+ All Categories
Home > Documents > 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

Date post: 02-Jan-2016
Category:
Upload: kerrie-bryant
View: 219 times
Download: 2 times
Share this document with a friend
35
1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λ μ 1 1 ...) 1 ( 1 ... ... ; ... ... 0 2 0 1 0 0 0 0 1 0 1 1 0 P P P P P P P P P P P n n n n n n n n n
Transcript
Page 1: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

1

M/M/1 queue

λn = λ, (n >=0); μn = μ (n>=1)

λ: arrival rateμ: service rate

λ μ

11...)1(

1......

;

...

...

02

0

10

0

0010

110

PP

PPP

PP

PPPP

n

nn

n

n

nn

nn

Page 2: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

2

Traffic intensity

rho = λ/μ It is a measure of the total arrival traffic to the system

Also known as offered load

Example: λ = 3/hour; 1/μ=15 min = 0.25 h

Represents the fraction of time a server is busy In which case it is called the utilization factor

Example: rho = 0.75 = % busy

Page 3: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

3

Queuing systems: stability

λ<μ => stable system

λ>μ Steady build up of customers => unstable

Time 1 2 3 4 5 6 7 8 9 10 11

123

busy idleN(t)

Time 1 2 3 4 5 6 7 8 9 10 11

123

N(t)

Page 4: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

4

Example#1

A communication channel operating at 9600 bps Receives two type of packet streams from a gateway

Type A packets have a fixed length format of 48 bits

Type B packets have an exponentially distribution length With a mean of 480 bits

If on the average there are 20% type A packets and 80% type B packets

Calculate the utilization of this channel Assuming the combined arrival rate is 15 packets/s

Page 5: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

5

Performance measures

L Mean # customers in the whole system

Lq

Mean queue length in the queue space

W Mean waiting time in the system

Wq

Mean waiting time in the queue

Page 6: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

6

Mean queue length (M/M/1)

L

n

nnPnEL

n

n

n n

nn

n

n

nn

1)'

1

1)(1(

)'()1(

)'()1()()1(

)1(][

0

0 0

1

00

Page 7: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

7

Mean queue length (M/M/1) (cont’d)

q

nn

nn

nnq

LL

L

L

PL

PnP

PnL

))1(1(

)1(

)1(

0

11

1

Page 8: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

8

Little’s theorem

This result Existed as an empirical rule for many years

And was first proved in a formal way by Little in 1961

The theorem Relates the average number of customers L

In a steady state queuing system

To the product of the average arrival rate (λ) And average waiting time (W) a customer spend in a system

WL .

Page 9: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

LITTLE’s Formula

: average number of messages in system : average delay λ: arrival rate

Little’s relation holds for any Service discipline Arrival process Holding area

Page 10: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

Graphical Proof

A(t) Cumulative arrival process

L(t) Nb. of customers that left system up to t

=> N(t) = A(t) – L(t) Nb. of customers in system at time t

di : interval between ith arrival and its departure

Page 11: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

Graphical Proof (continued)

Page 12: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

Graphical Proof (continued)

Now, let

Page 13: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

13

Mean waiting time (M/M/1)

Applying Little’s theorem

1

1.

1

.

LW

WL

Page 14: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

14

Z-transform: application in queuing systems

X is a discrete r.v. P(X=i) = Pi, i=0, 1, …

P0 , P1 , P2 ,…

Properties of the z-transform g(1) = 1, P0 = g(0); P1 = g’(0); P2 = ½ . g’’(0)

, +

0

)(i

iizPzg

Page 15: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

M/M/1 Queue – Infinite Waiting Room Probability generating function

Mean

Variance

Page 16: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

16

M/M/S

0

01

110

.!

1.

...3.2....

...

;

;

Pn

nPP

sn

sns

snn

n

n

n

nn

n

n

Page 17: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

17

M/M/S (cont’d)

.1

1.

!

1.

!

1.

1

;!.

1

;!

1

!.

1

........3.2.

1

0

0

0

0

0

0

SSn

P

SnPSS

SnPn

P

PSS

PSSS

P

Sn

S

n

Sn

Sn

n

n

n

Sn

n

n

n

Page 18: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

18

M/M/S

SnPSS

SnPn

P

PSS

PSSS

PSn

Pn

Pn

PPSn

SnS

Snn

Sn

n

n

n

Sn

nn

n

nn

n

nn

n

n

;!.

1

;!

1

!.

1

........3.2.,

.!

1..

...3.2....

...,

;

;

0

0

00

0001

110

λ

μS servers

Page 19: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

19

M/M/S: normalizing equations

1!.

1

!

1

1!.

1

!

1

1.........

1

00

0

1

00

110

SnSn

nS

n

n

SnSn

nS

n

n

nSS

SSnP

PSS

Pn

PPPPP

...1

.1

.1!

1.

...1

.1

.!

1

1

!

1

!.

1

2

21

2

21

SSS

SSS

SSSS

S

SSS

SnSn

n

SnSn

n

Page 20: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

20

M/M/S: stable queue

is λ/Sμ < 1 ? Otherwise you will not get a stable queue, as such

.1

1.

!

1.

!

1.

1

1

1.

!

1.

...1

.1

.1!

1.

1

0

0

2

21

SSn

P

SS

SSS

S

n

Sn

S

S

Page 21: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

21

M/M/S: performance measures Mean queue length

Mean waiting time in the queue (Little’s theorem)

Mean waiting time in the system

Mean # of customers in the whole system

02 .

1!.

)/(.)( P

SS

SPSnL

S

SnSq

q

qqq

LWWL .

1

qWW

qWLWL ..

Page 22: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

22

Erlang C formula

A quantity of interest Probability to find all s servers busy

Ratio between Lq and Pc

Page 23: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

23

M/M/S: stability revisited

Stable If λ/Sμ < 1

Arrival rate to an individual server

Utilization of a server

Utilization of all servers

S

1

.S

Page 24: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

24

M/M/1/N

Birth and death equations

λ μ

% loss

N

NnPPPP

Nn

Nn

n

n

n

n

n

nn

n

n

,...,1,0,....

...

;0

1;

0,

00021

110

Page 25: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

25

M/M/1/N: normalizing constant

Let ρ=λ/μ

As such

10

1

0

0

00

10

1

11

1

)1(

1)...1(

1......

1...

N

N

N

NN

N

PP

P

PPP

PPP

)1(

)1(

1

)1(.

110

N

N

NN

nn

n PPP

Probability of arrivingto a full waiting room

Page 26: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

26

M/M/1/N: what percent of λ gets into the queue?

Percentage of time the queue is full is equal to PN

Rate of lost customers = λ.PN

Rate of customers getting in : λ.(1-PN) Often referred to as effective customer arrival rate

Utilization of server

.75 .25

fullNot full

)1.( NP

)1.( NP

Page 27: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

27

M/M/1/N: performance measures

Mean # of customers in the system

Mean queue length

Waiting time in system: W = L/λ

Waiting time in queue: Wq = Lq/λ

1

1

1

)1(

1

N

NNL

LM/M./1

)1( 0PLLq

Page 28: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

28

M/M/1/N: equivalent systems

When an M/M/1/N queue is full Continuous arrival

A system with loss

is equivalent to shutting up the service For the duration during which the queue is full

And starting it up again when system no longer ful

This system is called a shut down system

This equivalence holds only when the inter-arrival is exponential

Page 29: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

29

Proof: rate diagrams

M/M/1/N system with loss Consider the special case where N = 5

0 1 2 3 4 5λ λ λ λ λ

μ μ μ μ μ

λ

45545

201

10

....).(

.

.

..).(

..

PPPPP

PPP

PP

Page 30: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

30

Proof: rate diagrams (cont’d)

M/M/1/N shut down system Consider the special case where N = 5

0 1 2 3 4 5λ λ λ λ λ

μ μ μ μ μ

45

201

10

..

.

.

..).(

..

PP

PPP

PP

Page 31: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

31

M/M/infinity: birth and death equations

.

.

λ μ

000021

110 .!

.!

1..

!

1.

...

...

.

Pn

Pn

Pn

PP

n

nn

n

n

n

nn

n

n

Infinite number ofservers

Page 32: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

32

M/M/infinity: normalizing constant

en

P

ePePP

Pn

PPP

PPP

Pn

P

n

n

n

n

n

n

.!

1.1...!2!1

1

1....!

....!2!1

1......

.!

00

2

0

00

2

00

10

0

Page 33: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

33

Erlang system: M/M/S/S

.

.

λ μ

Finite number ofServers = S

0

0

2

0

0

!

1

1!

...!2!1

1

.!

n

n

S

n

n

n

P

SP

Pn

P

Page 34: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

34

Erlang loss formula

What percent gets in and What percent gets lost

PS = prob S customers in system

Effective arrival rate

Rate of lost customers = λ.PS

)1.( SP

S

n

n

S

S

n

SP

0 !

!/

Erlang loss formula

Page 35: 1 M/M/1 queue λ n = λ, (n >=0); μ n = μ (n>=1) λ: arrival rate μ: service rate λμ.

35

Erlang B formula

Probability of finding all s servers busy

In an iterative form:


Recommended