+ All Categories
Home > Documents > 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar...

10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar...

Date post: 20-Dec-2015
Category:
View: 228 times
Download: 3 times
Share this document with a friend
63
10/29/2009 NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo
Transcript
Page 1: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Supersonic Combustion

Theresita Buhler

Sara Esparza

Cesar Olmedo

Page 2: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Supersonic Outline

• Purpose & Goals• Introduction to combustion• Engine parameters• Jet Engine• Ramjet• Scramjet• Jet Engine vs. Scramjet• Model

– Reference stations• Analytical approach• Compressible flow

– Shockwaves• Inlet: Diffuser design

– COSMOSWorks design

• Engine: Cowl design• Combustion schemes & fuels• Exhaust: Expansion• Prototype design

– Materials– Design Specifications

• Installation in the wind tunnel– Location– Fuel lines and ignition wires– Hydrogen safety

• History• Cost• Acknowledgements• Questions

Page 3: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Hypersonic Vehicle

• High speed travel– Commercial flight

• Reaction engines

– Circumnavigation in four hours

• NASA Goals– Global reach vehicle– Reduced emissions

• Challenges– Shockwaves– High heat– Combustion instability– Flight direction control

NASA X-43 Vehicle

NASA X-51 Testing

Page 4: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Combustion

• Fuel

• Air

• Heat

• High pressure flow, at high compression

• Quickly changing conditions

• Temperature difficulties– Frictional heating

– High forced convection

• Highly turbulent

• Shock

Page 5: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Engine Parameters

Fit engine to aerospace system

Jet Engines – Low orbit, max Mach 3

Ramjets – High altitude, supersonic flight, subsonic combustion

Scramjets – High altitude, hypersonic flight, supersonic combustion

Page 6: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Jet Engines

• Inlet design– Feed air into chamber

• Compressor blades– Increase pressure of flow

• Combustion chamber– Introduce fuel– House combustion

• Turbine blades– Capture expansion of exhaust

gases

Page 7: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Ramjet

• Vehicle travels at supersonic speed

• Simplest air-breathing engine• No moving parts• Compression of intake achieved

by supersonic flow – inlet speed reduction

– Shockwave system

• Relatively low velocity

• Combustions at subsonic speeds• Very high reduction in speed

– High drag– High fuel consumption– Temperature at 3000 K (4940°F)

• Diffuser– Exit plane contracts – Exhaust at supersonic speed– Travel: M = 3– Combustion: M= 0.3

Page 8: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Scramjet

• Hypersonic flight• No moving parts• Combustion at Supersonic speed

– Flow ignites supersonically– Fuel injection into supersonic air

stream– Steer clear of shock waves

• Is Aerodynamically challenged

Page 9: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

ScramjetBoeing

Page 10: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Then and Now

Page 11: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

What is Supersonic Combustion

Combustion maintained at supersonic speed

How is it achieved?

Design

Shockwave

Fuel Injector

Detonation Combustion

Page 12: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Shock Waves

• Oblique shocks

• Mach number decreases

• Pressure, temperature, and density increase

• Attached to vehicle

• Normal shocks

• Mach number decreases

• Pressure, temperature, and density increase

• Creates subsonic region in front of nose

• Detached

Page 13: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Shock Waves

• Oblique shock

• Mach number decreases

• Pressure, temperature, and density increase

• Expansion wave

• Mach number increases

• Pressure, temperature, and density decrease

Page 14: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Diffuser Development

• Wind tunnel specifications– Inlet speed

• Mach 4.5

– Cross-sectional area• 6 x 6 in

– Length of test section• 10 in

Page 15: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Design of Diffuser

• Initial design of diffuser• Use manifold design to

introduce fuel• Diffuser was designed in to

two separate pieces

Goal Seek18° 28.29°

19.67°

Page 16: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Design of Diffuser

• Top part of the diffuser• Has machined holes for fuel

and ignition wires.• Also four holes for securing the

base of the diffuser

Page 17: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Design of Diffuser

Page 18: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

2D Shockwaves

Page 19: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Inefficient Designs

Bow Shock – Cowl Interference Oblique Shock – Cowl Spillage

Page 20: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Cosmo Flowork AnalysisCosmo Flowork Analysis

Page 21: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Cosmos Flowork AnalysisCosmos Flowork Analysis

Velocity Profile Mach Speed Profile

Page 22: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Cosmos Flowork AnalysisCosmos Flowork Analysis

Pressure ContoursInlet Mach = 4.5

Page 23: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Cosmos Flowork AnalysisCosmos Flowork Analysis

Temperature ContoursInlet Mach = 4.5

Page 24: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Cosmos Flowork Analysis

Page 25: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Ramp Fuel InjectionsRamp Fuel Injections

Ramped Outward

Ramped Inward

Page 26: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Cosmos Flowork AnalysisCosmos Flowork Analysis

Page 27: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Cosmos Flowork AnalysisCosmos Flowork Analysis

Page 28: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Cosmos Flowork AnalysisCosmos Flowork Analysis

Page 29: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Cosmos Flowork AnalysisCosmos Flowork Analysis

Page 30: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Combustion

• Combustion Stoichiometry– Ideal fuel/ air ratio

• Recommended fuel for scramjets– Hydrogen

– Methane

– Ethane

– Hexane

– Octane

• Only Oxidizer is Air

• Maximum combustion temperature – Hydrocarbon atoms are mixed with air so

• Hydrogen atoms form water

• Oxygen atoms form carbon dioxide

• Most common fuel for scramjets– Hydrogen

• In scramjets, combustion is often incomplete due to the very short combustion period.

• Equivalence ratio– Should range from .2 -2.0 for combustion to occur with a useful time scale

– Lean mixture ratio below 1

– Rich mixture ratio above 1

Page 31: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionParallel Mixing

Fuel- Air Mixing at mach speedsGas phase chemical reaction occurs by the exchange of atoms between molecules as a results

of molecular collisions.

The fuel and air must be mixed at near-stoichiometric proportions before combustion can occur

Parallel Mixing of Fuel- Air

Mixing Layer

δmU1

U2

Page 32: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionParallel Mixing

• Zero shear mixing – Both air and fuel velocities are equal

• Shear stress doesn’t exist between streams

• Coflow occurs

– Lateral transport• Occurs by molecular diffusion

– At fuel – air interface

• No momentum or vorticity transfer

– Axial development of cross –stream profiles of air mole fraction YA in Zero shear (U1=U2)

– Fuel Mole fraction Profile is YF=1-YA

• Mirror Image

δmU1

U2

Ya

Ya

Page 33: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionParallel Mixing

• Molecular diffusion

• Fick’s Law

– Air molecular transport rate into fuel • Proportional to the interfacial area times the local concentration gradient.

– Proportionality constant

• DFA, = molecular diffusivity

– Where DFA*ρ is approximately equal to molecular viscosity μ for most gases

δmU1

U2

Ya

Ya

y

CDjA AFA

.

Page 34: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionParallel Mixing

• Fick’s law for diffusion

dttxerf

yerfY

U

xD

CC

CY

y

CDjA

x

mA

c

FAm

FA

AA

AFA

0

2 exp2

41

2

1

8

.

Air ofFraction Mole Y

knesslayer thic Mixing

air ofion Concentrat

gradiention concentrat lateral theis

directiony in theflux diffusivemolar net theis

A

m

A

A

A

C

y

C

j

Page 35: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Combustion Parallel Mixing

δmU1

U2

Ya

Ya

xofroot square with theinversely decreases

rate mixing maximum e that thdemostrate results The

0,772.14

41

2

1

equation ion concentratmolar theatingDifferenti

0

mmmyy

A

mA

Y

yerfY

Page 36: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Combustion Parallel Mixing

• Steepest concentration gradient at x = 0

• Mixing layer reaches the wall at x=Lm the air mole fraction still varies from 1.0 at y=B1 and 0 at y= -B2

• More mixing is needed

• 2Lm is recommended by experiment

• enables complete micro-mixing

δmU1

U2

Ya

Ya

B1+B2X=Lm

B1

-B2

y

x

X=0

Page 37: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Combustion Parallel Mixing

FA

Cm

m

m

c

FAm

D

bUL

Lx

b

U

xD

16

for Solving

2

8

2

Mixing layer thickness equation

δmU1

U2

Ya

Ya

B1+B2X=Lm

B1

-B2

y

x

X=0

Estimate injector height, B1+B2=B

to reduce mixing length, Lm

Page 38: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Combustion Parallel Mixing

Manifolding idea

Multiple inlets

Reduce mixing length

Tradeoff: Inefficient design

Adds bulk and volume

Fuel

FuelAir

AirB δm

δm

Page 39: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Combustion Laminar Shear Mixing

• Molecular diffusion alone cannot meet the requirements of rapid lateral mixing in supersonic flow

• Solution shear layer between both layers

• U1>U2 , Uc=0.5(U1+U2 )

• Velocity ratio r =(U1/U2 )

• Velocity Difference Δ U= (U1-U2 )

1

12)(

2

)(

21

2

1

21

21

r

ruUUU

U

Ur

UUU

UU

c

c

r

r

u

x

u

x

yerf

r

r

u

u

c

c

1

1288

4

1

11

μ: dynamic viscosityν: kinematic viscosity

Page 40: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Combustion Turbulent shear mixing

• As we further increase the velocity difference delta U

• Shear stress causes the periodic formation of large vortices

• The vortex sheet between the two streams rolls up and engulfs fluid from both streams and stretches the mixant interface.

• Stretching of the mixant interface increases the interfacial area and steepens the concentration gradients

• Shear mixing increases molecular diffusion

Page 41: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Combustion Turbulent shear mixing

Micro-mixingFuel vortexFuel wave

Page 42: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionTurbulent Shear Mixing

• Mean velocity profile combines– Prandtl’s number

– Turbulent kinematic viscosity

– Time average characteristics of turbulent shear

3

431

11

yy

r

r

U

U

c

Micro-mixingFuel vortexFuel wave

Page 43: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionTurbulent Shear Mixing

Shear layer width – Two methods

m

m

lB

xr

rB

1

16 2

Local shear layer width for turbulent shear mixing

xr

rCm

1

1

Recent researchCδ is a experimental constant

Page 44: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionTurbulent Shear Mixing

• Density effects on shear layer growth – compressible flow

• Based on constant but different densities

• A density ratio, s, is derived

• s can be calculated once stagnation pressure and stream velocities are known

2

1

2

12

1

21

22

11

2222

2111

2

1

2

1

2

1

UU

UU

U

Us

PP

UUU

UUU

uPuP

s

c

c

c

c

Page 45: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionTurbulent Shear Mixing

• Convective velocity for the vortex structures

• With compressible flow using isentropic stagnation density equation changes to

2

22

1

11

1222

212

11

2/12

2/11

2

1

1

2

11

2

11

1

a

UUM

a

UUM

MM

s

UsUU

cC

cC

CC

c

Page 46: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionTurbulent Shear Mixing

• Density correct expression for shear layer growth including compressibility effects

213

1

2/1

2/1

2/1

2/11

8.2.)(

1129.1

1

11

12

1

1

1)(49.

cMc

cm

eMf

rrrsrs

rs

rs

rCMf

x

Page 47: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionTurbulent Shear Mixing

Only applies to box cowl

Page 48: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

CombustionTurbulent Shear Mixing

Based on what we know the angle of our hydrogen injection should be

To produce a hydrogen rich mixture

• Fuel

air

Lm, A

Lm, F

Page 49: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Diffusion Combustion

Mixing Controlled Combustion• High mixture temperature• High reaction rates• Limiting feature: mixing

Reaction Rate Controlled• Low mixture temperature• Adequate mixing• Limiting feature: reaction rates

– Rate of heat release

Page 50: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Diffusion Combustion

• Symmetric flame

• Stoichiometric ratio– Varies across flame

• Flame center– Highest temperature, fuel

• Air lost around edges

Page 51: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Conductive Combustion

• Diffusion and premixed combined

• Stoichiometric ratio– Determined by pre-mixture

• Flame center– Highest temperature, fuel

• Air lost around edges

Page 52: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Supersonic Wind TunnelSupersonic Wind Tunnel

Commission of pressure tank

Team

Assistant dean Don Maurizio

Technician Sheila Blaise

Professor Chivey Wu

Wind tunnel team : Long Ly, Nhan Doan

Page 53: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

ApparatusApparatus

Page 54: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Fuel Supply

• Follows test rig of wind tunnel

• Stainless steel lines– Leak proof

– Tank pressure

Page 55: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

HydrogenHydrogen

Scramjet X-43

Expensive fuel

Much less emissions than hydrocarbons

Dangerous

Invisible flame

Detailed analysis

Calculations & numerical

Safety procedures

Experimental

Safety analysis

O2HO2H 222

Page 56: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Hydrogen Safety EquipmentHydrogen Safety Equipment

Tank

Carbon fiber, non-burst tank

Liquid check valve

Gas flashback arrestor

Infrared camera

FLIR Thermacam$3,500.0

Page 57: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Materials

Hastelloy

Nickel Steel

Reinforced carbon-carbon

BMI

Stainless steel 430

Page 58: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Costs

Group Item Price

Fuel

Hydrogen + Regulator

Catalyst - Silane

$275.

$125.

Materials

Steel $400.

Manufacturing

In-house

Wind Tunnel Retrofit

Gauges, Channels, $350.

View Windows

2 Sapphire 1” x 0.375” $700.

Total $1,850.

Page 59: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Future Work

• Analytical study– Compressible flow– Gas dynamics– Diabatic flow– Chemical kinetics in supersonic

flow

• Numerical analyses– FLUENT

• Supersonic wind tunnel • Manufacturing• Compressible flow class with Dr.

Wu• Document calculations

Page 60: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Dramatic Quotes

Sustaining supersonic combustion is “like trying to light a match in a hurricane”

“There is currently no conclusive evidence that these requirements can be met: nevertheless, the present study starts with the basic assumption that stable supersonic combustion in an engine is possible”

-Richard J. Weber

Page 61: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Textbook ReferencesTextbook References

Anderson, J. “Compressible Flow.”

Anderson, J. “Hypersonic & High Temperature Gas Dynamics”

Curran, E. T. & S. N. B. Murthy, “Scramjet Propulsion”

AIAA Educational Serties,

Fogler, H.S. “Elements of Chemical Reaction Engineering” Prentice Hall International Studies. 3rd ed. 1999.

Heiser, W.H. & D. T. Pratt “Hypersonic Airbreathing Propulsion”

AIAA Educational Searies.

Olfe, D. B. & V. Zakkay “Supersonic Flow, Chemical Processes, & Radiative Transfer”

Perry, R. H. & D. W. Green “Perry’s Chemical Engineers’ Handbook”

McGraw-Hill

Turns, S.R. “An Introduction to Combustion”

White, E.B. “Fluid Mechanics”.

Page 62: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

Journal ReferencesJournal References

Allen, W., P. I. King, M. R. Gruber, C. D. Carter, K. Y Hsu, “Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow”. 41st AIAA Joint Propulsal. 2005-4105.

Billig, F. S. “Combustion Processes in Supersonic Flow”. Journal of Propulsion, Vol. 4, No. 3, May-June 1988

Da Riva, Ignacio, Amable Linan, & Enrique Fraga “Some Results in Supersonic Combustion” 4 th Congress, Paris, France, 64-579, Aug 1964

Esparza, S. “Supersonic Combustion” CSULA Symposium, May 2008.

Grishin, A. M. & E. E. Zelenskii, “Diffusional-Thermal Instability of the Normal Combustion of a Three-Component Gas Mixture,” Plenum Publishing Corporation. 1988.

Ilbas, M., “The Effect of Thermal Radiation and Radiation Models on Hydrogen-Hydrocarbon Combustion Modeling” International Journal of Hydrogen Energy. Vol 30, Pgs. 1113-1126. 2005.

Qin, J, W. Bao, W. Zhou, & D. Yu. “Performance Cycle Analysis of an Open Cooling Cycle for a Scramjet” IMechE, Vol. 223, Part G, 2009.

Mathur, T., M. Gruber, K. Jackson, J. Donbar, W. Donaldson, T. Jackson, F. Billig. “Supersonic Combustion Experiements with a Cavity-Based Fuel Injection”. AFRL-PR-WP-TP-2006-271. Nov 2001

McGuire, J. R., R. R. Boyce, & N. R. Mudford. Journal of Propulsion & Power, Vol. 24, No. 6, Nov-Dec 2008

Mirmirani, M., C. Wu, A. Clark, S, Choi, & B. Fidam, “Airbreathing Hypersonic Flight Vehicle Modeling and Control, Review, Challenges, and a CFD-Based Example”

Neely, A. J., I. Stotz, S. O’Byrne, R. R. Boyce, N. R. Mudford, “Flow Studies on a Hydrogen-Fueled Cavity Flame-Holder Scramjet. AIAA 2005-3358, 2005.

Tetlow, M. R. & C. J. Doolan. “Comparison of Hydrogen and Hydrocarbon-Fueld Scramjet Engines for Orbital Insertion” Journal of Spacecraft and Rockets, Vol 44., No. 2., Mar-Apr 2007.

Page 63: 10/29/2009NASA Grant URC NCC NNX08BA44A Supersonic Combustion Theresita Buhler Sara Esparza Cesar Olmedo.

10/29/2009 NASA Grant URC NCC NNX08BA44A

AcknowledgementsAcknowledgements

• Dr. H. BoussalisDr. H. Boussalis

• Dr. D. GuillaumeDr. D. Guillaume

• Dr. C. LiuDr. C. Liu

• Dr. T. PhamDr. T. Pham

• Dr. C. WuDr. C. Wu

• SPACE Center StudentsSPACE Center Students• Combustion TeamCombustion Team• Wind Tunnel TeamWind Tunnel Team

– Nhan DoanNhan Doan– Long LyLong Ly

• Sheila BlaiseSheila Blaise• Don RobertoDon Roberto• Cris ReidCris Reid• Dr. D. BlekhmanDr. D. Blekhman

– Cesar HuertaCesar Huerta– Celeste MontenegroCeleste Montenegro

• Dr. C. KhachikianDr. C. Khachikian– Keith BacosaKeith Bacosa

• D. MaurizioD. Maurizio


Recommended