+ All Categories
Home > Documents > 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection...

1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection...

Date post: 25-Dec-2015
Category:
Upload: judith-berry
View: 244 times
Download: 3 times
Share this document with a friend
72
1 Vibrational Spectroscopy Outlines - Quantum harmonic oscillator - Vibrational transitions - Selection Rules - Vibration of polyatomic molecules
Transcript
Page 1: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

1

Vibrational Spectroscopy

Outlines

- Quantum harmonic oscillator

- Vibrational transitions

- Selection Rules

- Vibration of polyatomic molecules

Page 2: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

2

Quantum (Mechanical) Harmonic Oscillator

A simple form of Schrödinger equation

Hamiltonian Operator

Eigenvalue Eigenfunction

For One Dimensional Schrödinger Equation

VTHH total ˆor

EH

Kinetic Operator Potential Operator

ExVdx

d

m

2 2

22

ExV

dx

d

m

2

22

2

Page 3: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

3

1D Schrödinger equation of a diatomic molecule for any states

xExxVdx

xdnnn

n

)(

2 2

22

For solving the Schrödinger Equation, we need to define the Eigen functions associated with the state.

It is commonly known that the exponential function is a good one to work with.

Let see a simple example

Page 4: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

4

Consider a given function:

Ex. Show that the function satisfies the Schrödinger equation for the 1D quantum harmonic oscillator. What conditions does this place on ? What is E?

2 xe

2 xe

Schrödinger equation

1D Schrödinger equation

EH

ˆ 22 xxtotal EeeH

2

22 2

22xx EeexV

dx

d

Page 5: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

5

For the left side of Eq.:

2

2

2

2

2 2

2

22

2

1 2

2

2

xx

xx

ekxdx

xed

exVdx

ed

ax

ax

axedx

de

2

udvvduuvd )( 22 2d ,

,1d ,xx xevev

uxu

22

22

22

2

2

2

2

2

) 2(

xx

xx

xxx

exe

eex

exexdx

xed

1st derivative :

2nd derivative :

2

2

1kxxV

2 2

22

2xexV

dx

d

Page 6: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

6

222

222

2

2

2 222

2

2 2 2

2 2

2

14

2)2(

2

2

1) 2(2

2

2

1 2

2

xxx

xxx

xx

ekxexe

ekxexe

ekxdx

xed

The last two terms must be

cancelled in order to satisfy the

Schrödinger eigenfunction

22

2

2

2 xxx

exedx

xed

ˆ 22 xxtotal EeeH

22

)2(2

E

Thus from the product:

Therefore, the energy eigenvalue:

) 2(2

ˆ 22 2

xxtotal eeH

Page 7: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

7

To find β, we use the cancellation of the last two terms

02

14

2

22 2 222

xx ekxex

2 ,

4 22

kk

2

1

22

22

kkE

Substitute β, we get the energy :

Therefore, the condition for β that makes the function satisfies the Schrödinger equation

k

From the classical treatment :

hvvh

E2

1)2(

22

1

2

1

hvE2

1

the energy

Page 8: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

8

Unlike classical treatment, quantum harmonic oscillation of diatomic

molecule exhibits several discrete energy states.

They can be better described using Hermite polynomial wave

functions :

,...2,1,0 and ,2/21 2

nexHAx x

nnn

Eigenfunctions

Vibrational energy states

4/1

n ! 2

1

nAn

2/ k

Normalization constant

xH n

21

Herrmite Polynomials 2/2xe

Page 9: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

9

HnHH nnn )()1(2)(2 21

Hermite polynomials

.

.

.

124816

128

24

2

1

244

33

22

1

0

H

H

H

H

H

The first few Hermite polynomials

The recurrence relation for Hermite polynomials

For n > 2

n = 0

n = 1

n = 2

n = 3

n = 4

xH n

21

x21

;

Page 10: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

10

2

2

2

2

2/13

4/13

3

2/124/1

2

2/1

4/13

1

2/14/1

0

329

124

4

x

x

x

x

exxx

exx

xex

ex

The first four Hermite polynomial wave functions, (n= 0,1, 2, 3)

Page 11: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

11

2

2

1

21 x

nnn exHAx

22

2

1

21

2

1

21

total x

nnn

x

nn exHAEexHAH

hvE2

1

2 xe ˆ 22 xxtotal EeeH

hvnE

hvnE

n

n

2

1)12(

)2

1(

The solution for the eigenstate is:

If

Solving the1D Schrödinger equation

If

The solution for the n eigenstate is:

or

Page 12: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

12

hvnEn 2

1)12(

Plot of the first few eigenfunctions of the quantum harmonic oscillator (red) together with the potential energy

Zero point energy

ground vibrational state

1st exited vib. state

 The energy of a system cannot have zero energy. 

Page 13: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

13

The Probability (ψ2(x))

Page 14: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

14

hvnhvnEn )2

1(

2

1)12(

The solution of quantum harmonic oscillation gives the energy:

n vibrational state

Evib

(harmonic)En-En-1

0 Ground state 1/2 h -

1 1st excited st. 3/2 h h

2 2nd 5/2 h h

3 3rd 7/2 h h

Where the vibrational quantum number (n) = 0, 1, 2, 3 …

Noted that the constant Evib= h is good for small n. For larger n, the

energy gap becomes very small. It is better to use anharmonic

approximation.

Page 15: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

15

Ex. for the Hermite polynomial wave functions at n =0 for

HCl

4/1

00! 02

1

A4/1

n ! 2

1

nAn

212 1076.8/ k

)cm 2991 kg, 1064.1( -127

2)2( ck

229822

1076.84/121

0

A

What is the normalization constant at this state?

Page 16: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

16

Ex. Using Hermite polynomials to show that the ground and first exited states wave function (n =0, n=1) of a diatomic molecule is

2/21 2x

nn exHAx

4/14/1

00! 02

1

A 121

0

xH

2

2

2/1

4/13

1

2/14/1

0

4 x

x

xex

ex

For n = 0

The general form of Hermite polynomials

22 2/14/1

2/121

0

4/1

00! 02

1 xx eexHx

Page 17: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

17

4/14/1

112

1

! 12

1

A

22 2/1

4/132/12

14/1

1

4)2(

2

1 xx xeexx

x21

2/21 2x

nn exHAx

For n = 1

xH 21

1 22

The recurrence relation for Hermite polynomials

Page 18: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

18

HnHH nnn )()1(2)(2 21

Hermite polynomials

.

.

.

124816

128

24

2

1

244

33

22

1

0

H

H

H

H

H

The first few Hermite polynomials

The recurrence relation for Hermite polynomials

For n > 2

n = 0

n = 1

n = 2

n = 3

n = 4

Page 19: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

19

Ex. Plot the ground state wave function (n =0) of HCl where observed frequency 2991 cm-1.

amu 9801.0

212 1076.8/ k

N/m 8.520k

2/4/1

0

2xex

-1cm 2991

20 2

1

2

1kxhvE

hvnEn

2

1

k

Ex 02

Page 20: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

20

Ex. Draw the vibrational energy diagram of the first five levels of a diatomic molecule using the solution of quantum harmonic oscillation :

hvnhvnEn

2

1

2

1)12(

The first five levels: n = 0, 1, 2, 3, and 4

The energy of a system cannot have zero energy, even at n=0. It is

called “Zero point energy”.

n En

0 1/2 h

1 3/2 h

2 5/2 h

3 7/2 h

4 9/2 h0 1

2

3 4

h

E

at n=0, E0 0

Zero point energy : the energy of the ground vibrational state

Page 21: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

21

Vibrational transitions

h0

1

2

34 n0 ni

Transitions

01 Fundamental

02 First overtone

03 Second overtone

04 Third overtone

- The fundamental transitions, n=1, are the most commonly occurring. - The overtone transitions n=2, 3, … are much weaker (low intensities).

Page 22: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

22

Ex. The harmonic vibrational frequency of HCl in wavenumbers is 2991 cm–1.

a) Calculate the energies of the first three vibrational levels in Joules and calculate zero point energy.

1-13

1-1-

10

s 10967.8

cm 2991s

cm10998.2

c

JhvE 200 1097.2

2

1

The ground state vibrational energy, n=0

JhvE 201 1091.8

2

3

The 1st excited state vibrational energy, n=1

JhvE 192 1049.1

2

5

The 2st excited state vibrational energy, n=2

hvnEn

2

1

Page 23: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

23

JhvE 200 1097.2

2

1

Zero point energy = The ground state vibrational energy

Zero point energy

b) Determine the energy and wavenumber for the fundamental, first-

overtone transitions

1-

1-1301

2001

cm 2991

s 10967.8)(1

10942.5

c

vv

EEh

v

JEEE

fundamental transition : n=0 n=1

1st overtone transition : n=0 n=21-

1902

cm 5982

1019.1

v

JEEE

Page 24: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

24

Determine the energy and wavenumber for the fundamental, first-

overtone transitions using the vibrational energy function for the

anharmonic correction below:

22

2

1

4

)(

2

1

n

D

hvhvnE

en

Ex. The vibration potential of HCl can be described by a Morse

potential with De=7.41 X 10-19 J, k = 516.3 N m-1 and = 8.967 X 1013

s-1 .

First of all, determine the vibrational energies of the ground

state (n=0) and the first and second excited states (n= 1 and 2)

Page 25: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

25

De=7.41 X 10-19 J = 8.97 X 1013 s-1

h = 5.944 X 10-20 J(h)2/4De= 1.192 X 10-21 JThe vibrational energies of the

ground state and the first and second excited states

22

2

1

4

)(

2

1

n

D

hvhvnE

en

J 1041.1

J 1064.8

J 1094.2

192

201

200

E

E

E

1-

2001

cm 2871

1070.5

v

JEEEFundamental transition : n=0 n=1

1-

1902

cm 5622

1012.1

v

JEEEFirst overtone transition : n=0 n=2

Page 26: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

26

Selection Rules

• The transition probability from state n to state m is only nonzero if the transition dipole moment satisfies the following condition:

where x = spatial variable μx = dipole moment along the electric field direction

mnx

0)()()(* xxx nxmmnx

...)())((0

0

x

xxx dx

dtxtx

Permanent Dynamics

0mnx

Page 27: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

27

Assuming transition from the ground state (n = 0) to state m

0mx

n = 0 n = m

0)(...)()( 00

0*

x

dx

dtxx

x

xxm

...)())((0

0

x

xxx dx

dtxtx

0)()()( 0*0 xxx xm

mx

dxxdx

dtxxxx

x

xmxm )()()()()( 0

0

*00

*

Truncate at the first derivative:

dxxtxx

dx

ddxxx m

x

xmx )()()()()( 0

*

00

*0

Page 28: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

28

2/21 2x

nnn exHAx

dxexHtxexHdx

dAA

dxexHexHAA

xxm

x

xm

xxmxm

mx

22

22

)()()(

)()(

2/10

2/1

00

2/10

2/100

0

Substitute with Hermite polynomial functions

= 0 (Orthogonal)

2/21

000

2xexHAx

2/21 2x

mmm exHAx

n = 0;

n = m;

X Odd functionIf m is odd Odd functionIf m is even Even function

0mnx m must be odd : 1, 3, 5, 7, …

(so permanent dipole is not relevant for IR absorption)

Page 29: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

29

Possible transitions )0( mnx

m must be odd : 1, 3, 5, 7, … n=0n=1n=0n=3 n=0n=5 …

n=0n=1

n=0n=3

n=0n=5

Integration give an area under the peaks

Integration

n=0n=1 0

n=0n=3 = 0

n=0n=5 = 0

Transitions

Page 30: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

30

Selection Rules

Selection Rules for IR absortion

n = 1

The only transition from n=0n=1 is allowed.

For the other an integration is zero. The transition is forbidden.

n = +1 absorption

n = -1emission

Page 31: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

31

How many vibrational modes are observed for a molecule?

A molecule consisting of N atoms

1 atom : 3 coordinates (x1, y1, z1)

N atoms : 3 N coordinates ((x1, y1, z1), (x2,y2,z2), (x3,y3,z3),…..)

* There are only 3 normal modes (coordinates) describing the translational motion.* There are 3 normal modes describing the Rotational motion of the molecules (along 3 axes)

Number of vibrational modes = 3N – 6Number of vibrational modes for linear molecules = 3 N-5

there are only 2 rotational modes

Vibration of polyatomic molecules

Position Representation

Degree of freedoms (Molecular motions)

Page 32: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

32

Vibration

Stretching vibration Bending vibration

SymmetricStretching

AsymmetricStretching

In plane Bending

Out of plane Bending

Page 33: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

33

H2O

- non-linear molecule

- N = 3

- number of vibrational normal modes = 3 X 3 –

6 = 3

3685 cm-1 3506 cm-1 1885 cm-1

H2O has three distinct vibrational frequencies.

Page 34: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

34

CO2

- linear molecule

- N = 3

- number of vibrational normal modes = 3 X 3 – 5

= 4

Because of xz and xy are degenerate, CO2 has three (not four) distinct vibrational frequencies.

Page 35: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

35

Benzene C6H6

- non-linear molecule

- N = 12

- number of vibrational normal modes = 3 X 12 – 6

= 30

There are 30 vibrational modes but only 20 distinct

vibrational frequencies.

Page 36: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

36

In the normal coordinate system, the vibrational Hamiltonian of polyatomic system can be written as:

2

1

2

63

1

22

22

N

iii

i

QkQ

H

... 2

1

2

2

1

2

2

1

22332

3

222222

2

222

1121

22

QkQ

QkQ

QkQ

H

...)()()()(63

1332211

N

iii QHQHQHQHH

Therefore, the wave function is of the form :

...)()()( )( 332211

63

1

QQQQN

iii

The total vibrational energy is:

...2

1

2

1

2

1

2

1...)( 332211

63

1331

hvnhvnhvnhvnnnnEN

iii

Page 37: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

37

Ex. The water molecule has three normal modes, with

fundamental frequencies: 1-bar = 3685 cm-1, 2-bar =

1885 cm-1, 3-bar = 3506 cm-1.

a) What is the energy of the (112) state?

2

12

2

11

2

11)112( 321 hvhvhvE

2

5

2

3

2

3321 vhcvhcvhc

)cm 3506(2

5)cm 1885(

2

3)cm 3685(

2

3 1-1-1- hchchc

J 1040.3 19

(i.e. n1=1, n2=1, n3=2)

Page 38: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

38

What is the energy difference between (112) and (100)?

J 1040.3)112( 19E

J 1063.1)100( 19E

J 101.77 10)63.14.3(

)100()112(1919

EEE

Page 39: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

39

Page 40: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

40

Page 41: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

41

Page 42: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

42

The solutions to these 3N-6 equations are the familiar Harmonic Oscillator Wavefunctions and Energies.

hvnEn 2

1)12(

The total vibrational energy is:

The Schrödinger equation is simplified by separation of variables. Therefore, one gets 3N-6 equations of the form

2

1

22

2

22

iiiiii

i EQkQ

Page 43: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

43

• Coupled system has two vibrational frequencies: the

symmetrical and antisymmetric modes.

• For symmetrical and asymmetrical, the vibrational

frequency is

1

2

1 kvsymmetric

21 2

2

1 kkv ricqntisymmet

Page 44: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

44

Ex. The vibration potential of HCl can be described by a Morse

potential with De=7.41 X 10-19 J, k = 516.3 N m-1 and = 8.97 X 1013 s-

1 .

Calculate

ee DxxV )(

Morse function of vibrational potential:

2)(1)( exxe eDxV

At the minimum energy (x=xe), the potential energy:

De = Dissociation energy, Do = bond energy

Page 45: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

45

en DE

The energy levels for the anharmonic correction:

The highest value of n consistent with the potential that is

ee

DnD

hvhvn

22

2

1

4

)(

2

1

22

2

1

4

)(

2

1

n

D

hvhvnE

en

De=7.41 X 10-19 J = 8.97 X 1013 s-1

h = 5.944 X 10-20 J(h)2/4De= 1.192 X 10-21 J

ee

DnD

hvhvn

22

2

1

4

)(

2

1

Page 46: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

46

Anharmonicity

2)(1)( exxe eDxV

eD

k

2

exxdx

Vdk

2

2

Page 47: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

47

Ex. for the Hermite polynomial wave functions at n =0 for

HCl

4/1

00! 02

1

A4/1

n ! 2

1

nAn

212 1076.8/ k

)cm 2991 kg, 1064.1( -127

2)2( ck

28928

102.2

2

14/118

1

A

What is the normalization constant at this state?

Page 48: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

48

Example for the Hermite polynomial wave functions at n =1

for HCl

4/1

11! 12

1

A4/1

n ! 2

1

nAn

182 102.2/ k

)cm 2991 kg, 1064.1( -127

2)2( ck

28928

102.2

2

14/118

1

A

-110 rads1063.5

What is the normalization constant at this state?

c2 2

Page 49: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

49

2/21 2x

nn exHAx

To plot the vibrational wave functions, we separate the functions

into three terms, An , Hn and2/2xe

xH n

21

The most complicate one is Herrmite Polynomials

An and are not difficult to calculate 2/2xe

Page 50: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

50

HnHH nnn )()1(2)(2 21

Hermite polynomials

.

.

.

124816

128

24

2

1

244

33

22

1

0

H

H

H

H

H

The first few Hermite polynomials

The recurrence relation for Hermite polynomials

For n > 2

n = 0

n = 1

n = 2

n = 3

n = 4

Page 51: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

51

2/21 2x

nn exHAx

4/14/1

00! 02

1

A

22 2/14/1

2/121

0

4/1

00! 02

1 xx eexHx

x21

For n = 0

10 H

Page 52: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

52

4/14/1

112

1

! 12

1

A

22 2/1

4/132/12

14/1

1

4)2(

2

1 xx xeexx

x21

2/21 2x

nn exHAx

For n = 1

xH 21

1 22

Page 53: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

53

4/14/1

2222

1

! 22

1

A

x21

2/21 2x

nn exHAx

For n = 2

22 2/124/1

2/124/1

2 124

)24(22

1 xx exexx

242)(424 22212

2 xxH

4/14/1

22

4/1

n 22

1

! 22

1;

! 2

1

An

An

Page 54: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

54

22/14/1

0xex

Example for the Hermite polynomial wave functions at n =1

for HCl

1) What is the normalization constant at this state?

1 ,2/21 2

nexHAx x

nn

4/1

11! 12

1

A

2/ k

4/1

n ! 2

1

nAn

2/ k

)cm 2991 kg, 1064.1( -127

Page 55: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

55

Example for the Hermite polynomial wave functions at n =1

for HCl

1) What is the normalization constant at this state?4/1

11! 12

1

A4/1

n ! 2

1

nAn

2/k

)cm 2991 kg, 1064.1( -127

2-

34

27-110-1

s kg 8.520

10626.6

)kg 1067.19801.0)(s cm10998.22)(cm 2991(

k

222 )2( ck

4/14/1

11 2

1

! 12

1

A

)cm 2991 kg, 1064.1( -127

s rad1063.5

)cm 2991s cm10998.22(

2 2

1-10

1-1-10

c

Page 56: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

56

EXAMPLE

k

tAtx ),sin()(

Answer the following questions.

a) What are the units of A? What role does have in this equation

b) Graph the kinetic and potential energies as a function of time

c) Show that the sum of the kinetic and potential energies is independent of time.

Page 57: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

57

a) What are the units of A?

Because x(t) has the units of length and the sine function is dimensionless, A must have the units of length.

The quantity sets the value of x at t = 0,because . )sin()0sin()0( AAx

Page 58: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

58

b) Graph the kinetic and potential energies as a function of timea) Show that the sum of the kinetic and potential

energies is independent of time.

Page 59: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

59

Page 60: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

SolutionFor the J=0 → J=2 transition,

The preceding calculations show that the J=0 → J=1 transition is allowed and that the J=0 → J=2 transition is forbidden. You can also show that is also zero unless MJ=0 .

04

1

4

1

8

5

2

cos

4

cos3

8

5sincos1cos3

8

5

0

242

0

22

0

20

ddz

Page 61: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

61

Page 62: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

62

Consider the relative motion via the center of mass coordinates.

Angular Momentum (L)

m

Page 63: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

63

Page 64: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

64

Page 65: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

65

Page 66: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

66

Page 67: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

67

Page 68: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

68

Page 69: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

69

Page 70: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

70

Page 71: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

71

Page 72: 1 Vibrational Spectroscopy Outlines -Quantum harmonic oscillator -Vibrational transitions -Selection Rules -Vibration of polyatomic molecules.

72


Recommended