+ All Categories
Home > Documents > 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

Date post: 21-Jan-2016
Category:
Upload: poppy-bennett
View: 219 times
Download: 0 times
Share this document with a friend
25
1 PD Loop Filt er 1/N Ref VCO Phase- Locked Loop LO
Transcript
Page 1: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

1

PDLoop Filter

1/N

RefVCO

Phase-Locked Loop

LO

Page 2: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

2

Frequency Divider Design Example

Yu Lin

Page 3: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

3

Frequency Divider approaches(1)

• Analog approaches– Regenerative injection-locked frequency

divider

– Basic mixer theory: fo=fin-fLO

– Examples • If fo=fLO, then fin=2fo

• If third harmonic of LO, fLO=3*fo

Page 4: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

4

Frequency Divider approaches(2)• Digital logic approaches

– Static Logic: bistable circuit as memory – Divider/2 Examples

• Edge-Triggered DFF.

Input

Output

D

CLKQ

Q

Input

OutputD

CLKQ

Q

Q

Q

D

Page 5: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

5

• Eg 2. JK FF– J=K=1, toggle

J

K

Q

Q

CLK

J

K

Q

Q

CLK

TH<   (tud1, tdd2) < T

CLK

Q

CLK

Q

tud1 tdd2

T

TH

Page 6: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

6

Frequency Divider approaches(3)

• Digital logic approaches– Dynamic Logic– No dedicated bistable circuit– Parasitic cap between node as storage element– Compared to static approach

• Faster • Simpler implementation• Frequency has lower limit

Page 7: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

7

Design of divide/2

– SiGe BiCMOS – Dynamic frequency divider– Input frequency: 40GHz– +/-20% input frequency range (32GHz~48GHz)– Work from 0 C to 100 C at 40GHz– Input 200mv – Output 200mV

Reinhold, M.; Dorschky, C.; Rose, E.; Pullela, R.; Mayer, P.; Kunz, F.; Baeyens, Y.; Link, T.; Mattia, J.-P., A fully integrated 40-Gb/s clock and data recovery IC with 1:4 DEMUX in SiGe technology, Solid-State Circuits, IEEE Journal of Vol.36,  Issue 12,  Dec. 2001 Page(s):1937 - 1945

Page 8: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

8

Page 9: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

90.5T<   (tud1, tdd2) < T

Cin

Cin

2C

2C

3C

3C

4C

4C

5C

5C

tdd1tud2

T

Page 10: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

10

• Four-phase clock• Fully differential• 0C or 90C phase-shifted

Cin

Cin

2C

2C

3C

3C

4C

4C

5C

5C

tdd1tud2

T

Page 11: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

11

Design key points• Find optimal current density for highest ft

• Choose appropriate current for the current sources• Choose appropriate resistors to set up good quiescent

points• Appropriate resistance and parasitic capacitance, delay

time (tdd1 and tud2) around 0.75*T

GHzf

GHzf

7.26

104075.0*2

1

3.53

104075.0

1

9

min

9

max

Page 12: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

12

Design key points(2)• Resistances are related to the quiescent point and input

frequency range, key point of robust design• Added buffer to do level shifting, improve the driving

capability and adjust gain • Driving capability increases when increase the current

Page 13: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

13

Simulation results(1)

The output of divider core at 27°C with normal model with 28G Hz input

Page 14: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

14

Simulation results(2)

The output of divider core at 27°C with normal model with 40G Hz input

Page 15: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

15

Simulation results(3)

The output of divider core at 27°C with normal model with 53G Hz input

Page 16: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

16

Simulation results(4)

Frequency range (GHz)

Slow Normal Fast

0C 26-55 29-55 39-76

27C 27-51 28-53 36-70

100C 27-42 24-44 33-56

Page 17: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

17

VCO Design Example

Chao Su

Chao Su; Thoka, S.; Kee-Chee Tiew; Geiger, R.L., A 40 GHz modified-Colpitts voltage controlled oscillator with increased tuning range, ISCAS '03. Proceedings of the 2003 International Symposium onVolume 1,  25-28 May 2003 Page(s):I-717 - I-720 vol.1

Page 18: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

18

A system with characteristic

If

It will oscillate at

0012

23 asasas

)0,0,0( 210

210

aaa

aaa

2

010 a

aa

Page 19: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

19

Basic Colpitts VCO

023

CCL

g

CCL

LGgCCs

CCL

CCGLss

L

m

L

pmL

L

Lp

CC

LGgCCCCGg

L

pmLLpm

Oscillate when

Assume for inductor

pLGQ

0

1

11

3

1

2

Q1

LCωQ

ωCg

L2T

TLm

C

gmTWhere

Then

Page 20: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

20

• For given L, gm, C, – Wide frequency range can be obtained with high Q

by tuning CL

– High Q can be achieved with reduction of effective GP

CC

Qg

CCLG

g

CLC

LGgCC

L

m

Lp

m

L

PmL

00

CC

Qg

L

m

0

Page 21: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

21

Modified Colpitts Circuit

• Achieve negative resistance by cross-coupled BJT

Page 22: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

22

Page 23: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

23

Simulation results

Page 24: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

24

Divide/2 Modified Colpitts VCO

Page 25: 1 PD Loop Filter 1/N Ref VCO Phase- Locked Loop LO.

25

Measurement Results

• Three VCOs with three different inductors

• fVCO=(28~31GHz)

• fd/2=(14.8~16GHz)

• Tuning range smaller compared to simulation


Recommended