+ All Categories
Home > Documents > 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP...

1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP...

Date post: 27-Mar-2015
Category:
Upload: ethan-zimmerman
View: 212 times
Download: 0 times
Share this document with a friend
Popular Tags:
23
1 Wideband Simulation Results Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM Lommaert Luc DAS/CSM 18-19 September, Brussels 18-19 September, Brussels
Transcript
Page 1: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

1

Wideband Simulation Results

European Organisation for the Safety of Air Navigation

AGCFG #3 & ACP WG-C#11AGCFG #3 & ACP WG-C#11

Lommaert Luc DAS/CSM Lommaert Luc DAS/CSM 18-19 September, Brussels18-19 September, Brussels

Page 2: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

2

Overview

1.1. Cellular Coms Capacity estimation for aviationCellular Coms Capacity estimation for aviation2.2. Scenario Scenario definitiondefinition for modelling CDMA2000 & UMTS for modelling CDMA2000 & UMTS3.3. Agilent - Wideband Simulations Agilent - Wideband Simulations GENERIC SIMULATOR GENERIC SIMULATOR4.4. Roke Manor / Siemens - Wideband Simulations Roke Manor / Siemens - Wideband Simulations SAAM SAAM

DATA DATA 5.5. ConclusionsConclusions

Page 3: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

3

CELLULAR CAPACITY : FREQUENCY RE-USE

POWER

FREQ.

CDMA

F1F2

F3F4

F5F6

F7F1 F1

F1F1

POWER

FREQ.

TDMA

TIME

GSM CLUSTER SIZE=7 CDMA CLUSTER SIZE=1

Page 4: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

4

Cellular Capacity - Interference Considerations

Propagation losses makeSignals decay with 4th - 5th order due to Rayleigh Fading ( buildings-trees..)

AVIATION LEADS TO 3D SITUATIONINTERFERENCE

3th TIER

2nd TIER

1st TIER

Propagation losses makeSignals decay with 2nd orderDue to Line of Sight adjacentcell INTERFERENCE will increase

Saved by Radio Horizon

Isc

Ioc

Page 5: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

5

Verification of compatibility of modelling tools

Define a scenario for modellingDefine a scenario for modelling

Implement the scenario on the Siemens and Agilent tool, Implement the scenario on the Siemens and Agilent tool, generate resultsgenerate results

Compare the results from the two modelling exercises and Compare the results from the two modelling exercises and justify any disparitiesjustify any disparities

Page 6: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

6

Common Modelling Parameters

Parameter Value Number of Rings of Interfering Cells 3 Cell Radius 100 km Minimum Aircraft Altitude 20,000 ft Maximum Aircraft Altitude 40,000 ft Activity Factor 30% Service Bit Rate 9600 bps Spread Bandwidth 1.2288 MHz Required Eb/No 4.7 dB Base Station Receiver Noise Figure 8 dB Base Station Antenna Gain 0 dB RF Frequency 1300 MHz Orthogonality Factor 1 Mean Aircraft / Cell Various Maximum Noise Rise 10 dB Maximum Cell Loading (Equiv 10 dB Noise Rise) 90% Maximum Transmit Power 33 dBm

Page 7: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

7

Direct Comparison of Results

Agilent Model includes extra-cell interferenceAgilent Model includes extra-cell interference

Conclusion drawn is that Roke and Agilent Methodologies are essentially the same and lead to comparable resultsConclusion drawn is that Roke and Agilent Methodologies are essentially the same and lead to comparable results

1%

10%

100%

40 42 44 46 48 50 52 54 56 58 60

Mean No of Users

Fai

lure

Rat

e

Roke Failure Rate

Agilent Failure Rate

At 2% Blocking, Mean No of Users

Roke = 46.8,

Agilent = 43.0

Page 8: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

8

Agilent’s Generic Capacity Simulator

Standard ideal POLE capacity equations

Adapted for:

• keep-alive channels

• activity factor

• orthogonality factor

• other-cell interference

Forward link capacity

Reverse link capacity

Erlang capacity calculation (through Monte Carlo simulation)

Bottleneck

STATIC

STATISTICUsers Random allocatedUniform distributed

Single cell , Infinite Power

Page 9: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

9

Simulation results Air interface specific parameters

CDMA2000CDMA2000 WCDMAWCDMA

Spreading rateSpreading rate 1.2288 Mcps1.2288 Mcps 3.84 Mcps3.84 Mcps

User traffic data rateUser traffic data rate 9.6 Kbps9.6 Kbps 12.2 Kbps12.2 Kbps

PGPG 128128 314.75314.75

FL keep-alive to total BS Tx powerFL keep-alive to total BS Tx power -7 dB-7 dB -7 dB-7 dB

FL Eb/No targetFL Eb/No target 4.5 dB4.5 dB 7.4 dB7.4 dB

RL keep-alive to user traffic powerRL keep-alive to user traffic power -3.75 dB-3.75 dB -2.69 dB-2.69 dB

RL Eb/No target mean value ( no Ant. Div)RL Eb/No target mean value ( no Ant. Div) 6 dB6 dB 8.3 dB8.3 dB

RL Eb/No target standard deviationRL Eb/No target standard deviation 0.5 dB0.5 dB 0.5 dB0.5 dB

Values based on: 3GPP2 C.S0010 (BS) and C.S0011 (MS)

3GPP 25.104 (BS) and 25.101 (MS)

Page 10: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

10

Simulation results :Ideal STATIC capacity

Cell rangeCell rangeRelative other-cell Relative other-cell interference factorinterference factor

CDMA2000 RLCDMA2000 RLMobile usersMobile users

CDMA2000 FLCDMA2000 FLMobile usersMobile users

≈ ≈ 50 km50 km 1.9631.963 21.821.8 63.063.0

≈ ≈ 100 km100 km 1.2211.221 28.728.7 98.498.4

≈ ≈ 150 km150 km 0.8530.853 34.334.3 136.4136.4

Note:

• STATIC capacity : rough & optimistic estimation

• The FL capacity is 3 to 4 times larger than the RL capacity

• Larger cells see less interference from neighboring cells → more users

Page 11: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

11

Final Simulation results Reverse link Erlang capacity

Cell size impact

CDMA2000 9,6 kbps

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

0 5 10 15 20 25 30 35 40 45

average number of users per cell

blo

ckin

g r

ate

cell range = 50 km

cell range = 100 km

cell range = 150 km

Eb/No = 6 dBCPICH/TCH=-3,75dB

Page 12: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

12

Simulation results Reverse link Erlang capacity

Antenna diversity impact

WCDMA RL 12.2 kbps with and without antenna diversity

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

0 10 20 30 40 50 60 70 80

average number of users/cell

blo

ckin

g r

ate

without BS antenna diversity

with BS antenna diversity

Page 13: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

13

CDMA2000 9.6 kbps with RMR optimized system parameters (Eb/No, R-PICH/TCH )

Reverse link Erlang capacity

30 35 40 45 50 55 6010

-5

10-4

10-3

10-2

10-1

100

Average number of mobile stations per cell

Blo

ckin

g ra

te

CDMA reverse link capacity simulation

Simulation ID: CDMA2000_9.6_kbps_4

noise rise = 10.0 dB

noise rise = 15.0 dBnoise rise = 20.0 dB

noise rise = inf dB

System parameters

BS separation = 155.885 kmBS antenna heigth = 20 mMin MS alt = 0 mMax MS alt = 13716 mPropagation loss power law = 2Orthogonality factor = 0.9Max MS Tx power = 2 WattMS antenna gain = 0 dBBS antenna gain = 0 dBBS noise figure = 8 dBCarrier frequency = 1300.000000 MHzSpreading bandwidth = 1.228800 MHzTraffic1 data rate = 9.600 kbpsTraffic2 to traffic1 power ratio = -1000 dBKeep-alive to traffic1 power ratio = -7 dBTraffic channel activity factor = 0.1Average Eb/No = 4.7 dBEb/No standard deviation = 0 dB

Page 14: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

14

Roke Manor / Siemens – Wideband Simulations

Page 15: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

15

Simulation Methodology

TrafficScenarioDefinition

COCRAnalysis

SAAM DataProcessing

SimulationDeployment

DefinitionSimulations

Analysis ofResults

Radio SystemParameterDerivation

Page 16: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

16

LSAZMP4 Service Volume

Page 17: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

17

‘Wraparound’

A

B

C

D

a

a

a

a'a'

a'

Page 18: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

18

Total Number of Aircraft

Total Number of Aircraft in the Simulation Area(Area: Switzerland)

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400 1600

Time (in minutes)

Tota

l Num

ber

of A

ircra

ft in

the

Sim

ulat

ion

Are

a

2020

2025

Page 19: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

19

Max Number of Aircraft in anyBS Sector

Maximum Number of Aircraft in any Sector(Area: Switzerland)

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600

Time (in minutes)

Max

imum

Num

ber

of A

ircrf

atin

any

Sec

tor

2020

2025

Page 20: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

20

cdma2000 Simulation Parameters

cdma2000 Release Ccdma2000 Release C Radio Configuration 1, Spreading Rate 1 (1.2288 Mcps)Radio Configuration 1, Spreading Rate 1 (1.2288 Mcps) Four Quasi-Orthogonal Codes with equal BS PowerFour Quasi-Orthogonal Codes with equal BS Power Max BS Tx Power = 43 dBm, Pilot Power 20%. Max 20% Power/userMax BS Tx Power = 43 dBm, Pilot Power 20%. Max 20% Power/user Max Aircraft Tx Power = 33 dBmMax Aircraft Tx Power = 33 dBm

Assumptions: Two Antenna Base Station Diversity, 0.2% FER, 1dB Implementation LossAssumptions: Two Antenna Base Station Diversity, 0.2% FER, 1dB Implementation Loss

CDMA 2000

Required Signal

9.6 kbps 1.2 kbps

Eb/No (dB) Eb/No (dB)C/I (dB) C/I (dB)

Basestation Receiver

Aircraft Receiver

4.7

4.7

-16.4

-16.4

4.7 -25.4

Page 21: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

21

Simulations Results + Future work

COCR COCR 9,6 kbps 10% activity 9,6 kbps 10% activity Reverse Link Limited (as expected)Reverse Link Limited (as expected) Switzerland scenario presents the ‘greatest challenge’Switzerland scenario presents the ‘greatest challenge’

Higher number of aircraftHigher number of aircraft Second cdma2000 carrier was required in this scenario Second cdma2000 carrier was required in this scenario

Total Bandwidth Required 2025Total Bandwidth Required 2025 cdma2000 – 2 (carriers) x 2 (duplex) x 1.25 MHz = 5 MHzcdma2000 – 2 (carriers) x 2 (duplex) x 1.25 MHz = 5 MHz UMTS – 1 (carrier) x 2 (duplex) x 5 MHz = 10 MHzUMTS – 1 (carrier) x 2 (duplex) x 5 MHz = 10 MHz

ALL SIMULATIONS DONE ON GREEN FIELD SPECTRUMALL SIMULATIONS DONE ON GREEN FIELD SPECTRUM

L-band Interference study :L-band Interference study : methodology methodology M.1639/1477M.1639/1477

Page 22: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

22

CONCLUSIONS

Large capacity improvementsLarge capacity improvements Eb/No targetEb/No target Keep-alive channel power fractionKeep-alive channel power fraction SectorisationSectorisation

Both standards forsee in system parameters adaptationBoth standards forsee in system parameters adaptation Support of all QoS (Conv, Stream, Interactive, Background) Support of all QoS (Conv, Stream, Interactive, Background) Support of multiple coders/decoders (Viterbi, Turbo)Support of multiple coders/decoders (Viterbi, Turbo) Support of multiple frame sizes ( 10,20,40,80ms)Support of multiple frame sizes ( 10,20,40,80ms)

Use Packetdata channel i.s.o dedicated traffic channelsUse Packetdata channel i.s.o dedicated traffic channels COCR requirements met with FDD 2 x 5 MHz UMTS or 2 x COCR requirements met with FDD 2 x 5 MHz UMTS or 2 x

1,25MHz CDMA20001,25MHz CDMA2000

Page 23: 1 Wideband Simulation Results European Organisation for the Safety of Air Navigation AGCFG #3 & ACP WG-C#11 Lommaert Luc DAS/CSM 18-19 September, Brussels.

23

Thank You …


Recommended