson,D.B., Langley, D.R., and Vyas, D.M.(2009) Nucleophilic capture of theimino-quinone methide type intermedi-ates generated from 2-aminothiazol-5-ylcarbinols. Org. Lett., 11, 5154–5157.

15. Piao, C., Zhao, Y., Han, X., andLiu, Q. (2008) AlCl3-mediated directcarbon–carbon bond-forming reac-tion of α-hydroxyketene-S,S-acetalswith arenes and synthesis of 3,4-disubstituted dihydrocoumarin deriva-tives. J. Org. Chem., 73, 2264–2269.

16. O’Keefe, B.M., Mans, D.M., Kaelin,D.E., and Martin, S.F. (2010) Total syn-thesis of isokidamycin. J. Am. Chem.Soc., 132, 15528–15530.

17. Izumi, K., Kabaki, M., Uenaka, M., andShimizu, S. (2007) One-step synthesisof 5-(4-fluorobenzyl)-2-furyl methylketone: a key intermediate of HIV-integrase inhibitor S-1360. Org. ProcessRes. Dev., 11, 1059–1061.

18. Piccolo, O., Azzena, U., Melloni, G.,Delogu, G., and Valoti, E. (1991) Stere-ospecific Friedel–Crafts alkylation ofaromatic compounds: synthesis of opti-cally active 2- and 3-arylalkanoic esters.J. Org. Chem., 56, 183–187.

19. Klumpp, D.A., Garza, M., Jones, A.,and Mendoza, S. (1999) Synthesisof aryl-substituted piperidines bysuperacid activation of piperidones. J.Org. Chem., 64, 6702–6705.

20. Hofmann, M., Hampel, N., Kanzian,T., and Mayr, H. (2004) Electrophilicalkylations in neutral aqueous or alco-holic solutions. Angew. Chem. Int. Ed.,43, 5402–5405.

21. Liu, C. and Widenhoefer, R.A. (2006)Scope and mechanism of the PdII-catalyzed arylation/carboalkoxylation ofunactivated olefins with indoles. Chem.Eur. J., 12, 2371–2382.

22. Zhao, Y. and Chen, G. (2011)Palladium-catalyzed alkylation ofortho-C(sp2)–H bonds of benzylamidesubstrates with alkyl halides. Org. Lett.,13, 4850–4853.

23. Ackermann, L., Novak, P., Vicente, R.,and Hofmann, N. (2009) Ruthenium-catalyzed regioselective direct alkylationof arenes with unactivated alkyl halidesthrough C–H bond cleavage. Angew.Chem. Int. Ed., 48, 6045–6048.

24. Hofmann, N. and Ackermann, L.(2013) Meta-selective C–H bond alky-lation with secondary alkyl halides. J.Am. Chem. Soc., 135, 5877–5884.

25. Tsai, A.S., Brasse, M., Bergman, R.G.,and Ellman, J.A. (2011) Rh(III)-catalyzed oxidative coupling ofunactivated alkenes via C–H activation.Org. Lett., 13, 540–542.

26. Yu, D., Lee, S., Sum, Y.N., andZhang, Y. (2012) Selective for-mation of formamidines or 7-aminomethylbenzoxazoles fromunprecedented couplings betweenbenzoxazoles and amines. Adv. Synth.Catal., 354, 1672–1678.

27. Matsuzawa, H., Miyake, Y., andNishibayashi, Y. (2007) Ruthenium-catalyzed enantioselective propargy-lation of aromatic compounds withpropargylic alcohols via allenylideneintermediates. Angew. Chem. Int. Ed.,46, 6488–6491.

28. Mertins, K., Iovel, I., Kischel, J., Zapf,A., and Beller, M. (2005) Transition-metal-catalyzed benzylation of arenesand heteroarenes. Angew. Chem. Int.Ed., 44, 238–242.

29. Olah, G.A. and Kuhn, S.J. (1964)Selective Friedel–Crafts reactions. I.Boron halide catalyzed haloalkylationof benzene and alkylbenzenes withfluorohaloalkanes. J. Org. Chem., 29,2317–2320.

30. Shi, Z. and Chuan, H. (2004) Directfunctionalization of arenes by pri-mary alcohol sulfonate esters catalyzedby gold(III). J. Am. Chem. Soc., 126,13596–13597.

31. Mayr, H., Lang, G., and Ofial, A.R.(2002) Reactions of carbocations withunsaturated hydrocarbons: electrophilicalkylation or hydride abstraction? J.Am. Chem. Soc., 124, 4076–4083.

32. Serres, C. and Fields, E.K. (1963) Syn-thesis of 2,2-diarylpropanes by hydridetransfer. J. Org. Chem., 28, 1624–1627.

Page 36: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

36 1 Electrophilic Alkylation of Arenes

33. Coumbarides, G.S., Dingjan, M.,Eames, J., and Weerasooriya, N. (2001)Investigations into the brominationof substituted phenols using diethylbromomalonate and diethyl dibromo-malonate. Bull. Chem. Soc. Jpn., 74,179–180.

34. Kinoyama, I., Miyazaki, T.,Koganemaru, Y., Shiraishi, N.,Kawamoto, Y., and Washio, T. (2011)Acylguanidine derivatives. US Patent2011306621.

35. Pradhan, A., Dechambenoit, P., Bock,H., and Durola, F. (2013) Twisted poly-cyclic arenes by intramolecular Schollreactions of C3-symmetric precursors.J. Org. Chem., 78, 2266–2274.

36. Shen, Y., Liu, H., Wu, M., Du,W., Chen, Y., and Li, N. (1991)Friedel–Crafts alkylation of benzenessubstituted with meta-directing groups.J. Org. Chem., 56, 7160–7162.

37. Dall’Asta, L., Casazza, U., andCotticelli, G. (2001) Process for thepreparation of 5-carboxyphthalide. EPPatent 1118614.

38. Buc, S.R. (1956) Preparation of meta-nitrobenzyl chlorides. US Patent2758137.

39. Grellier, M., Vendier, L., Chaudret, B.,Albinati, A., Rizzato, S., Mason, S.,and Sabo-Etienne, S. (2005) Synthe-sis, neutron structure, and reactivityof the bis(dihydrogen) complexRuH2(𝜂2-H2)2(PCyp3)2 stabilized bytwo tricyclopentylphosphines. J. Am.Chem. Soc., 127, 17592–17593.

40. Mochida, S., Hirano, K., Satoh, T., andMiura, M. (2011) Rhodium-catalyzedregioselective olefination directed bya carboxylic group. J. Org. Chem., 76,3024–3033.

41. Park, S.H., Kim, J.Y., and Chang, S.(2011) Rhodium-catalyzed selective ole-fination of arene esters via C–H bondactivation. Org. Lett., 13, 2372–2375.

42. Rakshit, S., Grohmann, C., Besset, T.,and Glorius, F. (2011) Rh(III)-catalyzeddirected C–H olefination using an oxi-dizing directing group: mild, efficient,and versatile. J. Am. Chem. Soc., 133,2350–2353.

43. Busch, S. and Leitner, W. (2001)Ruthenium-catalysed Murai-type cou-plings at room temperature. Adv.Synth. Catal., 343, 192–195.

44. Ackermann, L. and Novak, P. (2009)Regioselective ruthenium-catalyzeddirect benzylations of arenes throughC–H bond cleavages. Org. Lett., 11,4966–4969.

45. Jun, C., Moon, C.W., Hong, J., Lim,S., Chung, K., and Kim, Y. (2002)Chelation-assisted RhI-catalyzed ortho-alkylation of aromatic ketimines, orketones with olefins. Chem. Eur. J., 8,485–492.

46. Wang, X., Truesdale, L., and Yu,J. (2010) Pd(II)-catalyzed ortho-trifluoromethylation of arenes usingTFA as a promoter. J. Am. Chem. Soc.,132, 3648–3649.

47. Ueno, S., Kochi, T., Chatani, N., andKakiuchi, F. (2009) Unique effectof coordination of an alkene moietyin products on ruthenium-catalyzedchemoselective C–H alkenylation. Org.Lett., 11, 855–858.

48. Yang, Y., Lin, Y., and Rao, Y. (2012)Ruthenium(II)-catalyzed synthesis ofhydroxylated arenes with ester as aneffective directing group. Org. Lett., 14,2874–2877.

49. Yadav, M.R., Rit, R.K., and Sahoo, A.K.(2012) Sulfoximines: a reusable direct-ing group for chemo- and regioselectiveortho C–H oxidation of arenes. Chem.Eur. J., 18, 5541–5545.

50. Martinez, R., Simon, M., Chevalier, R.,Pautigny, C., Genet, J.-P., and Darses,S. (2009) C–C bond formation viaC–H bond activation using an in situ-generated ruthenium catalyst. J. Am.Chem. Soc., 131, 7887–7895.

51. Ueno, S., Chatani, N., and Kakiuchi,F. (2007) Ruthenium-catalyzed C–Cbond formation via the cleavage of anunreactive aryl C–N bond in anilinederivatives with organoboronates. J.Am. Chem. Soc., 129, 6098–6099.

52. Sonoda, M., Kakiuchi, F., Chatani,N., and Murai, S. (1997) Ruthenium-catalyzed addition of C–H bonds inaromatic ketones to olefins. The effect

Page 37: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

References 37

of various substituents at the aro-matic ring. Bull. Chem. Soc. Jpn., 70,3117–3128.

53. Ueno, S., Mizushima, E., Chatani, N.,and Kakiuchi, F. (2006) Direct obser-vation of the oxidative addition of thearyl C–O bond to a ruthenium com-plex and elucidation of the relativereactivity between aryl C–O and arylC–H bonds. J. Am. Chem. Soc., 128,16516–16517.

54. Ryu, J., Cho, S.H., and Chang, S.(2012) A versatile rhodium(I) catalystsystem for the addition of heteroarenesto both alkenes and alkynes by a C–Hbond activation. Angew. Chem. Int. Ed.,51, 3677–3681.

55. Yao, B., Song, R., Liu, Y., Xie, Y., Li,J., Wang, M., Tang, R., Zhang, X., andDeng, C. (2012) Palladium-catalyzedC–H oxidation of isoquinoline N-oxides: selective alkylation with dialkylsulfoxides and halogenation with dihalosulfoxides. Adv. Synth. Catal., 354,1890–1896.

56. Tran, L.D. and Daugulis, O. (2010)Iron-catalyzed heterocycle and arenedeprotonative alkylation. Org. Lett., 12,4277–4279.

57. Popov, I., Do, H., and Daugulis, O.(2009) In situ generation and trap-ping of aryllithium and arylpotassiumspecies by halogen, sulfur, and car-bon electrophiles. J. Org. Chem., 74,8309–8313.

58. Linhardt, R.J., Montgomery, B.L.E.,Osby, J., and Sherbine, J. (1982)Mechanism for diacyl peroxide decom-position. J. Org. Chem., 47, 2242–2251.

59. Molander, G.A., Colombel, V., andBraz, V.A. (2011) Direct alkylation ofheteroaryls using potassium alkyl- andalkoxymethyltrifluoroborates. Org. Lett.,13, 1852–1855.

60. Glazunov, V.P., Tchizhova, A.Y.,Pokhilo, N.D., Anufriev, V.P., andElyakov, G.B. (2002) First directobservation of tautomerism of mono-hydroxynaphthazarins. Tetrahedron, 58,1751–1757.

61. Guo, X. and Li, C.-J. (2011)Ruthenium-catalyzed para-selectiveoxidative cross-coupling of arenes andcycloalkanes. Org. Lett., 13, 4977–4979.

62. Minisci, F., Vismara, E., and Fontana,F. (1989) Homolytic alkylation ofprotonated heteroaromatic bases byalkyl iodides, hydrogen peroxide, anddimethyl sulfoxide. J. Org. Chem., 54,5224–5227.

63. Miller, B.L., Palde, P.B., and Gareiss,P.C. (2008) Tripodal cyclohexanederivatives and their use as car-bohydrate receptors., WO Patent2008048967.

64. Duncton, M.A.J., Estiarte, M.A.,Johnson, R.J., Cox, M., O’Mahony,D.J.R., Edwards, W.T., and Kelly, M.G.(2009) Preparation of heteroaryloxe-tanes and heteroarylazetidines by useof a Minisci reaction. J. Org. Chem., 74,6354–6357.

65. Yoshida, M., Amemiya, H., Kobayashi,M., Sawada, H., Hagii, H., andAoshima, K. (1985) Perfluoropropy-lation of aromatic compounds withbis(heptafluorobutyryl) peroxide. J.Chem. Soc., Chem. Commun, 234–236.

66. Firth, B.E. and Rosen, T.J. (1985)Preparation of ortho-alkylated phenols.US Patent 4538008.

67. Rao, H.S.P., Geetha, K., andKamalraj, M. (2011) Synthesis of 4-(2-hydroxyaryl)-3-nitro-4H-chromenes.Tetrahedron, 67, 8146–8154.

68. Lee, D.-H., Kwon, K.-H., and Yi, C.S.(2012) Dehydrative C–H alkylation andalkenylation of phenols with alcohols:expedient synthesis for substitutedphenols and benzofurans. J. Am. Chem.Soc., 134, 7325–7328.

69. Toshima, K., Matsuo, G., Ishizuka,T., Ushiki, Y., Nakata, M., andMatsumura, S. (1998) Aryl andallyl C-glycosidation methods usingunprotected sugars. J. Org. Chem., 63,2307–2313.

70. Podder, S., Choudhury, J., Roy, U.K.,and Roy, S. (2007) Dual-reagent cata-lysis within Ir–Sn domain: highlyselective alkylation of arenes and hete-roarenes with aromatic aldehydes. J.Org. Chem., 72, 3100–3103.

71. Zhang, C., Gao, X., Zhang, J., andPeng, X. (2010) Fe/CuBr2-catalyzedbenzylation of arenes and thiopheneswith benzyl alcohols. Synlett, 261–265.

Page 38: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

38 1 Electrophilic Alkylation of Arenes

72. Firth, B.E. (1981) Preparation of 2,4,6-triisopropylphenol. US Patent 4275248.

73. Klemm, L.H. and Taylor, D.R. (1980)Alumina-catalyzed reactions of hydrox-yarenes and hydroaromatic ketones. 9.Reaction of phenol with l-propanol. J.Org. Chem., 45, 4320–4326.

74. Kealy, T.J. and Coffman, D.D. (1961)Thermal addition reactions of mono-cyclic phenols with ethylene. J. Org.Chem., 26, 987–992.

75. Zhao, C., Camaioni, D.M., and Lercher,J.A. (2012) Selective catalytic hydroalky-lation and deoxygenation of substitutedphenols to bicycloalkanes. J. Catal.,288, 92–103.

76. Kolka, J., Napolitano, J.P., and Ecke,G.G. (1956) The ortho-alkylation ofphenols. J. Org. Chem., 21, 712–713.

77. Nakagawa, Y. and Sato, T. (2009)Preparation of 2,6-diphenylphenols. JPPatent 2009269868.

78. Youn, S.W. and Eom, J.I. (2006) Ag(I)-catalyzed sequential C–C and C–Obond formations between phenols anddienes with atom economy. J. Org.Chem., 71, 6705–6707.

79. Ancel, J.E., Bienayme, H., andMeilland, P. (1996) Procede despreparations de phenols substitues.EP Patent 0742194.

80. Dang, T.T., Boeck, F., andHintermann, L. (2011) HiddenBrønsted acid catalysis: pathways ofaccidental or deliberate generation oftriflic acid from metal triflates. J. Org.Chem., 76, 9353–9361.

81. Repinskaya, I.B., Barkhutova, D.D.,Makarova, Z.S., Alekseeva, A.V., andKoptyug, V.A. (1985) Condensationof phenols and their derivatives witharomatic compounds in the presence ofacidic agents. VII. Comparison of thecondensation of phenols with aromaticcompounds in HF–SbF5 and in thepresence of aluminum halides. Zh.Org. Khim., 21, 836–845 (translation:759–767).

82. Repinskaya, I.B. and Koptyug, V.A.(1980) Condensation of substi-tuted resorcinols with benzene andchlorobenzene. Zh. Org. Khim., 16,1508–1514 (translation: 1298–1303).

83. El-Zohry, M.F. and El-Khawaga, A.M.(1990) Nonconventional Friedel–Craftschemistry. 1. Reaction of α-tetraloneand anthrone with arenes underFriedel–Crafts conditions. J. Org.Chem., 55, 4036–4039.

84. Koptyug, V.A. and Golounin, A.V.(1973) Reaction of phenols with Lewisacids VIII. Reaction of phenol and itsmethylated derivatives with benzeneand aluminum halides. Zh. Org. Khim.,9, 2158–2163 (translation: 2172–2176).

85. Koltunov, K.Y., Walspurger, S.,and Sommer, J. (2004) Superelec-trophilic activation of polyfunctionalorganic compounds using zeolites andother solid acids. Chem. Commun.,1754–1755.

86. Witten, B. and Reid, E.E. (1963) p-Aminotetraphenylmethane. Org. Synth.,Coll. Vol. 4, 47–48.

87. Schultz, W.J., Portelli, G.B., and Tane,J.P. (1986) Epoxy resin curing agent,curing process and composition con-taining it. EP Patent 0203828.

88. Cherian, A.E., Domski, G.J., Rose, J.M.,Lobkovsky, E.B., and Coates, G.W.(2005) Acid-catalyzed ortho-alkylationof anilines with styrenes: an improvedroute to chiral anilines with bulkysubstituents. Org. Lett., 7, 5135–5137.

89. Mace, Y., Raymondeau, B., Pradet,C., Blazejewski, J.-C., and Magnier,E. (2009) Benchmark and solvent-free preparation of sulfonium saltbased electrophilic trifluoromethylat-ing reagents. Eur. J. Org. Chem., 2009,1390–1397.

90. Yanai, H., Yoshino, T., Fujita, M.,Fukaya, H., Kotani, A., Kusu, F., andTaguchi, T. (2013) Synthesis, character-ization, and applications of zwitterionscontaining a carbanion moiety. Angew.Chem. Int. Ed., 52, 1560–1563.

91. Hickinbottom, W.J. (1933) The elimi-nation of tertiary alkyl groups fromalkylanilines by hydrolysis. J. Chem.Soc., 1070–1073.

92. Pillai, R.B.C. (1999) Isomerisationof N-isopropylaniline and N-n-propylaniline over zeolites. J. IndianChem. Soc., 76, 157–158.

93. Beyer, H., Gerencserne, A., Palkovics,I., Gemes, I., Ratosi, E., Sebestyen,

Page 39: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

References 39

B., Horvath, J., Czagler, I., Perger, J.,Hegedus, I., Aranyi, P., Torkos, L.,Hodossy, L., Borbeli, G., and Halasz,I. (1992) Process for the Preparationof Ring-Alkylated Anilines by Iso-merization of N-alkylanilines OverAcidic Zeolites as Catalysts. Ger. Offen.4023652.

94. Bourns, A.N., Embleton, H.W.,and Hansuld, M.K. (1963)1-Phenylpiperidine. Org. Synth., Coll.Vol. 4, 795–798.

95. Glass, D.B. and Weissberger, A. (1955)Julolidine. Org. Synth., Coll. Vol. 3,504–505.

96. Lapis, A.A.M., DaSilveira Neto, B.A.,Scholten, J.D., Nachtigall, F.M.,Eberlin, M.N., and Dupont, J. (2006)Intermolecular hydroamination andhydroarylation reactions of alkenesin ionic liquids. Tetrahedron Lett., 47,6775–6779.

97. Motokura, K., Nakagiri, N., Mizugaki,T., Ebitani, K., and Kaneda, K. (2007)Nucleophilic substitution reactions ofalcohols with use of montmorillonitecatalysts as solid Brønsted acids. J. Org.Chem., 72, 6006–6015.

98. Tsuji, Y., Huh, K.-T., Ohsugi, Y., andWatanabe, Y. (1985) Ruthenium com-plex catalyzed N-heterocyclization.Syntheses of N-substituted piperidines,morpholines, and piperazines fromamines and 1,5-diols. J. Org. Chem., 50,1365–1370.

99. Wei, H., Qian, G., Xia, Y., Li, K., Li,Y., and Li, W. (2007) BiCl3-catalyzedhydroamination of norbornene witharomatic amines. Eur. J. Org. Chem.,2007, 4471–4474.

100. Didier, D. and Sergeyev,S. (2007) Bromination andiodination of 6H,12H-5,11-methanodibenzo[b,f ][1,5]diazocine:a convenient entry to unsymmetricalanalogs of Troger’s base. Eur. J. Org.Chem., 2007, 3905–3910.

101. Corma, A., Botella, P., and Mitchell,C. (2004) Replacing HCl by solid acidsin industrial processes: synthesis ofdiamino diphenyl methane (DADPM)for producing polyurethanes. Chem.Commun., 2008–2010.

102. Mitchell, C.J., Corma Canos, A., Carr,R.H., and Botella Asuncion, P. (2010)Process for production of methylene-bridged polyphenyl polyamines. WOPatent 2010072504.

103. Chauvin, A.-S., Comby, S., Song,B., Vandevyver, C.D.B., Thomas,F., and Bunzli, J.-C.G. (2007) Apolyoxyethylene-substituted bimetal-lic europium helicate for luminescentstaining of living cells. Chem. Eur. J.,13, 9515–9526.

104. Ellis, G.D., Dimarcello, B.J., andBradshaw, D.J. (1999) Preparationof a dye for coloring protein-basedfibers and cellulose-based materialsfrom the oxidation byproducts of themanufacture of a triphenylmethanedye. EP Patent 0909794.

105. Ecke, G.G., Napolitano, J.P., and Kolka,A.J. (1956) The ortho-alkylation ofaromatic amines. J. Org. Chem., 21,711–712.

106. Chockalingam, K. (2009) Preparation of2-(1,3-dimethylbutyl)aniline and otherbranched alkyl-substituted anilines. WOPatent 2009029383.

107. Diamond, S.E., Szalkiewicz, A., andMares, F. (1979) Reactions of anilinewith olefins catalyzed by group 8 metalcomplexes: N-alkylation and heterocy-cle formation. J. Am. Chem. Soc., 101,490–491.

108. Ecke, G.G., Napolitano, J.P., Filbey,A.H., and Kolka, A.J. (1957) Ortho-alkylation of aromatic amines. J. Org.Chem., 22, 639–642.

109. Matthews, D.P., McCarthy, J.R., andWhitten, J.P. (1989) Novel (aryl orheteroaromatic methyl)-2,2′-bi-1H-imidazoles, EP Patent 0301456.

110. Tan, K.L., Park, S., Ellman, J.A., andBergman, R.G. (2004) Intermolecularcoupling of alkenes to heterocycles viaC–H bond activation. J. Org. Chem.,69, 7329–7335.

111. Jiao, L., Herdtweck, E., and Bach,T. (2012) Pd(II)-catalyzed regiose-lective 2-alkylation of indoles via anorbornene-mediated C–H activation:mechanism and applications. J. Am.Chem. Soc., 134, 14563–14572.

112. Olah, G.A., Farooq, O., Farnia,S.M.F., and Olah, J.A. (1988)

Page 40: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

40 1 Electrophilic Alkylation of Arenes

Boron, aluminum, and galliumtris(trifluoromethanesulfonate) (triflate):effective new Friedel–Crafts catalysts. J.Am. Chem. Soc., 110, 2560–2565.

113. Cullinane, N.M., Chard, S.J., andDawkins, C.W.C. (1963) Hexamethyl-benzene. Org. Synth., Coll. Vol. 4,520–521.

114. Smith, L.I. (1943) Durene. Org. Synth.,Coll. Vol. 2, 248–253.

115. Zhang, Y., Feng, J., and Li, C.-J. (2008)Palladium-catalyzed methylation of arylC–H bonds by using peroxides. J. Am.Chem. Soc., 130, 2900–2901.

116. Nakao, Y., Kashihara, N., Kanyiva, K.S.,and Hiyama, T. (2010) Nickel-catalyzedhydroheteroarylation of vinylarenes.Angew. Chem. Int. Ed., 49, 4451–4454.

117. Watson, A.J.A., Maxwell, A.C., andWilliams, J.M.J. (2010) Ruthenium-catalyzed aromatic C–H activation ofbenzylic alcohols via remote electronicactivation. Org. Lett., 12, 3856–3859.

118. Matsumoto, T., Taube, D.J., Periana,R.A., Taube, H., and Yoshida, H.(2000) Anti-Markovnikov olefin aryla-tion catalyzed by an iridium complex. J.Am. Chem. Soc., 122, 7414–7415.

119. Sun, Z.-M., Zhang, J., Manan, R.S.,and Zhao, P. (2010) Rh(I)-catalyzedolefin hydroarylation with electron-deficient perfluoroarenes. J. Am. Chem.Soc., 132, 6935–6937.

120. Liu, F., Martin-Mingot, A.,Jouannetaud, M., Zunino, F., andThibaudeau, S. (2010) Superelec-trophilic activation in superacidHF/SbF5 and synthesis of benzofusedsultams. Org. Lett., 12, 868–871.

121. Okabe, K., Ohwada, T., Ohta, T., andShudo, K. (1989) Novel electrophilicspecies equivalent to α-keto cations.Reactions of O,O-diprotonated nitroolefins with benzenes yield arylmethylketones. J. Org. Chem., 54, 733–734.

122. Fujiwara, Y., Kuromaru, H., andTaniguchi, H. (1984) Trifluoroaceticacid catalyzed allylic phenylation ofα-methylallyl acetate, α-methylallyltrifluoroacetate, and α-methylallyl alco-hol with benzene. J. Org. Chem., 49,4309–4310.

123. Fan, S., Chen, F., and Zhang, X. (2011)Direct palladium-catalyzed intermolecu-lar allylation of highly electron-deficientpolyfluoroarenes. Angew. Chem. Int.Ed., 50, 5918–5923.

124. Makida, Y., Ohmiya, H., andSawamura, M. (2012) Regio- and stere-ocontrolled introduction of secondaryalkyl groups to electron-deficient arenesthrough copper-catalyzed allylic alky-lation. Angew. Chem. Int. Ed., 51,4122–4127.

125. Yao, T., Hirano, K., Satoh, T., andMiura, M. (2011) Stereospecificcopper-catalyzed C–H allylation ofelectron-deficient arenes with allylphosphates. Angew. Chem. Int. Ed., 50,2990–2994.

126. Zhang, Y., Chen, L., and Lu, T. (2011)A copper(II) triflate-catalyzed tandemFriedel–Crafts alkylation/cyclizationprocess towards dihydroindenes. Adv.Synth. Catal., 353, 1055–1060.

127. Muller, H., Trubenbach, P., Rieger,B., Wagner, J.M., and Dietrich, U.(1998) Verfahren zur Herstellung vonIndenderivaten. EP Patent 0826654.

128. Li, Z., Zhang, Y., and Liu, Z.-Q. (2012)Pd-catalyzed olefination of perfluoro-arenes with allyl esters. Org. Lett., 14,74–77.

129. Prakash, G.K.S., Paknia, F., Vaghoo,H., Rasul, G., Mathew, T., and Olah,G.A. (2010) Preparation of trifluoro-methylated dihydrocoumarins,indanones, and arylpropanoic acidsby tandem superacidic activation of2-(trifluoromethyl)acrylic acid witharenes. J. Org. Chem., 75, 2219–2226.

130. Liu, Y.-H., Liu, Q.-S., and Zhang, Z.-H. (2009) An efficient Friedel–Craftsalkylation of nitrogen heterocyclescatalyzed by antimony trichlo-ride/montmorillonite K-10. TetrahedronLett., 50, 916–921.

131. Shi, Z. and He, C. (2004) An Au-catalyzed cyclialkylation of electron-richarenes with epoxides to prepare 3-chromanols. J. Am. Chem. Soc., 126,5964–5965.

132. Yadav, J.S., Reddy, B.V.S., Abraham, S.,and Sabitha, G. (2002) InCl3-catalyzedregioselective opening of aziridines

Page 41: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

References 41

with heteroaromatics. Tetrahedron Lett.,43, 1565–1567.

133. Thirupathi, B., Srinivas, R., Prasad,A.N., Kumar, J.K.P., and Reddy, B.M.(2010) Green progression for synthesisof regioselective β-amino alcohols andchemoselective alkylated indoles. Org.Process Res. Dev., 14, 1457–1463.

134. Taylor, S.K., Clark, D.L., Heinz, K.L.,Schramm, S.B., Westermann, C.D.,and Barnell, K.K. (1983) Friedel–Craftsreactions of some conjugated epoxides.J. Org. Chem., 48, 592–596.

135. Molnar, A., Ledneczki, I., Bucsi, I., andBartok, M. (2003) Alkylation of ben-zene with cyclic ethers in superacidicmedia. Catal. Lett., 89, 1–9.

136. Lin, J.-R., Gubaidullin, A.T.,Mamedovb, V.A., and Tsuboi, S.(2003) Nucleophilic addition reac-tion of aromatic compounds withα-chloroglycidates in the presence ofLewis acid. Tetrahedron, 59, 1781–1790.

137. Schultz, E.M. and Mickey, S. (1955)α,α-Diphenylacetone. Org. Synth., Coll.Vol. 3, 343–346.

138. Robb, C.M. and Schultz, E.M. (1955)Diphenylacetonitrile. Org. Synth., Coll.Vol. 3, 347–349.

139. Itoh, S., Yoshimura, N., Sato, M., andYamataka, H. (2011) Computationalstudy on the reaction pathway of α-bromoacetophenones with hydroxideion: possible path bifurcation in theaddition/substitution mechanism. J.Org. Chem., 76, 8294–8299.

140. Mason, J.P. and Terry, L.I. (1940)Preparation of phenylacetone. J. Am.Chem. Soc., 62, 1622.

141. Piccolo, O., Spreafico, F., Visentin, G.,and Valoti, E. (1985) Alkylation of aro-matic compounds with optically activelactic acid derivatives: synthesis ofoptically pure 2-arylpropionic acid andesters. J. Org. Chem., 50, 3945–3946.

142. Stelzer, U. (1995) Verfahren zurHerstellung von substituiertenPhenylessigsaurederivaten und Zwi-schenprodukten. EP Patent 0665212.

143. Ogata, Y. and Ishiguro, J. (1950) Prepa-ration of α-naphthaleneacetic acid bythe condensation of naphthalene withchloroacetic acid. J. Am. Chem. Soc., 72,4302.

144. Kawai, D., Kawasumi, K., Miyahara,T., Hirashita, T., and Araki, S. (2009)Cyclopropanation of electron-deficientalkenes with activated dibromomethy-lene compounds mediated by lithiumiodide or tetrabutylammonium salts.Tetrahedron, 65, 10390–10394.

145. Ogata, Y., Ishiguro, J., and Kitamura,Y. (1951) Condensation of naph-thalenes with α-halo fatty acids andrelated reactions. J. Org. Chem., 21,239–242.

146. Chung, J.Y.L., Steinhubel, D., Krska,S.W., Hartner, F.W., Cai, C., Rosen, J.,Mancheno, D.E., Pei, T., DiMichele, L.,Ball, R.G., Chen, C., Tan, L., Alorati,A.D., Brewer, S.E., and Scott, J.P.(2012) Asymmetric synthesis of aglucagon receptor antagonist viaFriedel–Crafts alkylation of indolewith chiral α-phenyl benzyl cation. Org.Process Res. Dev., 16, 1832–1845.

147. Clement, K., Tasset, E.L., and Walker,L.L. (1998) Process for the preparationof stilbene diols. WO Patent 9811043.

148. Zaheer, S.H., Singh, B., Bhushan,B., Bhargava, P.M., Kacker, I.K.,Ramachandran, K., Sastri, V.D.N.,and Rao, N.S. (1954) Reactions ofα-halogeno-ketones with aromaticcompounds. Part I. Reactions ofchloroacetone and 3-chlorobutanonewith phenol and its ethers. J. Chem.Soc., 3360–3362.

149. Baciocchi, E., Muraglia, E., and Sleiter,G. (1992) Homolytic substitutionreactions of electron-rich pentatomicheteroaromatics by electrophiliccarbon-centered radicals. Synthesisof α-heteroarylacetic acids. J. Org.Chem., 57, 6817–6820.

150. Ogata, Y., Itoh, T., and Izawa, Y. (1969)Photochemical ethoxycarbonylmethyla-tion of benzene with ethyl haloacetates.Bull. Chem. Soc. Jpn., 42, 794–797.

151. Kurz, M.E., Baru, V., and Nguyen,P.-N. (1984) Aromatic acetonylationpromoted by manganese(III) andcerium(IV) salts. J. Org. Chem., 49,1603–1607.

152. Tayama, E., Yanaki, T., Iwamoto, H.,and Hasegawa, E. (2010) Copper(II)triflate catalyzed intermolecular aro-matic substitution of N,N-disubstituted

Page 42: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

42 1 Electrophilic Alkylation of Arenes

anilines with diazo esters. Eur. J. Org.Chem., 2010, 6719–6721.

153. Zaragoza, F. (1995) Remarkable sub-stituent effects on the chemoselectivityof rhodium(II) carbenoids derivedfrom N-(2-diazo-3-oxobutyryl)-L-phenylalanine esters. Tetrahedron,51, 8829–8834.

154. Ono, N., Kamimura, A., Sasatani, H.,and Kaji, A. (1987) Lewis acid inducednucleophilic substitution reactions ofβ-nitro sulfides via episulfonium ions.J. Org. Chem., 52, 4133–4135.

155. Nakamura, S., Sugimoto, H., andOhwada, T. (2007) Formation of 4H-1,2-benzoxazines by intramolecularcyclization of nitroalkanes. Scope ofaromatic oxygen-functionalization reac-tion involving a nitro oxygen atom andmechanistic insights. J. Am. Chem.Soc., 129, 1724–1732.

156. Takamoto, M., Kurouchi, H., Otani,Y., and Ohwada, T. (2009) Phenylationreaction of α-acylnitromethanes to give1,2-diketone monooximes: involve-ment of carbon electrophile at theposition α to the nitro group. Synthesis,4129–4136.

157. Venkatesh, C., Singh, B., Mahata,P.K., Ila, H., and Junjappa, H. (2005)Heteroannulation of nitroketene N,S-arylaminoacetals with POCl3: a novelhighly regioselective synthesis ofunsymmetrical 2,3-substituted quinoxa-lines. Org. Lett., 7, 2169–2172.

158. Yao, C.-F., Kao, K.-H., Liu, J.-T., Chu,C.-M., Wang, Y., Chen, W.-C., Lin, Y.-M., Lin, W.-W., Yan, M.-C., Liu, J.-Y.,Chuang, M.-C., and Shiue, J.-L. (1998)Generation of nitroalkanes, hydroxi-moyl halides and nitrile oxides fromthe reactions of β-nitrostyrenes withGrignard or organolithium reagents.Tetrahedron, 54, 791–822.

159. Shutkina, O.V., Ponomareva, O.A., andIvanova, I.I. (2013) Catalytic synthesisof cumene from benzene and acetone.Pet. Chem., 53, 20–26.

160. Zimmerman, H.E. and Zweig, A.(1961) Carbanion rearrangements. II. J.Am. Chem. Soc., 83, 1196–1213.

161. Girotti, G., Rivetti, F., Ramello, S.,and Carnelli, L. (2003) Alkylation ofbenzene with isopropanol on β-zeolite:

influence of physical state and waterconcentration on catalyst performances.J. Mol. Catal. A, 204–205, 571–579.

162. Ohkubo, T., Aoki, S., Ishibashi, M.,Imai, M., Fujita, T., and Fujiwara, K.(2012) Process for producing alkylatedaromatic compounds and processfor producing phenols. US Patent2012004471.

163. O’Connor, M.J., Boblak, K.N., Topinka,M.J., Kindelin, P.J., Briski, J.M.,Zheng, C., and Klumpp, D.A. (2010)Superelectrophiles and the effects oftrifluoromethyl substituents. J. Am.Chem. Soc., 132, 3266–3267.

164. Gorokhovik, I., Neuville, L., and Zhu,J. (2011) Trifluoroacetic acid-promotedsynthesis of 3-hydroxy, 3-amino andspirooxindoles from α-keto-N-anilides.Org. Lett., 13, 5536–5539.

165. Si, Y.-G., Chen, J., Li, F., Li, J.-H.,Qin, Y.-J., and Jiang, B. (2006) Highlyregioselective Friedel–Crafts reactionsof electron-rich aromatic compoundswith pyruvate catalyzed by Lewis acid-base: efficient synthesis of pesticidecycloprothrin. Adv. Synth. Catal., 348,898–904.

166. Smithen, D.A., Cameron, T.S., andThompson, A. (2011) One-pot synthesisof asymmetric annulated bis(pyrrole)s.Org. Lett., 13, 5846–5849.

167. Freter, K. (1975) 3-Cycloalkenylindoles.J. Org. Chem., 40, 2525–2529.

168. Miyai, T., Onishi, Y., and Baba, A.(1999) Novel reductive Friedel–Craftsalkylation of aromatics catalyzed byindium compounds: chemoselectiveutilization of carbonyl moieties asalkylating reagents. Tetrahedron, 55,1017–1026.

169. Yip, K.-T., Nimje, R.Y., Leskinen, M.V.,and Pihko, P.M. (2012) Palladium-catalyzed dehydrogenative β′-arylationof β-keto esters under aerobic condi-tions: interplay of metal and Brønstedacids. Chem. Eur. J., 18, 12590–12594.

170. Schoen, K.L. and Becker, E.I. (1963)9-Methylfluorene. Org. Synth., Coll. Vol.4, 623–626.

171. Fleckenstein, C.A., Kadyrov, R., andPlenio, H. (2008) Efficient large-scalesynthesis of 9-alkylfluorenyl phos-phines for Pd-catalyzed cross-coupling

Page 43: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

References 43

reactions. Org. Process Res. Dev., 12,475–479.

172. Murai, Y., Masuda, K., Sakihama,Y., Hashidoko, Y., Hatanaka, Y.,and Hashimoto, M. (2012) Com-prehensive synthesis of photore-active (3-trifluoromethyl)diazirinylindole derivatives from 5- and 6-trifluoroacetylindoles for photoaffinitylabeling. J. Org. Chem., 77, 8581–8587.

173. Johnson, H.E. and Crosby, D.G. (1973)Indole-3-acetic acid. Org. Synth., Coll.Vol. 5, 654–656.

174. Weinbrenner, S., Dunkern, T., Marx,D., Schmidt, B., Stengel, T., Flockerzi,D., Kautz, U., Hauser, D., Diefenbach,J., Christiaans, J.A.M., and Menge,W.M.P.B. (2008) 6-Benzyl-2,3,4,7-tetrahydroindolo[2,3-c]quinolinecompounds useful as PDE5 inhibitors.WO Patent 2008095835.

175. Davoust, M., Kitching, J.A., Fleming,M.J., and Lautens, M. (2010)Diastereoselective benzylic arylationof tetralins. Chem. Eur. J., 16, 50–54.

176. Hoefgen, B., Decker, M., Mohr,P., Schramm, A.M., Rostom,S.A.F., El-Subbagh, H., Schweikert,P.M., Rudolf, D.R., Kassack,M.U., and Lehmann, J. (2006)Dopamine/serotonin receptor li-gands. 10: SAR studies on azecine-type dopamine receptor ligands byfunctional screening at human clonedD1, D2L, and D5 receptors with amicroplate reader based calcium assaylead to a novel potent D1/D5 selectiveantagonist. J. Med. Chem., 49, 760–769.

177. Johnson, H.E. (1965) Process for pro-ducing 3-substituted indoles. US Patent3197479.

Page 44: 1 Electrophilic Alkylation of Arenes - Wiley-VCH · In most instances, the electrophilic alkylation of arenes proceeds via carbocations, and complete racemization of chiral secondary

Recommended