+ All Categories
Home > Documents > 1 F. GrancagnoloILC Workshop Valencia, 8. 11. 2006 ILC Workshop - ECFA and GDE Joint Meeting...

1 F. GrancagnoloILC Workshop Valencia, 8. 11. 2006 ILC Workshop - ECFA and GDE Joint Meeting...

Date post: 22-Dec-2015
Category:
View: 216 times
Download: 1 times
Share this document with a friend
Popular Tags:
24
1 F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006 ILC Workshop - ECFA and GDE Joint Meeting Valencia, 5-13 November 2006 F. Grancagnolo, INFN - Lecce of the 4 th Concept Detector a t
Transcript

1

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

ILC Workshop - ECFA and GDE Joint Meeting

Valencia, 5-13 November 2006

F. Grancagnolo, INFN - Lecce

The Muon System of

the 4th Concept Detector

at

2

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

4th Concept Detector Layout

Triple-readout fiber calorimeter: scintillation/Cerenkov/neutron Muon dual-solenoid iron-free geometry

6.4 m

7.7 m

NOVEL FEATURES:

3

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

TPC

- BARREL

-E CN AD P

Dual Solenoid B-fieldAlexander Mikhailichenko design

4

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

-System basic element: drift tube

radius 2.3 cm filled with 90% He – 10% iC4H10 @ NTP gas gain few × 105

total drift time 2 µs primary ionization 13 cluster/cm ≈ 20 electrons/cm total both ends instrumented with:

• > 1.5 GHz bandwith• 8 bit fADC• > 2 Gsa/s sampling rate• free running memory

for a • fully efficient timing of primary ionization: cluster

counting• accurate measurement of longitudinal position with

charge division • particle identification with dNcl/dx

ASIC chipunder

developmentat INFN-LE

5

Cluster Countingfull vertical scale = 30 mV (amplification x10)horizontal scale = 500 ns/divsampling rate = 2.5 Gsa/s

2 cm tube

gas:

90% He + 10% iC4H10

Ncl = 13./cm Nele = 20./cm

Max drift time

1.3 s

50 ns5 mVleft

right

trigger

Cosmic ray triggeredby scintillators telescope

and read out by adigital sampling scope:8 bit, 4 GHz, 2.5 Gsa/sAmplifier bandwith:1.8 GHz, gain ×10

t0 tlasttfirst

1.3 s

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

t0

tfirst

t0 = tlast tmax

bf = ∫ v(t) dt

(c/2)2 = r2 bf2

Ncl = c/(× sin

Nele = Ncl × 1.6

tlii=1,Nele ;trii=1,Nele

Alii=1,Nele ;Arii=1,Nele Pi(cl)i=1,Nele

6

Cluster Counting Cluster Counting Performances (1)Performances (1)

b

b

from KLOE

Transverse spatial resolution In principle,given the time ordered sequence

of the drifting clusters, each cluster contributes to the

impact parameter with an independent estimate.

b = bi √Ncl

(saturated by other conributions,like position and sag of sense wire)

In reality,multiple electron clusters andsingle electron diffusion tend

to confuse the picture.

For Ncl = 13 /cm is reasonable to assume: xy ≈ 50 m

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

7

≈ 200 mrad

Cluster Counting Cluster Counting Performances (2)Performances (2)

Longitudinal spatial resolution

Estimate of dip angleNcl = c/ × 1./sinFor an average c and a minimum ionizing track, Ncl = 40

(a few mm extrapolation from one layer to next) extremely powerful tool for 3D track finding!

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

Matching left and right sides gives a very precise measurement of the signals transit timeon the wire(limiting factor for time-to-distance conversion) and enhances signal/bkgd.After matching, charge division can be applied to single electrons amplitudes A li and Ari.In principle: z/L = 0.5% / √Nele

Well below 1 mm/m of wire

8

Cluster Counting Cluster Counting Performances (3)Performances (3)

Transverse momentum resolution

Assume: l = 1.5 m b = 50 m B = 1.5 T n= 20 layers

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

Equal contribution at p=53 GeV/c, when p/p= 2%, or p= 1.2 GeV/cIn the end cap one would need the map of B-field and MC calculations.However, resolutions like:

p/p = 1.4 × 10-3 p 1.4 × 10-2

(end caps)are reachable

p/p = 3.0 × 10-4 p 1.6 × 10-2

(barrel)

9

Cluster Counting Cluster Counting Performances (4)Performances (4)Particle identification

It might not be necessary in the -system. However, for a m.i.p.

(a m.i.p. track in the -system generates approximately 1200 clusters)(dNcl/dx)/(dNcl/dx)

≈ 3%

Example from test beam data: sepration @ 200 MeV/c

G.Cataldi, F.Grancagnolo and S.Spagnolo, INFN-AE-96-07, Mar. 1996, 23p.G.Cataldi, F.Grancagnolo and S.Spagnolo, NIM A386 (1997) 458-469

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

Equivalent to: separation ≿ up to 25 GeV/c, ; ≿ up to 55 GeV/c ; ≿ up to 100 GeV/c separation ~ up to 5 GeV/c

(CAVEAT: No data available!, Calculation based on Bethe-Block only!)

10

Cluster Counting Cluster Counting Performances (5)Performances (5)

beam test m

easurements

p = 200 GeV/c

gas mixture = 95%He+5%iC4H10 Ncl = 10/cm

atMeV/c

experiment:

theory: trunc. mean:

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

11

Cluster Counting Cluster Counting Performances (6)Performances (6)

tmax

(tmax) ~ 1 ns

Drift time of last arriving electroncorrected for t.o.f. and for transit time on the wire.Assumed 10 tracks with 100 hits each.

From tmax one gets t0 event by event,avoiding long and complicated calibration procedures.

Moreover,(t) ~ 1 ns identifies the trigger of the event

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

12

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

Drit tube end plug detail

13

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

×18

×36

×18

Modularity

650 tubes

26 cards

550 tubes

22 cards

1750 tubes

70 cards

14

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

×3

10500 tubes

420 cards

1/3 barrel

15

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

1440 tubes 1632 channels

76 cards

×6

1/3 end cap

16

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

×2

End cap

17

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

Full -system

18

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

Channel count Barrel:

31500 tubes21000 channels 840 cards

End caps: 8640 tubes 9792 channels 456 cards

Total:40140 tubes30792 channels 1296 cards

19

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

+ − at 3.5 GeV/c

20

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

50 GeV jet with escaping

21

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

80 GeV jet with escaping particles

22

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

80 GeV jet with escaping particles

23

Cluster CountingCluster Counting90% He + 10% iC4H10

91% Ar + 5% iCH4 + 4% N2

cylindrical tube r = 2 cm

at a gain = few × 105

time separation (MC) between

closest clusters as a function

of their distance from the sense wire for different

track impact parameters

In HeIn Ar

In He , provided that: rise (and fall) time of single electron signals < 1ns sampling frequency of electron signals > 2 Gsa/s single electron counting is possible. CAVEAT:Multiple electron clusters (30% in this He mixture) complicates the picture

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006

24

Cluster Counting Time separation (MC) between closest ionization

clusters along a track as a function of their distance from the sense wire for different track impact

parameters

In He , provided that: rise (and fall) time of single electron signals < 1ns

sampling frequency of electron signals > 2 Gsa/s

single electron counting is possible. CAVEAT: Multiple electron clusters (30% in this He mixture) complicates the picture

cylindrical tube

r = 2 cmgain = few ×

105

91% Ar + 5% CH4 + 4% N290% He + 10% i-C4H10

F. Grancagnolo ILC Workshop Valencia , 8 . 11 . 2006


Recommended