+ All Categories
Home > Documents > 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec-...

1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec-...

Date post: 22-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
31
LEP Results - 1 Pippa Wells – CERN Pippa Wells July 2003
Transcript
Page 1: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

1

LEP Results - 1

Pippa Wells – CERN

Pippa Wells July 2003

Page 2: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

2

1: Z Resonance

• The LEP machine, beam energy, detectors

• Z lineshape: cross-sections, luminosity

• Lepton Forward-Backward asymmetry, polarised asymmetries

• Number of light neutrinos, lepton couplings

2: LEP2 Results

• WW and ZZ physics at LEP2

• b-tagging, electroweak physics with heavy flavours (b and c)

• Global electroweak fits

• Standard Model Higgs boson - a hint?

Pippa Wells July 2003

Page 3: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

3

LEP Time Line

1960’s Glashow-Weinberg-Salam SU(2) × U(1) theory of elec-

troweak interactions, prediction of W and Z gauge bosons.

1972 SU(3)colour QCD theory of strong interactions

1976 CERN study group considers Large Electron-Positron

storage ring,√

s = 2 × 100 GeV, L ≈ 1032cm−2s−1

1979 Observation of gluon at PETRA.

December: 27 km design approved by CERN council

1983 Chose LEP experiments.

W and Z observed at CERN SPS

1989 Scooped! e+e− collisions at Z in MARK II at SLC.

First collisions in LEP with√

s ≈ MZ

1995 Gradual installation of LEP2 SC RF system starts

Energy raised to√

s = 140 GeV at end of year.

Top quark observation at Fermilab confirmed

1996 W pair threshold crossed at LEP...

1999 Nobel Prize for ’t Hooft and Veltman for “for elucidating the

quantum structure of electroweak interactions in physics”

2000 Last year of LEP running with√

s up to 209 GeV.

Pippa Wells July 2003

Page 4: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

4

Electron-positron annihilation

10

10 2

10 3

10 4

0 20 40 60 80 100 120 140 160 180 200 220

Centre-of-mass energy (GeV)

Cro

ss-s

ecti

on (

pb)

CESR DORIS

PEP

PETRA TRISTAN

KEKB SLACB

SLC

LEP I

LEP II

Z

W + W -

e + e − → hadrons

γ f

f

Z f

f

Z/ γ f

f

e -

e +

ν e

f

f f

f

W

W

γ

f

f f

f

W

W

Z

f

f f

f

W

W

LEP collected 4.5 million Z,

12 thousand WW per experiment

Pippa Wells July 2003

Page 5: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

5

Z resonance lineshape

To measure the Z mass, total width and cross-section, partial widths

(branching ratios) and couplings:

• LEP machine gives e+e− collisions at a few energies on and

near the Z peak and precise measurement of Ebeam

• Detectors ALEPH, DELPHI, L3, OPAL distinguish Z final states

and measure the luminosity from QED t-channel process

e+e− → e+e− (Bhabha scattering)

σ(√

s) = (Nobserved − Nbackground)/εL

• Monte Carlo simulation of the signal efficiency and background.

• Theoretical prediction of the lineshape

• Match precision from 4.5 million Z events per experiment -

relative statistical error about 5 × 10−4.

• Several thousand people involved

• σ(MZ) ≈ 340 MeV from UA2+CDF in 1989. Hoped to reduce

to ≈ 10 MeV (limited by beam energy precision)

• Count the number of generations. 2.5 generations were known

in 1989, top quark and ντ not yet established. Number of light

neutrinos limited by big bang nucleosynthesis to <∼ 4. Expected

precision of about ±0.2 on the number.

Pippa Wells July 2003

Page 6: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

6

Pippa Wells July 2003

Page 7: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

7

The LEP Collider

A good fill lasts around 10 h (LEP1 at Z) or 3 h (LEP2)

0

20

40

60

80

100

120

-25 -22.5 -20 -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0Time (hours)

E (

GeV

) o

r L

(1031

cm-2

s-1)

A day at LEP (example from 1999)EnergyLuminosity

Pippa Wells July 2003

Page 8: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

8

Beam energy - resonant depolarisation

Ebeam =e

B · d`

Spin of electrons aligns with vertical B field due to synchrotron

radiation. Slow (hours) build up of transverse polarisation IF beam

orbit sufficiently smooth.

Spins precess in B field. Number of precessions per turn of LEP:

νs =ge − 2

2

e

2πme

B · d` =ge − 2

2

Ebeam

me

νs ≈ 101.5, 103.5, 105.5 at√

s = peak-2, peak, peak+2

Apply oscillating horizontal B field,

ν, at one place. Scan ν.

If ν = νs, polarisation is destroyed.s

s

bx

horizontal B fieldFast sweeping

Daytime

Pola

rizat

ion

(%)

νscan →

.474 t

o .47

6.47

6 to .

478

.478 t

o .48

0.47

6 to .

477

.477 t

o .47

8

.476 t

o .47

7

-20

0

20

40

22:25 22:30 22:35 22:40 22:45

Instantaneous precision

≈100 keV. In 1986

expected limit from

magnetic stability

δMZ ≈ 10 MeV

Pippa Wells July 2003

Page 9: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

9

Stability? Quadrupole movements...

1991 - first calibrations saw fluc-

tuations of order 10 MeV. Earth

tides driven by moon and sun.Moon

ecliptic

Earth Rotation Axis

∆R < 0 ∆R > 0

ε M

ε E

Length of orbit fixed by RF system, but magnets move with ground.

Beam no longer goes through centre of quadrupoles. Sensitive to

1mm change in 27 km, typical 10 MeV peak-to-peak.

Daytime

Beam

Ene

rgy

(MeV

)

Nov. 11th 1992

46465

46470

46475

22:00 2:00 6:00 10:00 14:00 18:00 22:00 2:00

Also see ground distortion due to lake level, heavy rain...

Pippa Wells July 2003

Page 10: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

10

Stability? Dipole fields...

1993: Measured energy at the end of many fills

1995: Measurements of B field in tunnel dipoles

5 MeV

Noisy period Quiet period

16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00

46474

46478

46482

46486

46490

46494

46498

Daytime

Equi

vale

nt B

eam

Ene

rgy

(MeV

)

16th August 1995

Human activity increasing dipole fields during fill: BIAS ≈ 5 MeV

Long investigation revealed cause - Vagabond electric currents from

nearby trains. Correct earlier years using model of average train

behaviour. Final MZ systematic of 1.7 MeV

Pippa Wells July 2003

Page 11: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

11

LEP1 data samples

Approximate luminosity delivered per year.

(Experiments collect 10–15% less)

year centre-of-mass total off-peak

energies luminosity luminosity

[GeV] [pb−1] [pb−1]

1989 88.2 – 94.2 2 1

1990 88.2 – 94.2 9 4

1991 88.5 – 93.7 19 7

1992 91.3 29 0

1993 89.4, 91.2, 93.0 40 20

1994 91.2 65

1995 89.4, 91.3, 93.0 40 20

In 1989-1991, 6 off-peak points were measured.

In 1993 and 1995 only 2 off-peak points were selected, to maximise

the statistical precision. The exact values of the energies are

chosen to allow resonant depolarisation at the end of each fill.

Pippa Wells July 2003

Page 12: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

12

Cut-away view of OPAL

θ ϕ

x

y

z

Hadron calorimeters and return yoke

Electromagnetic calorimeters Muon

detectors

Jet chamber

Vertex chamber

Microvertex detector

Z chambers

Solenoid and pressure vessel

Time of flight detector

Presampler

Silicon tungsten luminometer

Forward detector

Overall size 12×12×12 m

Pippa Wells July 2003

Page 13: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

13

Hadronic event in ALEPHM

ade on 9-Sep-1993 11:43:03 by DR

EV

ER

MA

NN

with D

AL

I_D1.

DALI

Run=9063 Evt=7848 ALEPH

• This example has 3 jets e+e− → qqg

• Curved tracks in B field (ALEPH and DELPHI have

superconducting solenoids - B field about 1.5 T compared to

about 0.5 T in OPAL and L3)

• Many tracks and clusters in calorimeters

Pippa Wells July 2003

Page 14: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

14

e+e− → e+e− event in OPAL

Run : even t 4093 : 1150 Da t e 930527 T ime 20751

Ebeam 45 . 658 Ev i s 94 . 4 Emi ss - 3 . 1 V t x ( - 0 . 05 , 0 . 08 , 0 . 36 )

Bz=4 . 350 Th r us t =0 . 9979 Ap l an=0 . 0000 Ob l a t =0 . 0039 Sphe r =0 . 0001

C t r k (N= 2 Sump= 92 . 4 ) Eca l (N= 9 SumE= 90 . 5 ) Hca l (N= 0 SumE= 0 . 0 )

Muon (N= 0 ) Sec V t x (N= 0 ) Fde t (N= 1 SumE= 0 . 0 )

Y

XZ

200 . cm.

Cen t r e o f sc r een i s ( 0 . 0000 , 0 . 0000 , 0 . 0000 )

50 GeV2010 5

• Lepton pair events have low multiplicity

• Electrons are identified by a track in the central detector, and a

large energy deposit in the electromagnetic calorimeter,

E/p = 1.

Pippa Wells July 2003

Page 15: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

15

e+e− → µ+µ

− event in L3

HCAL

BGO

Tracking

Muon Chambers

• Muons penetrate the entire detector, and leave little energy in

the calorimeters.

• L3 detector emphasizes lepton and photon id with a precise

BGO crystal ECAL, and large muon spectrometer.

• The tracking volume is relatively small (radius 1m)

• ALL detectors inside 6m radius solenoid, field 0.5T.

Pippa Wells July 2003

Page 16: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

16

e+e− → τ+τ

− event in DELPHI

DELPHI Interactive AnalysisRun: 23438Evt: 581

Beam: 45.6 GeV

Proc: 8-Mar-1992

DAS : 18-Jun-199103:22:19

Scan: 29-Apr-1992

TD TE TS TK TV ST PA

Act

Deact

44

( 44)

0

( 0)

45

( 48)

0

( 4)

0

( 0)

0

( 0)

8

( 9)

0

( 6)

0

( 9)

0

( 5)

0

( 0)

0

( 0)

0

( 0)

0

( 0)

X

Y

Z

Barrel RICH

• Tau lepton decays dominated by 1 and 3 charged tracks, with or

without neutrals, missing neutrino(s), back-to-back very narrow

“jets”.

• DELPHI has extra particle ID detectors, RICH.

Pippa Wells July 2003

Page 17: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

17

Event selection

A few very simple cuts can distinguish hadronic, e+e−, µ+µ− and

τ+τ− events, and also background from γγ, cosmic rays...

The difficult task is to control systematic errors - how good is Monte

Carlo description of data?

Example 1: Hadronic event selection from L3

e+e− → hadrons(γ)

(|cos θt| ≤ 0.74)

data 1994

e+e− → hadrons(γ)

e+e− → τ+τ−(γ)

e+e− → e+e−(γ)

e+e− → µ+µ−(γ)

Ncl

Even

ts

10

10 2

10 3

10 4

0 25 50 75 100

Pippa Wells July 2003

Page 18: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

18

Event selection

Example 2: Σ|ptracks| vs ΣEclusters for leptons

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4Etotal/√s

p tota

l/√s

e+e-µ+µ-

τ+τ-

OPAL

Representative values (vary from experiment to experiment)

Channel hadron e+e− µ+µ− τ+τ−

Efficiency % 99 98 98 80

Background % 0.5 1 1 2

Syst error % 0.07 0.2 0.1 0.4

Pippa Wells July 2003

Page 19: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

19

Luminosity Measurement

e-

e+

e-

e+

γ

The t-channel contribution to

e+e− → e+e− dominates at small

angles. Detectors typically 25 to

60 mrad from beam.

Very clear electron signal in forward detectors (calorimeters).

E L/E Be

am

ER/EBeam

DELPHI

Accepted cross section at least 2 × σhad. 1/θ3 variation.

Experimental difficulty: define geometric edge of acceptance to give

cross-section precision <∼ 0.05%.

Common theory error of ∼ 0.05% (cf ∼ 1% in 1989).

(BHLUMI program: S. Jadach, B.F.L. Ward et al.)

Pippa Wells July 2003

Page 20: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

20

Standard Model relationships

Masses of heavy gauge bosons and their couplings to fermions

depend on SAME mixing angle

cos θW = MW/MZ

SU(2) × U(1) coupling constants, g, g′, proportional to electric

charge e: g = e sin θW, g′ = e cos θW

f

f

γ

f

f

Z

f

f

W

−ieQγµ

ieγµ(gv − gaγ5)1

2 sin θW cos θW

ieγµ(1 − γ5)1

2√

2 sin θW

where Q, ga and gv depend on fermion type, with

ga = T 3 = ±1

2

gv = (T 3 − 2Q sin2 θW ) = ±1

2(1 − 4|Q| sin2 θW )

gv/ga gives sin2 θW if you know |Q|.Pippa Wells July 2003

Page 21: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

21

Standard Model relationships

Relate e, sin θW and MW to the best measured parameters:

α ≡ e2

4π= 1/137.035 999 76(50)

GF ≡ πα√2M 2

W sin2 θW

= 1.166 39(1) × 10−5 GeV−2

MZ = 91.1875(21) GeV

GF measured from muon decay; MZ from LEP.

These relations are true at tree level, but to check that they are

valid, must take into account radiative corrections, which give

sensitivity to virtual heavy particles, and possibly new physics!

Aside: Other SM inputs needed are fermion masses, Higgs mass,

CKM matrix (quark mass eigenstates are not weak eigenstates),

strong coupling constant, αs

Pippa Wells July 2003

Page 22: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

22

Radiative corrections

Propagator corrections are the same for each fermion type.

Z/W/γ Z/W/γ

f

f

Z/W/γ Z/W/γ

W

Z/W/γZ/W Z/W

H

Z/W

QED, QCD and vertex corrections give fermion dependent terms.

e-

e+

Zf

f

γ e-

e+

Z

q

q

gZ

W

b

b

t

t

Electroweak corrections absorbed into effective couplings:

gV ≡ geffV =

(1 + ∆ρ)(T 3 − 2Q sin2 θeff)

gA ≡ geffA =

(1 + ∆ρ)T 3

sin2 θeff = (1 + ∆κ) sin2 θW

∆ρ =3GFM2

W

8√

2π2

(

M2t

M2W

− tan2 θW

[

lnM2

H

M2W

− 5

6

])

+ · · ·

∆κ =3GFM2

W

8√

2π2

(

cot2 θWM2

t

M2W

− 11

9

[

lnM2

H

M2W

− 5

6

])

+ · · ·

Extra M2t /M 2

W contributions for b quark

Pippa Wells July 2003

Page 23: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

23

Radiative corrections

The value of GF is also modified:

GF =πα√

2M 2W sin2 θW

1

1 − ∆r

where

∆r = ∆α + ∆rw = ∆α − ∆κ + · · ·∆α term incorporates the running of the electromagnetic coupling

due to fermion loops in the photon propagator. The difficult part of

the calculation is to account for all the hadronic states. Use

experimental measurement of e+e− → hadrons at low√

s.

α(s) =α(0)

1 − ∆α

α(0) = 1/137.035 999 76(50) ; α(MZ) = 1/128.936(46)

Quadratic dependence on Mt

Logarithmic dependence on MH

Can fit both Mt and MH

Use programs such as ZFITTER (D Bardin et al.) and TOPAZ0

(G Montagna et al.) for calculations to higher order.

Leading order expressions above are for large MH.

Pippa Wells July 2003

Page 24: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

24

QED corrections

Dominant QED correction from

initial state radiation.

e-

e+

Zf

f

γ

Accounted for by radiator function H . We want σew(s)

σ(s) =

∫ 1

4m2

f/s

dzHtotQED(z, s)σew(zs).

Ecm [GeV]

σ had

[nb]

σ from fitQED unfolded

measurements, error barsincreased by factor 10

ALEPHDELPHIL3OPAL

σ0

ΓZ

MZ

10

20

30

40

86 88 90 92 94

Pippa Wells July 2003

Page 25: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

25

Differential cross-section

θe- e+

f

f

Improved Born Approximation for e+e− → ff

(Ignoring fermion masses, QED/QCD ISR/FSR ...)

dσew

d cos θ=

πN fc

2s16|χ(s)|2 ×

[

(g2Ve + g2

Ae)(g2Vf + g2

Af)(1 + cos2 θ) + 8gVegAegVfgAf cos θ]

+[γ exchange] + [γZ interference]

Whereχ(s) =

GFM2Z

8π√

2

s

s − M 2Z + isΓZ/MZ

|χ(s)|2 gives lineshape as a function of s.

Even term in cos θ gives total cross-section

σff ∝ (g2Ve + g2

Ae)(g2Vf + g2

Af)

Odd term in cos θ leads to forward-backward asymmetry:

AFB =σF − σB

σF + σB

where σF =∫ 1

0(dσ/d cos θ)d cos θ. At the Z peak:

A0, fFB =

3

4

2gVegAe

g2Ve + g2

Ae

2gVfgAf

g2Vf + g2

Af

≡ 3

4AeAf

AFB depends on gVf/gAf , i.e. on sin2 θeff

Cross-section plus AFB allow gVf and gAf to be derived.Pippa Wells July 2003

Page 26: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

26

Polarised asymmetries

Final state fermions in e+e− → ff are polarised. Polarisation can

be measured for τ lepton final states at LEP.

Pτ ≡ (σ+ − σ−)/(σ+ + σ−)

where σ+(−) cross section for producing + (-) helicity τ− leptons.

Eg. τ → πν, momentum of the π depends on the τ helicity

Initial state: LEP beams are unpolarised (except for special energy

calibration conditions)

Stanford Linear Collider - longitudinally polarised electron beam to

detector SLD. Electron beam ≈ 75% polarised from 1994–1998.

Final Focus

IP

Compton Polarimeter

Collider Arcs

Linac

e+ Source

e+ Return Line

Spin Rotation Solenoids

Thermionic Source

Polarized e− Source

Electron Spin Direction

e+ Damping Ring

e− Damping Ring e− Spin

Vertical

e− Extr. Line Spectrometer

e+ Extr. Line Spectrometer

(LTR Solenoid)

Knowing polarisation of final (τ ) or initial (SLD) state, can construct

left-right, left-right-forward-backward... asymmetries, and measure

Ae or Af , eg.

ALR(s) =NL − NR

NL + NR

1

〈Pe〉, A0

LR ≡ Ae

Pippa Wells July 2003

Page 27: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

27

Cross-section and partial widths

Cross-section as a function of s (from |χ(s)|2): “Z lineshape”

σff(s) = σ0ff

sΓ2Z

(s − MZ)2 + s2Γ2Z/M 2

Z

where pole cross-section is

σ0ff =

12π

M2Z

ΓeeΓf f̄

Γ2Z

.

with Γf f̄/ΓZ = BR(Z → ff) and partial width is

Γf f̄ = N fc

GFM3Z

6√

(

g2Af + g2

Vf

)

+ QED/QCD corrections eg. QCD: Γqq̄ → Γqq̄(1 + αs/π + · · ·)Total width of Z

ΓZ = Γhad + 3Γ`` + Γinv = ΣΓqq̄ + 3Γ`` + NνΓνν

Comparing total width to partial width gives Nν

Cross-sections and widths correlated. Choose to fit:

• MZ, ΓZ, σ0h

• Ratios: R0e ≡ Γhad/Γee, R

0µ ≡ Γhad/Γµµ, R

0τ ≡ Γhad/Γττ

or R0` ≡ Γhad/Γ``

• Asymmetries: A0, eFB, A0, µ

FB and A0, τFB or A0, `

FB

Extra information from tagging some quark flavours (lecture 2).

Pippa Wells July 2003

Page 28: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

28

Cross-sections vs√

s

0

5

10

15

20

25

30

35

40

88 89 90 91 92 93 94

hadrons

σ(n

b)

-0.01

0.01

89.2 89.4 91.2 91.3 93 93.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

88 89 90 91 92 93 94

ALEPH

ee

-0.05

0.05

89.2 89.4 91.2 91.3 93 93.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

88 89 90 91 92 93 94

µµ

σ(n

b)

-0.05

0.05

89.2 89.4 91.2 91.3 93 93.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

88 89 90 91 92 93 94

ττ

-0.05

0.05

89.2 89.4 91.2 91.3 93 93.2

√ s(GeV)

90 91 92 90 91 92

90 91 9290 91 92

30

20

1.4

1.0

1.0

1.4 1.4

1.0

Pippa Wells July 2003

Page 29: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

29

Lepton forward-backward asymmetries

cos θ

d σ

/ d c

os θ

[nb]

L3 e+e− → µ+µ−(γ)

peak−2

peak

peak+2

0

2.5

5

7.5

10

-1 -0.5 0 0.5 1

Forward-backward asym-

metry for lepton pairs is

straightforward to measure.

Charge of lepton from

tracking.

Asymmetry varies

with centre-of-mass

energy.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

88 89 90 91 92 93 94 95

Asy

mm

etry

µ + µ - OPAL

EcmPippa Wells July 2003

Page 30: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

30

Lepton Universality

Plot A0, `FB vs. R0

` = Γhad/Γ``. Contours contain 68% probability.

Lepton universality OK. Results agree with SM (arrows)

Mt = 174.3 ± 5.1 GeV

MH = 300+700−186 GeV (low MH preferred)

αs(M2Z) = 0.118 ± 0.002

0.01

0.014

0.018

0.022

20.6 20.7 20.8 20.9

R0l=Γhad/Γl

A0,

l

fb

68% CL

l+l−

e+e−

µ+µ−

τ+τ−

αs

mt

mH

∆α

Next lecture: interpretation of asymmetries in terms of sin2 θlepteff

Pippa Wells July 2003

Page 31: 1 LEP Results - 1 · 3 LEP Time Line 1960’s Glashow-Weinberg-Salam SU(2) U(1)theory of elec- troweak interactions, prediction of W and Z gauge bosons. 1972 SU(3)colour QCD theory

31

LEP combined results

Z resonance parameters - recall pre-LEP hopes:

• σ(MZ) ≈ 10 MeV (limited by beam energy precision)

• Number of generations σ(Nν) ≈ 0.2

Fitted MZ [GeV] 91.1875 ± 0.0021

ΓZ [GeV] 2.4952 ± 0.0023

σ0h [nb] 41.540 ± 0.037

R0` 20.767 ± 0.025

A0, `FB 0.0171 ± 0.0010

Derived Γinv [MeV] 499.0 ± 1.5

Γhad [MeV] 1744.4 ± 2.0

Γ`` [MeV] 83.984 ± 0.086

Nν 2.984 ± 0.008

Summary - Very precise measurements of Z mass, width,

cross-sections, partial widths and lepton forward-backward

asymmetries.

High statistics data samples. Careful control of systematic errors.

Pippa Wells July 2003


Recommended