+ All Categories
Home > Documents > 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine...

1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine...

Date post: 15-Jan-2016
Category:
Upload: elisha-silsby
View: 221 times
Download: 0 times
Share this document with a friend
Popular Tags:
42
1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid- fluid interfaces V.I. Kovalchuk
Transcript
Page 1: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

1

Institute of Biocolloid Chemistryof National Academy of Sciences of Ukraine,

03142 Kiev, Ukraine

Dilatational rheology of complex fluid-fluid interfaces

V.I. Kovalchuk

Page 2: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

2

Scope

Diffusion and mixed relaxation kinetics in adsorption layers

Dilatational rheology of complex fluid-fluid interfaces

Dilatational rheology of thin liquid films

Summary and conclusions

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Effect of equilibrium thermodynamic properties

Particles at interfaces

Relaxation in mixed adsorption layers

Page 3: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

3

Interfacial rheology

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Expansion / Compression

Shear

Elasticity

Viscosity

Page 4: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

4

A

Surface dilational modulus

E - characterizes the response of the surface tension against relative surface

area change A:

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

iAln

iiE

tFi

tAlnFiAln

t

tdtAlnttEt

where iEFtE 1

A(t) can be arbitrary function of time ir EiEiE

rE - surface dalational elasticity

i

d

E - surface dalational viscosity

Page 5: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

5

A

Purely diffusion relaxation of adsorption layers

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

2

2

yC

DtC

Diffusion in the bulk phase:

Boundary conditions:

0CC y

yC

Ddt

AdA1

0y

Initial condition:

2

tCtC

Additional conditions – surface tension and adsorption isotherms:

SC

Page 6: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

6

A

Purely diffusion relaxation of adsorption layers

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

2

2

yC

DtC

Diffusion in the bulk phase:

Boundary conditions:

0CC y

yC

Ddt

AdA1

0y

Initial condition:

2

tCtC

Additional conditions – surface tension and adsorption isotherms:

SC

Page 7: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

7

Purely diffusion relaxation of adsorption layers

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

2

2

yC

DtC

Diffusion in the bulk phase:

Boundary conditions:

0CC y

yC

Ddt

AdA1

0y

Initial condition:

2

tCtC

Additional conditions – surface tension and adsorption isotherms:

SC

2D

ddC

i11

1d

dE

Sln

Dilational elasticity modulus:

or:

20 221i1

EE

where:

ln/ ddE0

21

S

2D

ddC

/

J. Lucassen and M. van den Tempel, Chem. Eng. Sci., 27 (1972) 1283; J. Colloid Interface Sci., 41 (1972) 491

Page 8: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

8

Lucassen – van den Tempel model:

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

//

/

DD

D0r 221

1EE

ln/ ddE0

2D

ddC

2

SD

//

/

DD

D0i 221

EE

Maxwell model:

2

2

0r 1EE

20i 1

EE

Kelvin-Voigt model:

KVKV iEE constEKV constKV

- limiting elasticity

- characteristic frequency of diffusion relaxation

Page 9: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

9

Lucassen – van den Tempel model:

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

0.0 0.5 1.0

-1.0

-0.5

0.0

0.5 Ei

Er

Lucassen-van den Tempelmodel

Maxwellmodel

2E

2E

E2E

E20

2

0i

2

0r

Maxwell model:

4

EE

2E

E202

i

2

0r

2E

2E

O 00 ,2

ER 0

0

2E

O 0 ,2E

R 0

Cole-Cole plot:

Page 10: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

10

Microgravity experiments during the STS-107 space shuttle mission

Real part of complex surface dilatational modulus vs. frequency for different C12DMPO

concentrations. V.I. Kovalchuk et al. / Journal of Colloid and Interface Science 280 (2004) 498–505

0.01 0.1 1 10 1000

20

40

60

0.013 mmol/l 0.019 mmol/l 0.026 mmol/l 0.038 mmol/l 0.064 mmol/l 0.115 mmol/l 0.22 mmol/l 0.42 mmol/l

r , m

N/m

Frequency, Hz

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 11: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

11

Microgravity experiments during the STS-107 space shuttle mission

Imaginary part of complex surface dilatational modulus vs frequency for different

C12DMPO concentrations. V.I. Kovalchuk et al. / Journal of Colloid and Interface Science 280 (2004) 498–505

0.01 0.1 1 10 1000

5

10

15 0.013 mmol/l 0.019 mmol/l 0.026 mmol/l 0.038 mmol/l 0.064 mmol/l 0.115 mmol/l 0.22 mmol/l 0.42 mmol/l

i , m

N/m

Frequency, Hz

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 12: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

12

Microgravity experiments during the STS-107 space shuttle mission

Cole-Cole diagram for complex surface dilatational modulus for different C12DMPO

concentrations.

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

0.00 0.02 0.04 0.060.000

0.005

0.010

0.015

Ei,

mN

/m

Er, mN/m

0.013 mmol/l 0.019 mmol/l 0.026 mmol/l 0.038 mmol/l 0.064 mmol/l 0.115 mmol/l 0.22 mmol/l

Page 13: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

13

A

Diffusion from two adjacent phases

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Effective diffusion coefficient:

20 221i1

EE

2D

ddC ef

2

SD

2ef DKDD

D

D

0

0

C

CK

Surfactant distribution coefficient:

Page 14: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

14

Mixed adsorption kinetics

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

2

2

yC

DtC

Diffusion in the bulk phase:

yC

Ddt

AdA1

SC

B.A. Noskov, Adv. Colloid Interface Sci., 69 (1996) 63.

- no equilibrium at the interface

2/)i1(i1

2/)i1(iEE 0

Relaxation time:

desSad k1Ckdt

d

1addes ckk

/

Page 15: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

15

Micellar solutions – Lucassen equation

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

J. Lucassen, Faraday Discuss. Chem. Soc., 59 (1975) 76.

disturbance time is much larger than the characteristic time of the “slow process”

- for ordinary surfactants of the order of milliseconds and characterizes the change in the number of micelles

12/122/10 m1m1)i1(1EE

D/DM2 - the ratio of micelles to monomers diffusion coefficients

m - the aggregation number

KK0 CCC / , CK = CMC (critical micelle concentration)

21

S

2D

ddC

/

Effective diffusion coefficient:

Dm1m1DD 2eff

Page 16: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

16

Effect of equilibrium thermodynamic properties

ln/ ddE0

2D

ddC

2

SD

- limiting elasticity

- characteristic frequency of diffusion relaxation

SC

Equilibrium surface tension and adsorption isotherms:

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 17: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

17

Frumkin adsorption model

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

 = 0 - the surface coverage

0 - the molar area

2

01

alnRT

)a2exp(1

bc

- surface pressure isotherm (equation of state)

- adsorption isotherm

a - the interaction constant

b - the adsorption equilibrium constant

Page 18: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

18V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

0

50

100

150

0.001 0.01 0.1 1

c, mmol/l

E0,

mN

/m

1E-06

1E-05

1E-04

1E-03

0.001 0.01 0.1 1

c, mmol/l

d/d

c, m

Frumkin model: Γ = const, Ω = 1/Γ = const

Intrinsic compressibility model: Ω = 1/Γ = Ω0(1 – εΠ)

(ε – intrinsic 2D monolayer compressibility)

C12DMPOC12DMPO

lnd

dE0

V.I. Kovalchuk et al. / Journal of Colloid and Interface Science 280 (2004) 498–505

Intrinsic 2D monolayer compressibility

ir

2i

2r

0 EE

EEE

2

D

E

EE

dc

d

i

ir

Theory:

Experiment:Experiment:

SdCd

Theory:

Page 19: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

19

= 0(1 – εΠ)

ε – intrinsic 2D monolayer compressibility, – surface pressure

The area occupied by a molecule on the interface can continuously change with the surface pressure.

V.I. Kovalchuk, R. Miller, V.B. Fainerman and G. Loglio / Advances in Colloid and Interface Science, 114-115 (2005) 303.

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Intrinsic 2D monolayer compressibility

Page 20: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

20V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Intrinsic 2D monolayer compressibility

Frumkin model: Γ = const, Ω = 1/Γ = constIntrinsic compressibility model: Ω = 1/Γ = Ω0(1 – εΠ)

V.I. Kovalchuk et al. / Journal of Colloid and Interface Science 280 (2004) 498–505

0

50

100

150

0.001 0.01 0.1 1

c, mmol/l

E0,

mN

/m

The surface rheological characteristics are much more sensitive to the state and

interaction of molecules in the adsorption layer than equilibrium isotherms!

0

10

20

30

1E-4 1E-3 1E-2 1E-1

c, mmol/l

,

mN

/m

Page 21: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

21V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Dependence of C14TAB adsorption on activity c*: neutron reflection data ( )

and calculations according to Frumkin and compressibility model.

0E+00

1E-06

2E-06

3E-06

4E-06

5E-06

0,000 0,001 0,002 0,003 0,004 0,005

c*, mol/l

, mol

/m2

Intrinsic 2D monolayer compressibility - C14TAB adsorption

V.I. Kovalchuk, R. Miller, V.B. Fainerman and G. Loglio / Advances in Colloid and Interface Science, 114-115 (2005) 303.

Page 22: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

22

Reorientation model

Adsorbed molecules can acquire two (or more) orientation states with respect to the interface.

V.B. Fainerman, S.A. Zholob, E.H. Lucassen-Reynders and R. Miller, J. Colloid Interface Sci., 261 (2003) 180.

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

2S0SS0 a1

RT ln

S

0

1

S

01 a21

bc01exp/

S

0

2

S12

02 a21

bc02exp

/ /

Page 23: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

23

Protein Adsorption Layers

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

- the total surface coverage

- the molar area in state i ( )

with

2PPP0PP

0 a11RT

/ln

n

1iPiiPPP

PPjP

P

PjPPPj a2

1cb

Pj

/exp/

01i 1i ni1

01 1n max1min and

V.B. Fainerman, E.H. Lucassen-Reynders and R. Miller, Adv. Colloid Interface Sci., 106 (2003) 237.

Page 24: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

24V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Relaxation in mixed adsorption layers

Page 25: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

25V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

)aaaa(DD

ia

D

ia

D

i

lnB

1

)aaaa(DD

ia

D

ia

D

i

lnB

1E

21122211

21

2222

121

12

21122211

211

212

211

11

1

2

jkcjiij )c(a

)aaaa()DDi(aDiaDi1B 2112221121222111 where:

21

ln

12

ln

and,

Viscoelasticity of mixed adsorption layers

This expression includes 6 parameters determined from surface tension and adsorption isotherms:

Jiang Q, Valentini JE, Chiew YC. J. Colloid Interface Sci. 174 (1995) 268.

Page 26: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

26V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Viscoelasticity of mixed adsorption layers

P. Joos, Dynamic Surface Phenomena, 1999

where:

212

1211

1

20

121

2122

2

10

di

Dd

i

D1

lnB

1

di

Dd

i

D1

lnB

1E

1

2

)dddd(DD)i/1(i/Ddi/Dd1B 21122211212221110

jk

jiij cd

/

21

ln

12

ln

and,

This expression also includes 6 parameters determined from surface tension and adsorption isotherms:

Page 27: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

27V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

0

10

20

30

1E-02 1E-01 1E+00f (Hz)

|E| (

mN

/m)

7/200

3/200

5/200

3/500

2/500

5/2000

E.V. Aksenenko, V.I. Kovalchuk, V.B. Fainerman and R. Miller / J. Phys. Chem. C, 111 (2007) 14713

Dilational elasticity of mixed adsorption layers:Mixture of C10DMPO and C14DMPO

C14DMPO/C10DMPO concentrations in µmol/l

Page 28: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

28

Mixtures of proteins and surfactants

Protein/non-ionic surfactant

Protein/ionic surfactant

Cs. Kotsmar, et al. / Advances in Colloid and Interface Science 150 (2009) 41–54

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 29: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

29V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

where:

S = SS - surface coverage by surfactant molecules;

SPPS2SS

2PPP0PSP

*0 2)/1()1ln(

RT

P = PP - total surface coverage by protein molecules;

SPSPP1P/SP

1PPP1P 2)/(2exp

1cb

P1

PPSSSSP

SSS 22exp

1cb

Adsorption isotherms:

These tree equations allow one to calculate the necessary 6 partial derivatives

Equation of state for protein/non-ionic surfactant mixtures

E.V. Aksenenko et al. / Advances in Colloid and Interface Science 122 (2006) 57–66

Page 30: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

30

Dilational elasticity modulus |E| vs. frequency f at various C10DMPO concentrations (in mmol/l) in the β-LG/C10DMPO mixtures. Experimental data from R. Miller et al., Tens. Surf. Deterg. 40 (2003) 256.

V.I. Kovalchuk et al., in Progress in Colloid and Interface Science, Vol.1, Brill, Leiden-Boston, 2009, p. 332-371.

Dilational rheology of mixed adsorption layers:Mixture of C10DMPO and β-lactoglobulin

0

20

40

60

80

100

1E-03 1E-02 1E-01 1E+00 1E+01 1E+02

f, Hz

|E| ,

mN

/m0.02; 0.04; 0.1; 0.2; 0.4; 0.7

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 31: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

31V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Particles at interfaces

Position of a spherical particle at the water/air interface (top) andmodification of particles via adsorption of ionic surfactants (bottom).

R. Miller et al: Project Proposal for the Investigation of Particle-Stabilised Emulsions and Foams by Microgravity Experiments,Microgravity sci. technol. XVIII-3/4 (2006) 104-107

Page 32: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

32

Particles at the interface

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

coh0 AA

1kT

ln

0 - the molar area of solvent molecules

A - the available surface area per particle

- the molar area of particles

coh - the cohesion pressure

V.B. Fainerman, V.I. Kovalchuk, D.O. Grigoriev, M.E. Leser and R. Miller / NATO Science Series, Vol. 228, 2006, P. 79-90

Page 33: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

33

Dependence of surface pressure on the monolayer coverage for polymeric particles 113 nm in diameter without dispersant (▲) and with dispersant (■). Experimental data according to E. Wolert

et al., Langmuir 17 (2001) 5671.

V.B. Fainerman, V.I. Kovalchuk, D.O. Grigoriev, M.E. Leser and R. Miller / NATO Science Series, Vol. 228, 2006, P. 79-90

Surface pressure in a monolayerof polymeric particles

0

10

20

30

40

50

0 10 20 30 40 50

Area [m2/g]

Sur

face

Pre

ssur

e [m

N/m

]

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 34: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

34

Particles at the interface

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

J. Lucassen, Colloids Surfaces, 65(1992) 139

Apparent dilatation modulus of composite monolayers:

n

1 i

i

E

X

E

1

Xi is the surface fraction having the dilatational modulus Ei.

Corresponds to the case of particles which do not interact and do not move but are characterized by a certain internal compressibility.

For incompressible particles:

P

S

S

S

1

E

X

EE

P is the surface coverage for particles, Es is the local elasticity of

interparticle space (e.g. covered by surfactants).

- excluded area effect

Page 35: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

35

Particles at the interface

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

R. Miller et al., Adv. Colloid Interface Sci., 128–130 (2006) 17–26

Alternatively, for a mixed particle-surfactant layers the surface elasticity can be obtained by considering the surface pressure as a function of two variables:

PS ,

where θP and θS is the surface coverage by particles and surfactant.

Ad

d

Ad

d

Ad

dE P

P

S

SSP

ln

ln

lnln

ln

lnln

For insoluble surfactant molecules and particles:

1Ad

d

Ad

d PS

ln

ln

ln

lnand

SPPS

PS EEE

lnln

Page 36: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

36

Particles at the interface

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

R. Miller et al., Adv. Colloid Interface Sci., 128–130 (2006) 17–26

For a mixed particle-surfactant layers described by the surface pressure isotherm:

the partial elasticities are:

)c(a)/1(1lnkT

Scoh2SSS0SPSP

0

S

coh2SS

S

0S

SP

S0S d

da21

1EE

ln

SP

SPP0P 1

EE

with 00 kTE /

For fast oscillations: PS EEE

For slow oscillations: SP

PP E

1EE

Page 37: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

37

Dilatational rheology of thin liquid films

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 38: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

38

Dilatational rheology of thin liquid films

F F

FF

Δγf Δγf

Alnd

dE ff

γf = 2γ

Film elasticity: Δγf ≠ 2Δγ

Ef ≠ 2E

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 39: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

39

Film elasticity vs. thickness dependencies for normal alcohols: n-hexanol, n-octanol, n-decanol; films with initial surface pressure 0 = 42 mN/m and initial thickness h0 = 10 m

V.I. Kovalchuk et al., in Progress in Colloid and Interface Science, Vol.1, Brill, Leiden-Boston, 2009, p.476-518.

Dilatational rheology of thin liquid films

1E-7 1E-6 1E-50

50

100

150

200

250

300C10-OH

C8-OH

C6-OH

h0 = 10 m

0 = 42 mN/m

Ef,

mN

/m

h, m

hcrh0

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 40: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

40

Effect of characteristic disturbance time on film elasticity modulus (full lines) and its imaginary part Ei (dotted lines). Frumkin isotherm with the parameters for C8 (octanol), h0 = 10 m, 0 = 42 mN/m.

V.I. Kovalchuk et al., in Progress in Colloid and Interface Science, Vol.1, Brill, Leiden-Boston, 2009, p.476-518.

Film elasticity – time effect of disturbances

hcrh0

1E-6 1E-50

100

200

300

EGibbs

2E0

1000 Hz

100 Hz

10 Hz

|Ef|,

Ei m

N/m

h, m

fE

1

0f D

i

2

h

i

D

d

dc1E2E

tanh

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 41: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

41

Summary and conclusions

Surface tension studies provide general information about the formation of adsorption layers.

However, interfacial rheology gives more insight into the details of single and mixed adsorption layers.

The study of interfacial rheological properties represents a versatile and very sensitive experimental tool to investigate the adsorption layer properties. This techniques requires, however, quantitative theories combining interfacial dynamics and mass transfer aspects.

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

Page 42: 1 Institute of Biocolloid Chemistry of National Academy of Sciences of Ukraine, 03142 Kiev, Ukraine Dilatational rheology of complex fluid-fluid interfaces.

42

Acknowledgements

Financial support by

Max-Planck-Institute of Colloids and Interfaces

and

COST D-43 Action

is gratefully acknowledged.

V.I. Kovalchuk, Dilatational rheology – Lorentz Workshop, Leiden-2011

August 2008


Recommended