+ All Categories
Home > Documents > 10 Extension Fileds

10 Extension Fileds

Date post: 04-Jun-2018
Category:
Upload: mailstonaik
View: 222 times
Download: 0 times
Share this document with a friend

of 18

Transcript
  • 8/13/2019 10 Extension Fileds

    1/18

    1

    Lecture 10

    Extension Fields:

    Properties and Construction

  • 8/13/2019 10 Extension Fileds

    2/18

    2

    Finite field: GF(4)

  • 8/13/2019 10 Extension Fileds

    3/18

    3

    Finite field: GF(4)

    One way to define GF(4): the (binary)polynomials over GF(2) modulo a prime

    polynomial over GF(2) of degree 2. The only prime polynomial of degree 2over GF(2) is 2! ! ".

    GF(4) #$%& "& & !"'&polynomials of

    degree 2 modulo 2

    ! ! ".Operation tables for GF(4) using thispolynomial representation an be found

    Obvious substitutions 2& ! " *

    yields operation tables of last page.

  • 8/13/2019 10 Extension Fileds

    4/18

    4

    Finite field: GF(4)

  • 8/13/2019 10 Extension Fileds

    5/18

    5

    GF(4) (ontinued)

    +rithmeti modulo 2! ! " ise,uivalent to replaing all ourrenesof 2! ! " by %. -n partiular2!

    ! " # % 2

    # ! " (over GF(2)) Thus 2and all higher powers of

    modulo 2! ! " an be replaed by apolynomial of degree ".

    /very non0ero element of GF(4) is apower of :

    GF(4) # $%& "& & 2# ! "'.

    -n other wordsxis a primitive element,which we can denote b .

  • 8/13/2019 10 Extension Fileds

    6/18

    6

    Representations of GF(4)PolynomialNotation

    BinaryNotation

    Integer

    Notation

    EponentialNotation

    ! !! ! !

    1 !1 1 !

    1! 2 1

    "1 11 3 2

  • 8/13/2019 10 Extension Fileds

    7/18

    #

    GF(4) (ontinued) /very element in GF(4) is a linear

    ombination of the basis vetors "

    and

    GF(4) # $% " ! "'

    Therefore multipliation in GF(4) is

    determined by the produts of "and .

    1roduts of the basis vetors

    define multipliation

  • 8/13/2019 10 Extension Fileds

    8/18

  • 8/13/2019 10 Extension Fileds

    9/18

    %

    GF(4) (onluded)

  • 8/13/2019 10 Extension Fileds

    10/18

    1!

    Finite field arithmeti: GF()

    To define GF() we need a primepolynomial f() over GF(2) of degree *.

    3onstant oeffiient f%must be "otherwise f() is divisible by .

    1arity of oeffiients must be odd&otherwise " is a fator.

    Of the moni polynomials of degree *two satisfy the above re,uirements:

    *! ! " & *! 2! ".

  • 8/13/2019 10 Extension Fileds

    11/18

    11

    GF() 5oth are prime beause they have no

    fators of degree " (i.e. or ! ").

    /ither an be used to define arithmetiin GF(). +rithmeti tables are slightlysimpler for *! ! ".

    6hen GF() # binary polynomials

    modulo*! ! " the 7ey e,uation is

    *! ! " # % *# ! "&where

    the element is the polynomial .

  • 8/13/2019 10 Extension Fileds

    12/18

    12

    1owers in GF()

  • 8/13/2019 10 Extension Fileds

    13/18

    13

    GF() /very non0ero element of GF() is

    a power of . i.e. is a primitive

    element. /very element of GF() is a binary

    linear ombination of $"& & 2'.

    8ene GF() # $ %" 2 9.'

  • 8/13/2019 10 Extension Fileds

    14/18

    14

    GF() operation tables

  • 8/13/2019 10 Extension Fileds

    15/18

    15

    GF(;)

  • 8/13/2019 10 Extension Fileds

    16/18

    16

    1owers in GF(;)

  • 8/13/2019 10 Extension Fileds

    17/18

    1#

    Primitive Polynomials

    An irreducible polynomialp(x)overGF(p)of degreemis primitiveif the

    smallest positive integer nfor,whichp(x)dividesxn-1is n=pm-1

  • 8/13/2019 10 Extension Fileds

    18/18

    1$

    & primiti'e polynomialis an irre()*i+le

    polynomial p() of (egree m o'er GF(p),a'ing a primiti'e element of GF(pm)as a root-

    .,is efinition means t,at/ if0

    1- p() is irre*i+le o'er GF(p)/2- is primiti'e in GF(pm)/ an3- p() !/t,en/ p() is a primiti'e polynomialan

    1 1

    m

    q

    =


Recommended