+ All Categories
Home > Documents > 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

Date post: 12-Sep-2021
Category:
Upload: others
View: 9 times
Download: 0 times
Share this document with a friend
24
1 Andreas H. Hielscher, Ph.D. Andreas H. Hielscher, Ph.D. Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals Columbia University, New York City Dept. of Biomedical Engineering Dept. of Radiology Columbia University, New York City Dept. of Biomedical Engineering Dept. of Radiology • Introduction X-Ray Tomography vs Optical Tomography Model-based iterative image reconstruction Basic concepts and mathematical background Instrumentation General optical imaging modalities Dynamic optical tomography system Applications Brain Imaging Tumor Imaging Fluorescence Imaging • Introduction X-Ray Tomography vs Optical Tomography Model-based iterative image reconstruction Basic concepts and mathematical background Instrumentation General optical imaging modalities Dynamic optical tomography system Applications Brain Imaging Tumor Imaging Fluorescence Imaging Overview • Introduction X-Ray Tomography vs Optical Tomography Model-based iterative image reconstruction Basic concepts and mathematical background Instrumentation General optical imaging modalities Dynamic optical tomography system Applications Brain Imaging Tumor Imaging Fluorescence Imaging • Introduction X-Ray Tomography vs Optical Tomography Model-based iterative image reconstruction Basic concepts and mathematical background Instrumentation General optical imaging modalities Dynamic optical tomography system Applications Brain Imaging Tumor Imaging Fluorescence Imaging Overview X-Ray Imaging Energy propagates on straight lines through medium A(x,y) unknown absorption cross-section M(ϕ,ξ) X-ray source (measurable attenuation) Uses X-rays to generate shadowgrams M(ϕ,ξ). electromagnetic wave λ~10 -10 m energy~10 4 eV
Transcript
Page 1: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

1

Andreas H. Hielscher, Ph.D.Andreas H. Hielscher, Ph.D.

Optical Tomographic Imagingof Small Animals

Optical Tomographic Imagingof Small Animals

Columbia University, New York City Dept. of Biomedical EngineeringDept. of Radiology

Columbia University, New York City Dept. of Biomedical EngineeringDept. of Radiology

• IntroductionX-Ray Tomography vs Optical Tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

• IntroductionX-Ray Tomography vs Optical Tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

Overview

• IntroductionX-Ray Tomography vs Optical Tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

• IntroductionX-Ray Tomography vs Optical Tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

Overview X-Ray Imaging

Energy propagates on straight lines through medium

A(x,y) unknown

absorption cross-section

M(ϕ

,ξ)

X-ra

y so

urce

(measurable attenuation)

Uses X-rays to generate shadowgrams M(ϕ,ξ).

electromagnetic wave λ~10-10m energy~104eV

Page 2: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

2

X-Ray Shadowgram X-Ray Tomography

M( ϕ

,ξ)

X-ra

y so

urce

X-Ray Tomography

M(ϕ,ξ)

X-ray s

ource

X-Ray Tomography

M(ϕ,ξ)

X-ray source

Page 3: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

3

X-Ray Tomography

=>Simple image reconstruction scheme:backprojection of M on lines of transmission.

A(x,y) unknown

absorption cross-section

M(ϕ

, ξ)

X-ra

y so

urce

(Inverse Radon Transform)

2D Scan of Head

Optical Imaging

Uses near-infrared light (700< λ<900nm)

light source

EM - wave λ ~ 800•10-9menergy ~ 1 eV

A(x,y){unknown absorption

& scattering

profile}

Energy does not propagate on straight line betweensource and detector (light is strongly scattered)

Optical Shadowgram

Page 4: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

4

Optical Tomography

light source

Optical Tomography

ligh

t so

urc

e

Optical Tomography

light source

Optical Tomography

ligh

t so

urce

Page 5: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

5

Optical Imaging

Uses near-infrared light (700< λ<900nm)

light source

EM - wave λ ~ 800•10-9menergy ~ 1 eV

A(x,y){unknown absorption

& scattering

profile}

How to reconstruct cross-sectional images A(x,y)from measurement on surface?

(Inverse Problem)

• IntroductionX-Ray Tomography vs Optical Tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

• IntroductionX-Ray Tomography vs Optical Tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

Overview

measureddetector readings IM,i

initialguess?

Experiment

sour

cesTheory:

predicted

dete

ctor

s

Forward Model, F ( )

D = 1 cm2�ns

detector reading IP,i( )

depends on NxN unkowns

Model-Based Iterative Image Reconstruction

sour

ces

dete

ctor

s

Forward Model I

3D-Time-Resolved Diffusion Equation

∂U∂t = ∂∂x D ∂U

∂x∂∂y D ∂U

∂y+ - cµaU + S

and diffusion coefficient : D = c ( 3 [ µa + µs' ] )with c := speed of light in medium, S = Source,

with µa = absorption coefficient and µ s' = reduced scattering coefficient .

∂∂z D ∂U

∂z+

Page 6: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

6

Diffusion vs Transport Model

slower by factor ~A

S∂Ψ/c∂t = Ψ(Ω )∫ dΩ '4π

p(Ω∗Ω')+ '- ( )µa µs+ Ψ- Ω∇Ψ

discretization into N spacial and A angular variablesleads to N x A coupled finite-difference equations

equation of radiative transport

∂U∂t = - cµaU + S∇c/(3µa+3µs') ∇U

discretize into N spacial variablesleads to N finite-difference equations

diffusion equation

U Ψ(Ω )∫ dΩ '4π

'= with µs' = (1-g) µsand

appr

oxim

atio

n

Limits of Diffusion Model

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40

Inte

nsity

[au]

y [mm]

Experiments

0.20.40.60.8

11.21.41.61.8

0 5 10 15 20 25 30 35 40

Inte

nsity

[au]

x [mm]

Diffusion

Transport

Diffusion

Experiments

Transport

ring filled with water

milk

laser beam

Forward Model applied toMouse Head

µa=0.1 cm-1 , µs =10 cm-1 ; 14781 nodes, 24 ordinates

~ 1 cm

log(Fluence [Wcm-2])

source

measureddetector readings IM,i

initialguess?

Experimentso

urce

sTheory:

predicted

dete

ctor

sForward Model, F ( )

D = 1 cm2�ns

detector reading IP,i( )

depends on NxN unkowns

Model-Based Iterative Image Reconstruction

dete

ctor

s

sour

ces

Page 7: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

7

measureddetector readings IM,i

initialguess?

Experiment

sour

cesTheory:

predicted

Φ < εno

dete

ctor

s

Forward Model, F ( )

D = 1 cm2�ns

detector reading IP,i( )Analysis Scheme

Φ ≈ { IM,i - IP,i( )}Σi

Error Value Φ ( )

2

yes

(This is just one number!)

Model-Based Iterative Image Reconstruction

e.g. transport equation

dete

ctor

s

sour

ces

measureddetector readings IM,i

Updating Scheme

Analysis Scheme

newguess?

Experiment

sour

cesTheory:

predicted

Φ ≈ { IM,i - IP,i( )}Σi

Error Value Φ ( )

Φ < εno

Forward Model, F ( )

detector reading IP,i( )2

Model-Based Iterative Image Reconstruction

e.g. transport equation

dete

ctor

s

sour

ces

Forward Model, F ( )

measureddetector readings IM,i

newguess?

Experiment

sour

cesTheory:

predicted

Φ < εno

Analysis Scheme Φ ≈ { IM,i - IP,i( )}Σ

i

Error Value Φ ( )

2

detector reading IP,i( )

yes

Model-Based Iterative Image Reconstruction

e.g. transport equation

dete

ctor

s

sour

ces

Forward Model, F ( )

measureddetector readings IM,i

Updating Scheme

newguess?

Experimentso

urce

sTheory:

predicted

Φ < εno

Analysis Scheme Φ ≈ { IM,i - IP,i( )}Σ

i

Error Value Φ ( )

2

detector reading IP,i( )

Model-Based Iterative Image Reconstruction

e.g. transport equation

dete

ctor

s

sour

ces

Page 8: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

8

Forward Model, F ( )

measureddetector readings IM,i

yes

final

newguess?

Experiment

sour

cesTheory:

predicted

Φ < ε

Analysis Scheme Φ ≈ { IM,i - IP,i( )}Σ

i

Error Value Φ ( )

2

detector reading IP,i( )

Model-Based Iterative Image Reconstruction

e.g. transport equation

dete

ctor

s

sour

ces

Forward Model, F ( )

measureddetector readings IM,i

Updating Scheme

yes

final

newguess?

Experiment

sour

cesTheory:

predicted

Φ < εno

Analysis Scheme Φ ≈ { IM,i - IP,i( )}Σ

i

Error Value Φ ( )

2

detector reading IP,i( )

Model-Based Iterative Image Reconstruction

e.g. transport equation

dete

ctor

s

sour

ces

Iteration ExampleInitial Guess:

D = 1.0 cm2ns-1

iteratively change properties of mediumuntil measurements and predictions agree

Time Steps

SourceDetector

0.5

1.5

8 cm

0.5

1.58th Iteration

0

7

0 50

Inte

nsity

24th Iteration

0

7

0 50

2nd Iteration

0

7

0 50

measure-ments

predictions

Time Steps Time Steps

measure-ments

predictionsTime Steps (Δt = .05 ns)

0 50

D [c

m/n

s2]

D [c

m/n

s2]

Iterative Reconstruction

homogeneous initial guess

(D = 1 cm2ns-1)

homogeneous initial guess

(D = 1 cm2ns-1)

4 cm

Page 9: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

9

Image Reconstructionas an Optimization Problem

Gradient Path Conjugate Gradient Path

Contour plot of Φ(D,µa)Φ(D,µa)

Dµa

objective function

each image = 40x40 unknowns

Find image for which error value is smallest !error

Data Analysis Scheme

Goal : Find minimum of Φ(µa,D)

Measurement Data Y Predicted data U

χ2 Error FunctionObjective Function =

that uses information about gradient .Employ minimization technique

dΦ(µa,D)d(µa,D)

Φ(µa,D) (Ysdt - Usdt (µa,D))2

2σ2sdt =

s dΣ Σ Σ t

Gradient CalculationDivided Difference

Therefore,For problem with N unknowns

one needs 2N forwardcalculations to find gradient.

ζ1 ζ2

f(ζ2)

f(ζ1)

∂f(ζx) = ∂ζf(ζ2)- f(ζ1)ζ2 - ζ1

1 variable: 2 forward calculations needed to get gradient

ζx

f(ζx)

Gradient CalculationAdjoint DifferentiationThe evaluation of a gradient

requires never more than five times the effort of

one forward calculation!A. Griewank, “On Automatic Differentiation,” inMathematical Programming, M. Iri, K. Tanabe, eds.,Kluwer Academic Publishers, 1989, pp.83-107.

Therefore,adjoint differentiation method is

2N/5 times faster than”traditional” divided difference

scheme!

Divided Difference

Therefore,For problem with N unknowns

one needs 2N forwardcalculations to find gradient.

ζ1 ζ2

f(ζ2)

f(ζ1)

∂f(ζx) = ∂ζf(ζ2)- f(ζ1)ζ2 - ζ1

1 variable: 2 forward calculations needed to get gradient

ζx

f(ζx)

Page 10: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

10

For more details see:G. Abdoulaev, K. Ren, A.H. Hielscher, "Optical tomography as a constrained optimization

problem,” accepted for publication in Inverse Problems.K. Ren, G. Abdoulaev, G. Bal, A.H. Hielscher, "Frequency-domain optical tomography based

on the equation of radiative transfer,” accepted for publication in SIAM Journal of ScientificComputing.

K. Ren, G. Abdoulaev, G. Bal, A.H. Hielscher, "An algorithm for solving the equation ofradiative transfer in the frequency domain," Optics Letters 29(6), pp. 578-580 (2004).

G. Abdoulaev and A.H. Hielscher, "Three-dimensional optical tomography with the equation ofradiative transfer," Journal of Electronic Imaging 12(4), pp. 594-60 (2003).

A.H. Hielscher, A.D. Klose, U. Netz, J. Beuthan, "Optical tomography using the time-independent equation of radiative transfer. Part 1: Forward model," Journal of QuantitativeSpectroscopy and Radiative Transfer, Vol 72/5, pp. 691-713, 2002.

A.D. Klose, A.H. Hielscher, "Optical tomography using the time-independent equation ofradiative transfer. Part 2: Inverse model," Journal of Quantitative Spectroscopy andRadiative Transfer, Vol 72/5, pp. 715-732, 2002.

A.D. Klose and A.H. Hielscher, "Iterative reconstruction scheme for optical tomo-graphy basedon the equation of radiative transfer," Medical Physics, vol. 26, no. 8, pp. 1698-1707,1999.

A.H. Hielscher, A.D. Klose, K.M. Hanson, "Gradient-based iterative image recon-structionscheme for time-resolved optical tomography," IEEE Transactions on Medical Imaging 18,pp. 262-271, 1999.

www.bme.columbia.edu/biophotonics

• IntroductionX-ray vs optical tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

• IntroductionX-ray vs optical tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

Overview

Optical Imaging Modalities

TIMEDOMAIN

STEADY-STATEDOMAIN

FREQUENCYDOMAIN

com

ple

xity

/pri

ce o

f sy

stem

info

rmat

ion

co

nte

nt

100k

1 M

dat

a ac

qu

isit

ion

rat

e

1 image /min

10 images /sec

Frequency vs Steady-State Domain

steady-statedomain

reconstruction(ω = 0)

frequencydomain

reconstruction(ω = 600 MHz)

target

absorption coefficient

µa

scatteringcoefficient

µs‘

Page 11: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

11

• IntroductionX-ray vs optical tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

• IntroductionX-ray vs optical tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

Overview Instrument Diagram

LD 1

LD 2

PC DAQ

LDD 1

LDD 2

PS 1

PS 2

SC SC SC SC

laser diodes

rotating mirror coupler

tissue

detector channels

optical fibers

lock-in reference

Laser Diodes & Driver

Timing Board

Detector Unit

Opto-deMUXStudent

Iris & Folding Hemisphere

Arm

User Interface& Software

Fiber Optics

Up to 10 full tomographic images per second!Up to 10 full tomographic images per second!

Dynamic Optical Tomography System(DYNOT)

Dynamic Optical Tomography System(details)

Page 12: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

12

Detector and Timing Boards

Back plane

Detector modules(lock-in detection scheme,

individual gain settings2 amplification stages)

Timing BoardInterfacing Board

From power supply

To DAQ board

Dynamic Optical Tomography System(DYNOT)

Dynamic Range of Measurement

0.1 W

~ 10-5 •0.1 W

5 cm

~ 10-3 •0.1 W~ 10-1 •0.01 W

Dynamic Range of Measurement

~10-1• 0.1 W

~10-3 •0.1 W~ 10-5•0.1 W

0.01 W

5 cm

Page 13: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

13

Dynamic Range of Measurement

0.1 W

~10-5 •0.1 W

~ 10-3 •0.1 W

5 cm

Dynamic Range of Detectors

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10

Nominal OD value

Sign

al [

V ]

× 10

103

3 amplification stages to bring signal within 0.5 - 5 V

TIM

E

Src.1

Src. Pos.1 SETTL. TIME

SAMPLE

HOLDDATAREAD

Lock In

S/H32

detectorsin parallel

DAQ

TASK

Src. 2

move mirrorto new fiber,switch gains

targetillumination(1 source)

Src. Pos. 2 SETTL. TIME

SAMPLE

DATAREAD

Src. 3

Src. Pos. 3 SETTL. TIME

SAMPLE

HOLDDATAREAD

HOLD

Timing Scheme

6 m

se

c6

ms

ec

Performance Overview

~1% over 30 minLong term bias drifts

~100 dBBackground light reject

ValueParameter

1:109 (180 dB)Dynamic range

10 pW (rms)Noise equivalent power

1-2 msSettling time

~150 HzData acquisition rate

5-10 kHzModulation frequency

Page 14: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

14

For more details see:

A.H. Hielscher, A.Y. Bluestone, G.S.Abdoulaev, A.D. Klose, J. Lasker, M.Stewart, U. Netz, J. Beuthan, "Near-infrared diffuse optical tomography,"Disease Markers 18(5-6), pp. 313-337 (2002).

C.H. Schmitz, M. Löcker, J.M. Lasker, A.H. Hielscher, R.L. Barbour,"Instrumentation for fast functional optical tomography," Rev. ofScientific Instrumentation 73(2), pp. 429-439 (2002).

C.H. Schmitz, Y. Pei, H.L. Graber, J.M. Lasker, A.H. Hielscher, R.L.Barbour, "Instrumentation for real-time dynamic optical tomography," inPhoton Migration, Optical Coherence Tomography, and Microscopy, S.Andersson-Engels, M.F. Kaschke, eds., SPIE-The International Societyfor Optical Engineering, Proc. 4431, pp. 282-291, 2001.

www.bme.columbia.edu/biophotonics

• IntroductionX-ray vs optical tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

• IntroductionX-ray vs optical tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

Overview

Ventilated at:40-60 breaths/min1-1.5 cc/breath

325 gmSprague Dawley Rats

Anesthesia:Urethaneadministered i.p.

Regulate inspired[O2] and [CO2 ]

Animal Model

BP

Blood Pressure andderived respiratoryrate viaFemoral catheter

Probe Geometry

Animal’s head fixed in place using stereotaxic

Forehead shaven

Optical probe with fixed geometry positioned in line withlambda (λ) suture line, optodes begin 2 mm anterior to λ.

4 sources

12 detectors5.0mm

1.5

1.5

1.5

Ant.

1.5

1.5

λ

Page 15: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

15

Probe Location

posterior

anterioranimal’s right animal’s left

β

λ

Dorsal view

S2S1

S3 S4

D1

D4

D5 D7

D6 D8

D9

D12

Carotid Occlusion

Carotid Occlusion

left occlusionright occlusion 46.

2.0

13.

35.

-3.0

24.

Hb

[ µM

]

12.

-10.

-34.

-20.

-40.

0.4

TH

b[µ

M]

15.

-30.

-78.

-55.

-90.

-8.0

HbO

2 [µ

M]

Lt.Lt.

Two Wavelengths (λ1, λ2)

Reconstruction algorithm provides Δµa for each volume element (voxel) of finite element mesh

for each wavelength.

ε := extinction coefficient (from literature)

Δµaλ1 = εHb

λ1 Δ[Hb]+ εHbO2λ1 Δ[HbO2]

Δµaλ2 = εHb

λ2 Δ[Hb]+ εHbO2λ2 Δ[HbO2]

For each voxel we get two equations: .

Page 16: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

16

Two WavelengthsReconstruction algorithm provides Δµa

for each volume element (voxel) of finite element meshfor each wavelength.

Δ[Hb] =εHbO2λ2 Δµa

λ1 − εHbO2λ1 Δµa

λ2

εHbλ1 εHbO2

λ2 − εHbλ2 εHbO2

λ1

Δ[HbO2 ] = εHbλ1Δµa

λ2 − εHbλ2Δµa

λ1

εHbλ1 εHbO2

λ2 − εHbλ2 εHbO2

λ1

From this we can calculate changes in concentrations of oxy-hemoglobin, Δ[Hb], and dexoy-hemoglobin, Δ[HbO2],

for each voxel.

Movie

posterior

anteriorβ

λsource 1

detector 12

Δ Hb, HbO2, THb (source 1, detector 12)

Forepaw Stimulation Right Forepaw Stimulation

50-27.0 µM

rt. lt.

Δ[HbO2]**Oxyhemoglobin

Page 17: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

17

Reconstruction

Cut 3

Cut 10

Cut 7

Blood Volume

0.004-0.003

rt. lt.

0ΔΤHb [mM]

For more details see:

A.Y. Bluestone, M. Stewart, B. Lei, I.S. Kass, J. Lasker, G.S. Abdoulaev,A.H. Hielscher, "Three-dimensional optical tomographic brain imaging insmall animals, Part I: Hypercapnia," Journal of Biomedical Optics 9(5),pp. 1046-1062 (2004).

A.Y. Bluestone, M. Stewart, J. Lasker, G.S. Abdoulaev, A.H. Hielscher,"Three-dimensional optical tomographic brain imaging in small animals,Part II: Unilateral Carotid Occlusion," Journal of Biomedical Optics 9(5),pp. 1063-1073 (2004).

A.Y. Bluestone, Kenichi Sakamoto, A.H. Hielscher, M. Stewart, “Three-Dimensional Optical Tomographic Brain Imaging during Kainic-Acid-Induced Seizures in Rats,” in Physiologu, Function, and Structure fromMedical Images, A. Amini, A. Manduca, eds., SPIE-The InternationalSociety for Optical Engineering, Proc. 5746, pp. 58-66 (2005).

www.bme.columbia.edu/biophotonics

• IntroductionX-ray vs optical tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationStatic MeasurementsDynamic Measurements

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

• IntroductionX-ray vs optical tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationStatic MeasurementsDynamic Measurements

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

Overview Tumors in Mice

• Tumor is injected into mouse left kidney.

• Tumor continues to grow unless treated.

• Treatment with VEGF antagonist seeks to stop angiogenesis and reverse tumor growth.

• Tumor is injected into mouse left kidney.

• Tumor continues to grow unless treated.

• Treatment with VEGF antagonist seeks to stop angiogenesis and reverse tumor growth.

Page 18: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

18

Tumors in Mice

• Untreated tumors: highly vascularized

• Treated tumors: much less vascularized

• Currently: Many mice are sacrificed to get tumor data

• Only 1 time point per mouse

• Untreated tumors: highly vascularized

• Treated tumors: much less vascularized

• Currently: Many mice are sacrificed to get tumor data

• Only 1 time point per mouse

• We propose to use MRI and OT to study tumorsize and vasculature in vivo• We propose to use MRI and OT to study tumorsize and vasculature in vivo

Fluorescent stainingwith Lectin (10 x)

More Information:

Frischer JS, Huang JZ, Serur A, Kadenhe-Chiweshe A, McCrudden KW,O'Toole K, Holash J, Yancopoulos GD, Yamashiro DJ, Kandel JJ "Effects ofpotent VEGF blockade on experimental Wilms tumor and itspersisting vasculature"INTERNATIONAL JOURNAL OF ONCOLOGY 25 (3): pp. 549-553 (2004).

Huang JZ, Frischer JS, Serur A, Kadenhe A, Yokoi A, McCrudden KW, New T,O'Toole K, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Yamashiro DJ,Kandel JJ "Regression of established tumors and metastases by potent vascularendothelial growth factor blockade”PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THEUNITED STATES OF AMERICA 100 (13): 7785-7790 (2003)

Glade-Bender J, Kandel JJ, Yamashiro DJ, "VEGF blocking therapy in the treatment of cancer”EXPERT OPINION ON BIOLOGICAL THERAPY 3 (2): 263-276 APR 2003

Frischer Frischer JS, Huang JZ, JS, Huang JZ, Serur Serur A, A, KadenheKadenhe--Chiweshe Chiweshe A, A, McCrudden McCrudden KW,KW,O'Toole K, O'Toole K, Holash Holash J, J, Yancopoulos Yancopoulos GD, GD, Yamashiro Yamashiro DJ, DJ, Kandel Kandel JJ "Effects ofJJ "Effects ofpotent VEGF blockade on experimental potent VEGF blockade on experimental Wilms Wilms tumor and itstumor and itspersisting vasculature"persisting vasculature"INTERNATIONAL JOURNAL OF ONCOLOGY 25 (3): pp. 549-553 (2004).INTERNATIONAL JOURNAL OF ONCOLOGY 25 (3): pp. 549-553 (2004).

Huang JZ, Huang JZ, Frischer Frischer JS, JS, Serur Serur A, A, Kadenhe Kadenhe A, Yokoi A, A, Yokoi A, McCrudden McCrudden KW, New T,KW, New T,O'Toole K, O'Toole K, Zabski Zabski S, S, Rudge Rudge JS, JS, Holash Holash J, J, Yancopoulos Yancopoulos GD, GD, Yamashiro Yamashiro DJ,DJ,Kandel Kandel JJ "Regression of established tumors and metastases by potent JJ "Regression of established tumors and metastases by potent vascularvascularendothelial growth factor blockadeendothelial growth factor blockade””PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THEPROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THEUNITED STATES OF AMERICA 100 (13): 7785-7790 (2003)UNITED STATES OF AMERICA 100 (13): 7785-7790 (2003)

Glade-Bender J, Kandel JJ, Yamashiro DJ, "VEGF blocking therapy in the treatment of cancer”EXPERT OPINION ON BIOLOGICAL THERAPY 3 (2): 263-276 APR 2003

fMRI vs Optical Tomography

fMRI Optical TomographySpatial Resolution 0.1mm- 1mm 2mm - 10mm

Sensitive to Hb Hb, HbO2, cytochrome,(paramag.) etc, blood volume,

scattering properties

Speed 0.1 - 1Hz ~50 Hz

Cost > $500.000 ~ $100.000

Portability no yes

Continuous no yesMonitoring Combine high spatial resolution of fMRI and high speed and

sensitivity of optical tomography!

9.4 Tesla MRI (Bruker Avance 400)

Micro2.5 Imaging set35mm diameterLinearly polarizedBirdcage coil

Typical imaging time: 30 - 60 minutes (T1 sequence)

Page 19: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

19

Optical Tomography Set Up

Combine high spatial resolution of fMRI and high speed and sensitivity of optical tomography!

Typical imaging time: 10 - 20 minutes

Step 1

Lower mouse intoimaging head.

Step 2

Add matching fluid (Intralipid).

Step 3

Illuminate with light (Image!)

Axial Slice

(M)(M)

Optical MRI[[HbTHbT]]

Total HemoglobinTotal HemoglobinTumor

Kidney Back Muscle &Spinal Cord

Coronal Slice

(M)(M)

Optical MRI[[HbTHbT]]

Total HemoglobinTotal Hemoglobin

KidneyTumor

Compare Untreated vs. Treated

Untreated [Hb] (M) Treated [Hb] (M)

Untreated [HbT] Treated [HbT]

Untreated tumorhas higher [HbT]than treated tumorbecause of highervascularization.

Untreated tumorhas higher [Hb]than treated tumorbecause it is HbO2

starved.

Page 20: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

20

For more details see:

J. Masciotti, G. Abdoulaev, J. Hur, J. Papa, J. Bae, J. Huang, D. Yamashiro,J. Kandel, A.H. Hielscher, “Combined optical tomographic and magneticresonance imaging of tumor bearing mice,” in Optical Tomography andSpectroscopy of Tissue VII, B. Chance, R.R. Alfano, B.J. Tromberg, M.Tamura, E.M. Sevick-Muraca, eds., SPIE-The International Society forOptical Engineering, Proc. 5693, pp. 74-81 (2005).

www.bme.columbia.edu/biophotonics

• IntroductionX-ray vs optical tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingMolecular Fluorescence Imaging

• IntroductionX-ray vs optical tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingMolecular Fluorescence Imaging

Overview

Molecular Imaging

targets

molecular probes

Rheumatoid ArthritisLight NIRF

KRN transgene on theB6xNOD F1 background(K/BxN)Non transgenic B6xNOD.

Mahmood,Weissleder et alMGH-CMIRAntigen: glucose-6-phosphate isomerase (GPI)

(GPI) glycolytic enzynme is Antigen the T cells and immunoglobins attack.Only when GPI is expressed in synovial tissue rheumatoid arthritis developsDeveloped fluorescent markers that shine when GPI is present/

transgenic mousewith RA

mousewithout RA

Page 21: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

21

Cancer Detection Fluorescence Tomography

µ(x,y)

reconstruction of fluorescence source

profile S(x,y)

reconstruction of absorption and scattering

profile µ(x,y)

light source

light source

S(x,y)

Mfl

2) Emission1) Excitation

λx

Fluorescence Tomography

[ W cm-2 ]

µax→m absorption of

fluorophore

φ x

λm

[ W cm-2 ]

η quantum yieldof fluorophore

φm

fluorophore2) Emission

λm

Ω ⋅∇Ψm + µam + µs

m( )Ψm =14π

ηµax→mφ x + µs

m p Ω,Ω'( )4π∫ Ψm Ω'( )dΩ'

φ x = Ψ x Ω'( )dΩ'4π∫

Ω ⋅∇Ψ x + µax→ + µa

x→m + µsx( )Ψ x = S x + µs

x p Ω,Ω'( )4π∫ Ψ x Ω'( )dΩ'

1) Excitation

λx

Inverse Source Problem

Ω ⋅∇Ψ r,Ω( ) + µa + µs( )Ψ r,Ω( ) = S r,Ω( ) + µs p Ω,Ω'( )4π∫ Ψ r,Ω'( )dΩ'

φx

Page 22: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

22

Model-Based Image Reconstruction

Prediction P Experiment M

Forward Model

Inverse Model

1) Excitation

λx

µax→m

Model-Based Image Reconstruction

Forward Model

2) Emission

λm

φ x

Prediction P Experiment M

Forward Model

Inverse Model

1) Excitation

λx

µax→m

Model-Based Image Reconstruction

Prediction P

Image

Inverse Model

Experiment M

µax→m

Forward Model

2) Emission

λm

φ x

Prediction P Experiment M

Forward Model

Inverse Model

1) Excitation

λx

µax→m

Mouse Tomography

Page 23: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

23

Mouse Tomography

1 mm

3 mm

5 mm

7 mm

9 mm0

c [a

u]

For more details see:

A.K. Klose, V. Ntziachristos, A.H. Hielscher, "The inverse source problembased on the radiative transfer equation in molecular optical imaging,"J. of Computational Physics 202, pp. 323-345 (2005).

A.K. Klose, A.H. Hielscher, "Fluorescence tomography with the equationof radiative transfer for molecular imaging," Optics Letters 28(12), pp.1019-1021 (2003).

A.K. Klose, A.H. Hielscher, " Optical fluorescence tomography with theequation of radiative transfer for molecular imaging," in OpticalTomography and Spectroscopy of Tissue V, B. Chance, R.R. Alfano,B.J. Tromberg, M. Tamura, E.M. Sevick-Muraca, eds., SPIE-TheInternational Society for Optical Engineering, Proc. 4955, pp. 219-225(2003).

www.bme.columbia.edu/biophotonics

• IntroductionX-Ray Tomography vs Optical Tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

• IntroductionX-Ray Tomography vs Optical Tomography

• Model-based iterative image reconstructionBasic concepts and mathematical background

• InstrumentationGeneral optical imaging modalitiesDynamic optical tomography system

• ApplicationsBrain ImagingTumor ImagingFluorescence Imaging

Summary Acknowledgements I• Students:

J. Masciotti, X. Gu, J. Hur, F. Provenzano, J. Lasker,A. Bluestone, B. Moa-Anderson

• Postdoctoral Fellows: A. Klose, G. Abdoulaev, J. Papa

• Collaborators:Columbia

J. Kandel (Pediatrics & Surgery, Columbia)D. Yamashiro (Pediatrics & Surgery, Columbia)G. Bal (Applied Mathematics)

SUNY - DownstateMark Steward (Physiology & Pharmacology)R.L. Barbour (Pathology)C. Schmitz (NIRx Medical Technologies, Inc.)

Page 24: 1 Optical Tomographic Imaging of Small Animals Optical Tomographic Imaging of Small Animals

24

Acknowledgements II

• National Institute of Arthritis and Musculoskeletal andSkin Diseases (NIAMS) (RO1 AR46255-01 PI: Hielscher)

• National Institute for Biomedical Imaging andBioengineering (NIBIB) (R01 EB001900-01 PI: Hielscherand 5 R33 CA 91807-3 PI: Ntziachristos)

• National Heart, Lung, and Blood Institute (NHLBI)(SBIR 2R44-HL-61057-02)

• Whitaker Foundation (#98-0244 PI: Hielscher)

• Schering Research Foundation (PI: Klose)

More Information

.

www.bme.columbia.edu/biophotonics


Recommended