+ All Categories
Home > Documents > 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National...

1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National...

Date post: 18-Dec-2015
Category:
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
33
1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard University December 7, 2004
Transcript
Page 1: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

1

SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY

SUSTAINABILITY

Thomas J. WilbanksOak Ridge National Laboratory

Center for International Development

Harvard University

December 7, 2004

Page 2: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

2

The Topic “Scale and Technological Change For Energy Sustainability”

Weaves Together Several Strands of Research Over Thirty Years or So:

• Energy for sustainability: meeting enormous needs for energy services while reducing environmental impacts

• Accelerating rates of technological change, especially in developing countries, to promote economic development

• Roles of geographic scale in understanding and encouraging actions in the interest of sustainability

Page 3: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

3

Energy For Sustainability:

• According to Our Common Journey, one of the most profound challenges for a sustainability transition, calling for new “knowledge-action collaboratives,” is increasing energy and materials services while reducing environmental impacts from the associated supply systems

• Analyses from the 1992 Rio Conference suggest the magnitude of this challenge

• My perspectives draw on nearly 30 years of research and assessment on energy and the environment:• In the U.S., an evolving discourse on what makes sense: e.g., from

1970s energy policy development to 2002+ CETE

• In developing countries, on the ground work in more than 40 countries over 20+ years

Page 4: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

4

Page 5: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

5

Accelerating Rates of Technological Change:

• Where my academic career started…

• Attention for 30 years to determinants, especially in developing countries:• Issues in technology transfer• Institution-building for technology transfer and use• Lessons learned from success experiences

• IEA book elements concerned with “technology deployment”

• Other work at ORNL on “energy transitions” -- not just where we want to get but also how to get from here to there

Page 6: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

6

Barbados Solar Water Heater

Page 7: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

7

Roles of Geographic Scale in Actions That Work Toward Sustainability:

• Related to the emphasis of sustainability science on place-based studies as crucibles for integrating nature-society systems and interactions

• The AAG “Global Change and Local Places” project, 1996-2001

• A variety of other recent experiences, such as NACC, IPCC/AIACC, MA, and place-based projects

Page 8: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

8

Page 9: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

9

The Basic Challenges in Accelerating An Energy Transition Are:

• Visualizing where we need to get

• Assessing the most likely strategies for getting there

• Identifying and addressing the principal challenges

• Plotting the course from here to there

Page 10: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

10

The Heart of Energy Sustainability Is The Most Fundamental Energy

Transition Since the Shift from Wood to Fossil Fuels:

• In the context of much higher global consumption of energy services than now

• Moving toward energy systems that feature, by the latter half of this century:• Much higher levels of efficiency than at present• Most of our energy services from the sun and/or the atom• Most of the prominent energy technologies different from

technologies we know now• A shift toward technological innovativeness, away from

physical resource endowment

Page 11: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

11

The Most Likely Strategies for Getting There:

• Recognize constraints:• Growing demands and needs• Limits on what current technologies can contribute

—Fossil too dirty—Nuclear too hazardous—Renewables too small and expensive—Efficiency linked to a depletable resource

• Push the boundaries of all the currently acceptable technology options:• Adding together multiple “wedges”• Paying specific attention to transitions: the “how” as well as the “what”

• Move beyond incrementalism:• Strengthen connections between basic research and applied research• Invest in R&D to make new options possible: e.g., near ambient temperature superconductivity,

affordable fuel cells, carbon capture• Consider new science/technology approaches: e.g., energy through biotechnology

Page 12: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

12

Limits on the Use of Current Energy Technologies For Getting There

(after Hoffert et al., Science, 2002)

• Efficiency improvement: physical limits, declining returns on investment, magnitude of growth on energy service demands

• Decarbonization: enormous requirements for capture and sequestration to make a difference globally, technology limitations

• Renewable energy: low areal power densities, intermittency, scale-up requirements to power an urban-industrial complex

• Nuclear fission: fuel availability, waste disposal, proliferation

• Nuclear fusion: not yet close to demonstrating net electric power production

• Geoengineering: costs, potentials for unintended consequences

Page 13: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

13

Page 14: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

14

An Example of an Energy Transition Challenge -- DOE’s Goal of Market-Competitive Hydrogen Vehicles by

2020:• Science and technology challenges include:

• High-density hydrogen storage

• Affordable fuel cells (non-noble metal catalysts)

• Deployment challenges include:• Safety codes and standards for hydrogen production,

storage, transmission, and use

• Centralized or decentralized hydrogen production?

• Fuel supply infrastructures: transmission, storage, point-of-purchase supply (hydrogen service stations?)

• Vehicle maintenance infrastructures

Page 15: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

15

CarbonCapture

HydrogenProduction

and Use

ImprovedBatteries

Catalysis

Separation Sciences

Separation Sciences

Microbial Processes

Nanostructured Materials (for Storage)

Electrochemistry

Welding and Joining Sciences

Superconductivity

Illustrating Linkages Between Basic Research and Applied Energy R&D: Focusing Inward on

the Applied Need

Page 16: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

16

Efforts to Trace Out Plausible Trajectories of Change Have Found

the Way Difficult: • Discomfort with developing scenarios of longer-term change,

e.g.,• Projecting technological change

• Projecting institutional change

• Discomfort with considering positive changes in policy conditions and constraints

• Challenges in addressing plausible decisions by major developing countries

• Avoiding tradeoffs between environmental sustainability and economic sustainability: e.g., efficiency improvement with abundant services, renewable energy sources with affordable energy, what “well-being” means

Page 17: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

17

Motor Vehicle Use In New Delhi, in thousands (Pew Center)

YearScooters and Motorcycles

Auto/

Rickshaws

Cars/

JeepsTaxis Buses Trucks All

1971 93 10 57 4 3 14 180

1980 334 20 117 6 8 36 521

1990 1,077 45 327 5 11 82 1,547

2000 1,568 45 853 8 18 94 2,584

2010 2,958 103 1472 14 39 223 4,809

2020 6,849 209 2760 28 73 420 10,339

Page 18: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

18

How Do We Get From Here to There -- Faster Than “Business as

Usual”?

• Accelerating technological change in key countries and localities

• Considering complementary roles of different scales of decision-making and action

• Toward the main elements of a strategy (a hypothesis?)

Page 19: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

19

What Do We Know About Accelerating Technological

Change?• Determinants of technological change:

• A complex process, involving interplays between technology characteristics and market characteristics

• Rooted in a changing portfolio of technologies available• A fragile equilibrium between “supply push” and “demand pull”

• Special circumstances in developing countries:• Determining needs for energy services, beyond current demands (IEA: 1.6

billion now without access to electricity)• Rapid growth in needs, especially if N-S gaps are to be reduced• Limited influence on global technology and policy agendas• Limited capacities to assimilate relatively rapid changes:

— Capacity to accept risks— Infrastructures for technology support: e.g., maintenance — Infrastructures for problem-solving

Page 20: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

20

Scale

Cost

InfrastructureSuitability

TechnologyDevelopment

TechnologyDemonstration

TargetNiche

Marketing

TechnologyAdaptation

Public PolicyAssistance

InstitutionalStructures

AppliedR&D

Social and EnvironmentalConsequences

MarketCompetitiveness

SocialChange

MarketSize

MarketCompetition

Basic

Research

Market

Saturation

Market

Penetration

Technology Deployment Process (Schematic)

Page 21: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

21

The Technology Development Process

TypicalTechnology

Use

CurrentCommercial

State-of-the-Art

CurrentTechnology

Frontier

State of Technology Development

Page 22: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

22

Technology Demand:Consumer Needs,

Consumer Preferences,Market Conditions

TechnologyDeployment

SupplyPush

Demand

Pull

Technology Supply:Services, Cost-

Competitiveness, Marketing

Balancing “Push” and “Pull Forces:

Page 23: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

23

Some Challenges Related To The Fruits of Global Energy R&D

Agendas:• Mismatches in technology characteristics:

• Scale• Affordability• Robustness

• Fine-grained differences in what makes sense: “one size does not fit all” vs. economies of scale

• Gaps in technology portfolios, e.g.:• Solar cooling• Energy and resource-efficient industrial complexes• Acceptable ways to dispose of nuclear wastes

• Weak knowledge-action collaboration, especially in developing countries: e.g., PACER in India

Page 24: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

24

There Are Reasons To Believe That Reaching Sustainable Energy System

Goals Will Need Local-Scale Initiatives As Well as Global-Scale Initiatives:

• Experiences since the late 1990s with global agreements and national policy actions contrasted with experiences with regional and local actions

• Based on GCLP, enhancing local potentials for GHG emission reduction depends on:• Recognizing that local stakeholders often possess knowledge

bases not reflected in available data bases

• Giving local communities greater control of a significant portion of their emissions

• Increasing a perception that emission reduction is in the interest of the area

• Giving local communities access to technological and institutional means that are not currently available

Page 25: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

25

Developing an Effective Multi-Scale Approach:

• Agency vs. structure

• Scale and function

• Scale differences• Variance• Knowledge bases

• Cross-scale interactions

Page 26: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

26

Page 27: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

27

Page 28: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

28

Page 29: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

29

Some Implications of This Story Line:

• Over-emphasis on top-down forces threatens sustainability: backlash from disenfranchised local stakeholders, insensitivity to local contexts, lack of empowerment of local creativity

• Over-emphasis on bottom-up forces threatens sustainability: importance of larger-scale driving forces, insensitivity to larger-scale issues, lack of information about linkages between places and scales, lack of access to resources

• But philosophies, processes, structures, and knowledge are lacking to assure balance and effective interactions

Page 30: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

30

Toward The Main Elements of a Strategy:

Seek to combine top-down and bottom-up roles, drawing on distinctive contributions of each but emphasizing the power of local initiatives:

Top-down roles: The technology portfolio, suited to local realities (relating R&D agendas more

closely to user needs) Availability of financing through distributed mechanisms (e.g., rural electrification in

DR (1980s), growing credit card use in W. India) Market and policy conditions that promote and empower local roles Supporting infrastructures, such as technology standards and problem-solving

Bottom-up roles: Relevance of the strategy to local agendas:

Contributions to reducing current local stresses Bundling of energy technology characteristics with other valued attributes (e.g., India

refrigerators) Demonstration of technology performance under local conditions Incentives for support by local parties with influence

Page 31: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

31

Toward The Main Elements of a Strategy (contd.):

Bottom-up roles (contd.): Importance of local leadership: identify and work through effective

local leaders who are interested A mosaic of different local responses as a part of the strategy,

rather than as a part of the problem

Central issues: Breaking new ground in complex and changing institutional

contexts: Overcoming top-down inclinations to exercise control Finding and building capacities of the right local partners Building relationships across scales that embody credibility and trust

(sometimes through boundary organizations): relationships are processes, not events -- can take time…

Turning isolated success experiences into models for others: challenges in generalizing from somewhat unique cases

Understanding that some (many?) promising efforts may fail because of external conditions

Page 32: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

32

Toward The Main Elements of a Strategy (contd.):

Central issues (contd.): Improving information exchanges involving local

parties: Appropriate and relevant structures and modes Key roles of local experts Potential applications of the information technology revolution

Why should the U.S. care (PCAST/CETE)? Because sustainability is so essential… Because energy sustainability is in our own interest:

Trade Environmental management

National security

Page 33: 1 SCALE AND TECHNOLOGICAL CHANGE FOR ENERGY SUSTAINABILITY Thomas J. Wilbanks Oak Ridge National Laboratory Center for International Development Harvard.

33


Recommended