+ All Categories
Home > Documents > 1 Part II XAFS: Principles XANES/NEXAFS Applications.

1 Part II XAFS: Principles XANES/NEXAFS Applications.

Date post: 11-Jan-2016
Category:
Upload: baldwin-manning
View: 256 times
Download: 4 times
Share this document with a friend
Popular Tags:
51
1 Part II • XAFS: Principles • XANES/NEXAFS • Applications
Transcript
Page 1: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

1

Part II

• XAFS: Principles

• XANES/NEXAFS

• Applications

Page 2: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

2

X-ray Absorption Spectroscopy (XAS)

X-ray Absorption spectroscopy is often referred to as

- NEXAFS for low Z elements (C, N, O, F, etc. K-edge, Si, P, S, L-edges) or

- XAFS (XANES and EXAFS)

for intermediate Z and high Z elements.

Page 3: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

3

NEXAFS, XANES and EXAFS

• NEXAFS (Near Edge X-ray Absorption Fine Structures) describes the absorption features in the vicinity of an absorption edge up to ~ 50 eV above the edge (for low Z elements for historical reasons).

• It is exactly the same as XANES ( X-ray Absorption Near Edge Structures), which is often used together with EXAFS (Extended X-ray Absorption Fine Structures) to describe the modulation of the absorption coefficient of an element in a chemical environment from below the edge to ~ 50 eV above (XANES), then to as much as 1000 eV above the threshold (EXAFS)

• NEXAFS and XANES are often used interchangeably• XAFS and XAS are also often used interchangeably

Page 4: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

4

XAFS of free atom

In rare gases, the pre-edge region exhibits a series of sharp peaks arising from bound to bound transitions (dipole: 1s to np etc.) called Rydberg transitions

Page 5: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

5

XAFS of small molecules

Small molecules exhibit transitions to LUMO, LUMO + and virtual orbital, MO in the continuum trapped by a potential barrier (centrifugal potential barrier set up by high angular momentum states and the presence of neighboring atoms), or sometimes known as multiple scattering states

Page 6: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

6

XAFS: the physical process

Dipole transition between quantum states• core to bound states (Rydberg, MO below vacuum level,-ve energy, the excited electron remains in the vicinity of the atom)- long life time-sharp peaks• core to quasi-bound state (+ve energy, virtual MO, multiple scattering states, shape resonance, etc.); these are the states trapped in a potential barrier, and the electron will eventually tunnel out of the barrier into the continuum-short lifetime, broad peaks• core to continuum (electron with sufficient kinetic energy to escape into the continuum) - photoelectric effect.XPS &EXAFS

Page 7: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

7

XAFS: the physical process cont’

Scattering of photoelectron by the molecular potential – how the electron is scattered depends on its kinetic energy

• Low kinetic energy electrons - Multiple scattering (typically up to ~ 50 eV above the threshold, the region where bound to quasi-bound transitions take place); e is scattered primarily by valence and shallow inner shell electrons of the neighboring atoms - XANES region•High kinetic energy electrons (50 -1000 eV) are scattered primarily by the core electrons of the neighboring atoms, single scattering pathway dominates - EXAFS region

Page 8: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

8

Electron scattering

• Free electron (plane wave) scattered by an atom (spherical potential) travels away as a spherical wave

• Electrons with kinetic energy > 0 in a molecular environment is scattered be the surrounding atoms

• Low KE e- is scattered by valence electrons, undergoes multiple scattering in a molecular environment

• High KE e- is scattered by core electrons, favors single scattering

Multiple Scattering

Single Back- scattering

Page 9: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

9

Page 10: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

10

Page 11: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

11

Asymptotic wing of the coulomb potential supports the Rydberg states

States trapped in the potential barrier are virtual MO’s or multiple scattering states (quasi bound states)

bound states

free e with KE >0

Free atom

diatomic with unsaturated bondingN2, NO, CO etc.

NEXAFS of free atom & unsaturated diatomic molecules

*

Page 12: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

12

NEXAFS of Free Atom: Ar L3,2-edge

244 245 246 247 248 249 250 251

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

244.00 244.25 244.50 244.75

Re

lativ

e In

ten

sity

Photon Energy (eV)

123meV

2p3/2

- 4s

2p1/2

- 4s

3d

4d

5d

6d

3d

5d

6d

4d

Photon Energy

Ar (gas)[Ne]3s23p6

2p6 2p54s1

2p1/2 2p3/2 (lower binding)

j = l ± s

2p14s1Core hole

Hund’s rule

hv

Page 13: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

13

Rydberg transitions in HBr remain strong and a broad transition to molecular orbital emerges

HBrKr

NEXAFS of atom and small molecules

M5,4 (3d5/2,3/2)M5,4 (3d5/2,3/2)

MO

Page 14: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

14

Inte

nsity

(ar

b. u

nits

)

402.0401.5401.0400.5400.0Photon Energy (eV)

Vibronic structures in the 1 s to * transition

N2

1s - *

IP

π*

σ*

NEXAFS of Nitrogen

Page 15: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

15

C 1s C 1s

*

**

Molecular orbital illustration

C2H2CON2 MO axis

Page 16: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

16

Page 17: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

17

E = (E*-Eo) 1/r

Why would this correlation exist?i) Multiple scattering theoryii) Simple picture- particle in a box-

the shorter the bond the farther the energy separation

iii) Scattering amplitude Z

Page 18: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

18

Page 19: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

19

NEXAFS of molecules oriented on a surface(angular dependence of resonance intensity)

When molecules adsorb on a surface, their molecular axis is defined by the axis of the substrate. Therefore, angle dependent experiments can be made by rotating the substrate with respect to the polarization of the photon beam. Using selection rules, the orientation of the molecule on a surface can be determined.

H H C=CH H

C-C

Page 20: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

20

Carbon Allotropes

Diamond

Graphite

Graphene

Nanotube

Hexagonal Diamond(Lonsdaleite)

Page 21: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

21

core

LUMO

LUMO + 1

XANES of Benzene

Page 22: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

22

*1 C-H* *2

XANES systematic

Tom Regier unpublished

Incr

easi

ng n

o. o

f be

nzen

e ri

ngs

Page 23: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

23

Chemical systematic

CNT

C60

Page 24: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

24

Page 25: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

25

d - electron in transition metals

The dipole selection rule allows for the probing of the unoccupied densities of states (DOS) of d character from the 2p and 3p levels – M3,2 and L3,2-edge XANES analysis(relevance: catalysis)

Page 26: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

26

Transition metal systematic

3d 4d 5dFilling of the d band across the period

Dec

reas

ing

whi

telin

e in

tens

ity a

cros

s th

e pe

riod

as

the

d b

and

gets

fill

ed

Page 27: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

27

L3,2/M3,2 Whiteline and unoccupied densities of d states

• 3d metal: the L-edge WL for early 3d metals is most complex due to the proximity of the L3,L2 edges as well as crystal field effect; the 3d spin-orbit is negligible

• 4d metals: the L3,L2 edges are further apart, WL intensity is a good measure of 4d hole population

• 5 d metals: The L3 and L2 are well separated but the spin orbit splitting of the 5d orbital becomes important, j is a better quantum number than l, WL intensity is a good measure of d5/3 and d3/2 hole populations

Page 28: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

28

3d metals

Hsieh et al Phys. Rev. B 57, 15204 (1998)

Page 29: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

29

d- band filling across 5d row

5d metal d band

Ta

W

Pt

Au

Intensity (area under the curve) of the sharp peak at threshold (white line) probes the DOS

EFermi

T.K. Sham et al. J. Appl. Phys. 79, 7134(1996)

3p3/2-5d2p3/2-5d

Page 30: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

30

d - charge redistribution in 4d metals

Ag Pd 4d charge transfer upon alloying

I. Coulthard and T.K. Sham, Phys. Rev. Lett., 77, 4824(1996)

Page 31: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

31

Analysis of d hole in Au and Pt metal In 5 d metals with a nearly filled/full d bandsuch as Pt and Au, respectively, spin orbit coupling is large so d5/2 and d3/2 holes population is not the same

Selection rule: dipole, l = ± 1, j = ± 1, 0

L3, 2p3/2 5d5/2.3/2

L2, 2p1/2 5d3/2

Pt5d3/2

5d5/2 DOS

EF

T.K. Sham et al. J. Appl. Phys. 79, 7134(1996)

Page 32: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

32

Au L3

2p3/2 - 5d 5/2,3/2

Au L2

2p1/2 - 5d3/2

M. Kuhn and T.K. Sham Phys. Rev. 49, 1647 (1994)

Page 33: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

33

*

* Phys. Rev. B22, 1663 (1980)

Page 34: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

34

Probing depth profile with Probing depth profile with light: applications

Morphology Structure

Electronic properties

0.1-1 nm

nm-10 nm

10-103 nm

surface

near surface

bulk-like

hard x-ray

soft x-ray

Interface

X-ray probes:

(photon)photon

Light-matter Interaction:Absorption & Scattering

e ion

Page 35: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

35

Soft X-ray vs. hard X-ray

Soft x-ray usually cannot penetrate the entire sample measurements cannot be made in the transmission mode.Yield spectroscopy is normally used !

One absorption length (t1 = 1 or t1 = 1/ ) is a goodmeasure of the penetration depth of the photon

Example of one absorption lengths

Element density(g/cm3) hv(eV) mass abs (cm2/g) t1(m)Si 2.33 1840 3.32 x103 1.3

100 8.6 x104 0.05Graphite 1.58 300 4.02x104 0.16

Page 36: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

36

Soft x-ray spectroscopy: unique features

• XAFS measurement in the soft x-ray (short absorption length) region is often made using yield spectroscopyElectron yield (total, partial, Auger)X-ray fluorescence yield (total, selected wavelength)Photoluminescence yield (visible, light emitting materials)XEOL (X-ray excited optical luminescence) and TRXEOL (Time-resolved X-ray Excited Optical Luminescence)

• Since soft X - ray associates with the excitation of shallow core levels, the near-edge region (XANES/ NEXAFS) is the focus of interest for low z elements and shallow cores

Page 37: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

37

E.G.: the Interplay of TEY and FLY

c-BN

h-BN

Si(100)

a-BN

80 nm

Diamond-like

Graphite-like

Amorphous

Cubic BN film grown on Si(100) wafer? Preferred orientation of the h-BN film?

hv TEY FLY

Page 38: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

38

190 200 210 220

4

3

2

1

b

600

200

400

900

Inte

nsi

ty (

a.

u.)

Photon Energy (eV)

190 200 210 220

4

32

1a

600400200

900

Inth

esi

ty (

a.

u.)

Photon Energy (eV)

normal

glancing

TEY

FLY

c-BN

h-BN

Si(100)

a-BN

hv TEYFLY

X.T. Zhou et.al. JMR 2, 147 (2006)

Boron K-edge

*

I (1s - *) minimum

I (1s - *) maximum

*

Page 39: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

39

hvop

hvex

PLY

Mono

XEOLX

AF

S

Abs.

E

200 850

Wavelength (nm)

CB

VB

EF

XAFS and XEOL (Optical XAFS)

Edge

Page 40: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

40

40

• X-ray photons in, optical photons out Illustrations

BN nanowiresSi nanowiresZnS nanoribbons

XEOL - Energy Domain

Page 41: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

41

W.-Q. Han et al. Nanoletter. 8, 491-494 (2008)

Boron nitride nanotube (BNNT)

Liu et. al. (UWO) unpublished

BNNT

h-BN

B-O bond

Oxygen

Page 42: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

4242

Wavelength (nm)

200 300 400 500 600 700 800

In

ten

sit

y (

arb

. u

nit

s)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

460 nm 630 nm

530 nm

hvex(eV)

1890

1867

18511847.5

1845

18421840

1838.5

1830

Wavelength (nm)

300 400 500 600 700

Inte

nsit

y

0

1000

2000

3000

4000 1847.5 eV

1842 eV

difference curve

Photon Energy1840 1850 1860 1870

TE

Y

0

1

2

3Si K-edge

SiO2

Si

(a) (b)

Si K-edge XEOL of silicon nanowires

T.K. Sham et al. Phys. Rev. B 70, 045313 (2004)

Page 43: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

4343

Si nanowire

Photon Energy (eV)

1830 1840 1850 1860 1870 1880

Inte

nsi

ty (

arb

. u

nit

s)

0

10

20

30

40

PLY zero order

TEY

FLY

630 nm

460 nm

530 nm

SiSiO2

Photoluminescence: Si K-edge

Page 44: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

44

1050104010301020

Energy (eV)

332 nm

OL W XAS

1050104010301020

Energy (eV)

520 nm

OL ZB XAS

ZnS hetero-crystalline nano-ribbon

ZnS nw (wurtzite)

ZnS nw (zinc blend)

700600500400300

Wavelength (nm)

280 K 10 K Total

800700600500400300

Wavelength (nm)

Total 0-14 ns

520 nm

332 nm

X.-T. Zhou et al., J. Appl. Phys. 98, 024312(2005)

R.A. Rosenberg et al., Appl. Phys. Lett. 87, 253105(2005)

Page 45: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

45

45

• Timing - resolved XEOL (TRXEOL)• Illustrations

ZnO: Nanodeedle vs NanowireCdSe-Si: Hetero nanostructures

XEOL - Time Domain

Page 46: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

46

46

TRXEOL at APS

T.K. Sham & R.A. Rosenberg, ChemPhysChem 8, 2557-2567 (2007)

Page 47: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

47

47

Time-gated spectroscopy

• Select time window(s)

• Obtain spectra /yields of photons arriving within that window

15010050

Time (ns)

153 ns

Fast time window Slow time window

Page 48: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

48

48

285 290 2950.0

0.1

0.2

0.3

RuII (TEY) Ir(ppy)3 (TEY) Ru(bipy)3 (TEY)

Files: Ru.001-3; Plot: Ruthenium.opj

Ruthenium Powders: C 1s XAS

Norm

alized

Inten

sity (A

rbitra

ry Un

its)

Excitation Energy (eV)

CdSe -Si hetero nanoribbons hv = 1100 eV

total optical yield

0-20 ns

20-150 ns

Si

CdSe

R.A. Rosenberg et. al. Appl. Phys. Lett., 89, 243102(2006)

X.H. Sun et al. J. Phys. Chem., C, 111, 8475(2007)

Page 49: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

4949

CdSe-Si Heterostructure: Se L3,2 - edge

Page 50: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

50

50

STXM: Scanning Transmission X-ray Microscopy

STXM @ the SM beamline @CLS

J.G. Zhou, J. Wang, H.T. Fang, C.X. Wu, J.N. Cutler, T.K. Sham, Chem. Comm. 46, 2778 (2010)

Fresnel Zone Plates

30nm

Courtesy of A.P. Hitchcock, McMaster

Page 51: 1 Part II XAFS: Principles XANES/NEXAFS Applications.

51

S1S2 S9

S3

S7

S8

(S2)

Mico/nano spectroscopy of N-CNT

J. Zhou, J. Wang et al. J. Phys. Chem. Lett. (2010) DOI: 10.1021/jz100376v

TEM STXM

______500 nm


Recommended