+ All Categories
Home > Documents > 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

10-2 Wang Updated Tappi 2007 Nano_060707 Jk

Date post: 02-Jun-2018
Category:
Upload: ananatasa2005
View: 218 times
Download: 0 times
Share this document with a friend

of 22

Transcript
  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    1/22

    2007 International Conference on

    Nanotechnology for the Forest Products Industry

    Knoxville Convention Center, June 13-15, 2007

    Siqun Wang, Seung-Hwan Lee, Cheng Xing,

    George M. Pharr

    University of Tennessee

    Nano-Mechanical Properties of Cellulose Fibers

    by Nanoindentation

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    2/22

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    3/22

    IntroductionsSiqun Wang

    To design fiber reinforced polymer composites, we

    need to know

    Matrix

    Fiber

    Interphase

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    4/22

    Research Goals and Materials

    Objectives:

    To investigate nano mechanical properties of cellulose fibers by nanoindentation;

    To compare data between nanoindentation and conventional tensile test;

    To understand what could happen if fiber diameter is too small or fiber cell wall is too

    narrow.

    Siqun Wang

    Materials:Two types of Lyocell fiber

    Refined wood fibers under different

    refining steam pressure

    The image of refining fiber a) juvenile wood at 2 MPa, b) mature wood

    at 2 MPa, c) juvenile wood at 18 MPa, and d) mature at 18 MPa.

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    5/22

    Research Goals and MaterialsSiqun Wang

    Materials:

    Refined wood fibers under different refining steam pressure

    2 Bars 12 Bars 18 Bars

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    6/22

    Experimental MethodSiqun Wang

    Lyocell fiber:

    Tensile test (Tensile modulus)Nanoindentation (hardness, elastic modulus,

    creep)

    X-ray diffraction (crystallinity)

    AFM

    Refined wood fibers under different refining

    steam pressure:Nanoindentation (hardness, elastic modulus,

    creep)

    AFM

    Nanoindentation influenced by neighboring

    materials via finite element analysisSingle fiber nano-

    mechanical testing system

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    7/22

    Nanoindentation Instrument and Indentation

    Procedure

    Schematic of the NANO II

    Indenter

    Indent

    marks

    s

    Le30

    LfLf Le

    h63.5

    77

    S = 2

    Le/tan30

    H = Lf + Le

    S = 2h (tan65.3 )/(tan30 )

    Lf = h (tan77 ) Le = h(tan65.3 )

    H = h (tan77 + tan 65.3)

    Geometry of nano-indenter

    (Berkovich diamond tip)

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    8/22

    Nanoindentation Instrument and Indentation

    Procedure

    2

    max

    5.24ch

    P

    A

    PH

    Hardness (H):

    Indentationforce,

    P

    Displacement, h

    dP/dh

    Loading

    Unloading

    hc

    Typical load-displacement curve

    Adh

    dPE

    r

    2

    1

    1

    2

    2 111

    i

    i

    r

    ss

    EE

    E

    Elastic modulus (Es):

    (Oliver and Pharr)

    Vs and Vi (0.07) are the Poissons ratios of

    the specimen and indenter, respectively.

    Eiis the modulus of theindenter (1141 GPa).

    Eris reduced elastic modulus, which accounts

    for the fact that elastic deformation occurs in

    both the sample and the indenter.

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    9/22

    Nanoindentation Instrument and Indentation

    Procedure

    Load,

    P

    Displacement, h

    With single experiment, cycles of

    indentation, each of which consistsof incremental loading and partialunloading, are performed until afinal desired depth is attained.

    Each loading-and-partial unloadingcycle provides a series of values ofhardness and elastic modulus.

    Continuous stiffness measurement: One of the significantimprovements in nanoindentation test

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    10/22

    ResultsLyocell fiberSiqun Wang

    Tensile modulus of Lyocell fibers by single fiber tensile test and

    sample codes for specimens

    Sample Code Fiber direction Tensile modulus

    (GPa)

    Index of crystallinity

    (%)

    Lyo13 (L) Longitudinal 12.64 (2.94) 67.5

    Lyo13 (T) Transverse - -

    Lyo10 (L) Longitudinal 10.36 (1.88) 65.4

    Lyo10 (T) Transverse - -

    The value in parenthesis is the standard deviation (SD)

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    11/22

    ResultsLyocell fiberSiqun Wang

    Hardness and elastic modulus of Lyocell fibers measured by

    continuous nanoindentation

    Sample Mean value from 150

    to 300 nm depth (GPa)

    Unloading value at final

    indentation depth (GPa)

    H mean E mean Hu Eu

    Lyo13 (L) 0.44

    (0.06)

    13.19

    (0.10)

    0.43

    (0.05)

    13.10

    (0.10)

    Lyo13 (T) 0.32

    (0.02)

    6.77

    (0.28)

    0.33

    (0.02)

    6.69

    (0.25)

    Lyo10 (L) 0.33

    (0.05)

    11.51

    (1.27)

    0.32

    (0.06)

    11.42

    (1.25)

    Lyo10 (T) 0. 30

    (0.01)

    6.09

    (0.14)

    0. 30

    (0.01)

    6.01

    (0.13)

    Each is the average value from 5 indents. The value

    in parenthesis is the standard deviation (SD).

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    12/22

    ResultsLyocell fiberSiqun Wang

    Hardness and elastic modulus of Lyocell fibers measured by continuous

    nanoindentation

    Sample Mean value from

    150 to 300 nm depth

    (GPa)

    Unloading value at final

    indentation depth (GPa)

    H mean E mean Hu Eu

    Lyo13 (L) 0.44

    (0.06)

    13.19

    (0.10)

    0.43

    (0.05)

    13.10

    (0.10)

    Lyo13 (T) 0.32

    (0.02)

    6.77

    (0.28)

    0.33

    (0.02)

    6.69

    (0.25)

    Lyo10 (L) 0.33

    (0.05)

    11.51

    (1.27)

    0.32

    (0.06)

    11.42

    (1.25)Lyo10 (T) 0. 30

    (0.01)

    6.09

    (0.14)

    0. 30

    (0.01)

    6.01

    (0.13)

    Each is the average value from 5 indents. The

    value in parenthesis is the standard deviation

    (SD).

    Sample

    Code

    Fiber direction Tensile

    modulus

    (GPa)

    Index of

    crystallinity

    (%)

    Lyo13 L) Longitudinal 12.64

    (2.94)

    67.5

    Lyo13 T) Transverse- -

    Lyo10 L)

    Longitudinal 10.36

    (1.88)65.4

    Lyo10 T) Transverse- -

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    13/22

    ResultsLyocell fiberSiqun Wang

    Creep behaviors of Lyocell fibers

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 100 200 300

    Holding time (s)

    Load(mN)aaa

    200s

    Hold segment

    Loading

    Experimental scheme for creep

    test by nanoindentation.

    -3.45

    -3.35

    -3.25

    -3.15

    -0.7 -0.6 -0.5

    Log () (GPa)

    Log

    ()(sec

    -1

    )

    Lyo8 (T)

    Lyo8 (L)

    Lyo15 (T)

    Lyo15 (L)

    Lyo10 (T)

    Lyo13 (T)

    Lyo10 (L)

    Lyo13 (L)

    -3.45

    -3.35

    -3.25

    -3.15

    -0.7 -0.6 -0.5

    Log () (GPa)

    Log

    ()(sec

    -1

    )

    Lyo8 (T)

    Lyo8 (L)

    Lyo15 (T)

    Lyo15 (L)

    Lyo10 (T)

    Lyo13 (T)

    Lyo10 (L)

    Lyo13 (L)

    The plot of indentation strain rate () and contact

    stress (hardness, ) obtained from data

    corresponding to the holding segment. Load:

    1000 N, Loading rate: 20 N/s, Holding time200 s.

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    14/22

    ResultsRefined wood fibersSiqun Wang

    Summary of nanoindentation results of fiber cell wall

    Note: Stdev: standard deviation; CV: coefficients of variation; Ci: indention creeps; n: the number of indents.

    Property/pressure 2 bars 4 bars 6 bars 8 bars 10 bars 12 bars 14 bars 18 bars

    Es

    GPa

    H

    GPa

    Ci

    %

    n

    Mean

    Stdev

    CV

    Mean

    Stdev

    CV

    Mean

    Stdev

    CV

    Number

    21.35

    2.59

    12.13

    0.50

    0.04

    8.00

    7.58

    0.86

    11.35

    31

    18.62

    2.97

    15.95

    0.47

    0.062

    13.19

    8.72

    1.56

    17.89

    27

    15.96

    2.41

    15.10

    0.47

    0.07

    14.89

    8.87

    1.25

    14.09

    23

    16.83

    2.53

    15.03

    0.45

    0.05

    11.11

    8.63

    1.29

    14.95

    28

    15.32

    2.51

    16.38

    0.43

    0.067

    15.58

    8.24

    1.09

    13.23

    30

    14.05

    2.87

    20.43

    0.43

    0.079

    18.37

    9.68

    1.79

    18.49

    28

    13.09

    3.42

    26.13

    0.39

    0.078

    20.00

    12.30

    3.89

    29.25

    14

    12.22

    3.29

    26.92

    0.37

    0.095

    25.68

    13.08

    3.91

    29.89

    13

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    15/22

    ResultsFinite element analysisSiqun Wang

    Poplar cell wall

    Manchurian Ash

    cell wall

    Adhesive transitionzone from the fiber

    to matrixMatrix

    Fiber

    Indents

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    16/22

    ResultsFinite element analysisSiqun Wang

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    17/22

    ResultsFinite element analysisSiqun Wang

    Fiber

    E=18.65Gpa,H= 0.69 Gpa

    Epoxy

    E =4.67 Gpa ,H =0.16 Gpa

    Perform one simulationwhen the location of the

    flat punch moves to the

    left or the right with every

    1um

    Rigid Flat punch

    radius =1um1um

    8 simulations 8 simulations

    Total 16 simulations

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    18/22

    ResultsFinite element analysisSiqun Wang

    Boundary Conditions:

    Penetration depth: 50nm applied to the indenter Axisymmetry BCs: applied to the center face.

    Roller BC: applied to the bottom face.

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    19/22

    ResultsFinite element analysisSiqun Wang

    Mesh Rigid flat cylindrical punch

    Symmetry

    plane

    100um

    1

    00um

    100um

    Fiber

    Matrix

    100um

    Rigid flat cylindrical punch

    Symmetry

    plane

    100um

    1

    00um

    100um

    Fiber

    Matrix

    100um

    100um

    1

    00um

    100um

    Fiber

    Matrix

    100um

    Rigid flat cylindrical punch

    Symmetry

    plane

    100um

    1

    00um

    100um

    Fiber

    Matrix

    100um

    Rigid flat cylindrical punch

    Symmetry

    plane

    100um

    1

    00um

    100um

    Fiber

    Matrix

    100um

    100um

    1

    00um

    100um

    Fiber

    Matrix

    100um

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    20/22

    ResultsFinite element analysisSiqun Wang

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    0.040

    0.045

    -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

    Centerline location of flat cylinderical punch (um)

    Stiffness

    (mN/nm)

    FEA

    Sneddon's solution-Epoxy

    Sneddon's solution-Fiber

    Fiber

    Epoxy

    Variation of the stiffness measured from the FEA with position from the interface. The punchradius is 1 m.

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    21/22

    SummarySiqun Wang

    Nanoindentation with continuous stiffness measurement is well

    suited to the evaluation nano-mechanical and time-dependentmechanical properties of cellulose fibers in longitudinal and

    transverse direction. There is no significant difference between

    modulus values obtained by nanoindentation and single fiber

    tensile test.

    There are some advantages using nanoindentation than tensile

    test.

    Using existing nanoindentation technique it would be difficult to

    calculate the exact mechanical properties without the effect of

    neighboring material property in at least 8 times smaller region

    than indent size.

  • 8/11/2019 10-2 Wang Updated Tappi 2007 Nano_060707 Jk

    22/22

    AcknowledgementsSiqun Wang

    Haitao Xu, Yan Wu, Matthew Kant, Dayakar

    Penumadu

    USDA NRI grant number # 2005-02645

    USDA Wood Utilization Research Grant

    Tennessee Agricultural Experiment Station MS#96

    Oak Ridge National Laboratory


Recommended