+ All Categories
Home > Documents > 10/5/2004New Windows on the Universe Jan Kuijpers Part 1: Gravitation & relativityPart 1:...

10/5/2004New Windows on the Universe Jan Kuijpers Part 1: Gravitation & relativityPart 1:...

Date post: 13-Dec-2015
Category:
Upload: dana-harris
View: 216 times
Download: 0 times
Share this document with a friend
Popular Tags:
37
10/5/2004 New Windows on the Univer se New Windows on the New Windows on the Universe Universe Jan Kuijpers Jan Kuijpers Part 1: Gravitation & relativity Part 1: Gravitation & relativity J.A. Peacock, Cosmological Physics, Chs. 1 J.A. Peacock, Cosmological Physics, Chs. 1 & 2 & 2 Part 2: Classical Cosmology Part 2: Classical Cosmology Peacock, Chs 3 & 4 Peacock, Chs 3 & 4
Transcript

10/5/2004 New Windows on the Universe

New Windows on the New Windows on the UniverseUniverseJan KuijpersJan Kuijpers

• Part 1: Gravitation & relativityPart 1: Gravitation & relativityJ.A. Peacock, Cosmological Physics, Chs. 1 & 2J.A. Peacock, Cosmological Physics, Chs. 1 & 2

• Part 2: Classical CosmologyPart 2: Classical CosmologyPeacock, Chs 3 & 4Peacock, Chs 3 & 4

10/5/2004 New Windows on the Universe

Part 2: Classical cosmologyPart 2: Classical cosmology

• The isotropic universe (3)The isotropic universe (3)

• Gravitational lensing (4)Gravitational lensing (4)

10/5/2004 New Windows on the Universe

The isotropic universeThe isotropic universe

• The RW metric (3.1)The RW metric (3.1)

• Dynamics of the expansion (3.2-3.3)Dynamics of the expansion (3.2-3.3)

• Observations (3.4)Observations (3.4)

10/5/2004 New Windows on the Universe

Gravitational lensingGravitational lensing

• Lense equation; lensing potential (4.1)Lense equation; lensing potential (4.1)

• Simple lenses (4.2)Simple lenses (4.2)

• Fermat’s principle (4.3)Fermat’s principle (4.3)

• Observations (4.4-4.6)Observations (4.4-4.6)

10/5/2004 New Windows on the Universe

The RW metric (3.1)The RW metric (3.1)

The isotropic universeThe isotropic universe

Define fundamental observers: at rest in local matter distributionDefine fundamental observers: at rest in local matter distributionGlobal time coordinate t can be defined as proper time measuredGlobal time coordinate t can be defined as proper time measured by these observersby these observers

22 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2

SR:

Here:

c d c dt dr

c d c dt R (t )[f ( r )dr g ( r )d ]

d d sin d

Choose radial coordinate so that either Choose radial coordinate so that either f=1f=1 or or g=rg=r22

10/5/2004 New Windows on the Universe

The RW metric (3.1)The RW metric (3.1)2 2 2 2 2 2 2 2

( 1)

( 1)

( 0)

k

k

c d c dt R (t )[dr S ( r )d ]

sin r k

S ( r ) sinhr k

r k

Different definition of comoving distance Different definition of comoving distance rr:: kS (r ) r2

2 2 2 2 2 2 221

drc d c dt R (t ) r d

kr

Or dimensionless scale factor:Or dimensionless scale factor:

Or isotropic form: Or isotropic form:

0

R(t )a(t )

R

2

2 2 2 2 2 2 22 21 4

R (t )c d c dt dr r d

( kr / )

10/5/2004 New Windows on the Universe

The RW metric (3.1)The RW metric (3.1)

Or define conformal time:Or define conformal time:0

t cdt'

R(t ')

2 2 2 2 2 2 2c d R (t ) d dr r d

10/5/2004 New Windows on the Universe

RedshiftRedshift

Proper (small) separation of two fundamental observers:Proper (small) separation of two fundamental observers:

d R(t )dr

d Rdv Rdr d

dt R

R(t )H(t )

R(t )

Hubble’s lawHubble’s law

Comoving distance between two fo’s is constant:Comoving distance between two fo’s is constant:

1

obs obs obs

em em em

t t dt

em obs

em obst t dt

em obs

obs em

cdt cdt dt dtr

R(t ) R(t ) R(t ) R(t )

R(t )z

R(t )

10/5/2004 New Windows on the Universe

Dynamics of the expansion (3.2-3.3)Dynamics of the expansion (3.2-3.3)

GR required: - Birkhoff’s theoremGR required: - Birkhoff’s theorem - Integration constant- Integration constantFriedmann eqns: Use RW metric in field eqns (problem 3.1):Friedmann eqns: Use RW metric in field eqns (problem 3.1):

2 2 2 22

2

2

8

3 3

4 3

3 3

G R R cR kc

GR p RcR

c

Newton.: Newton.: 1. Energy eqn.1. Energy eqn.Take time derivative +Take time derivative +energy conservationenergy conservation

2 3 3 Eqn. 2d c R pd R

2

2 2 2

81

3 m r vc

G kc(a ) (a ) (a )

H H R

10/5/2004 New Windows on the Universe

• Flatness problemFlatness problem• Matter radiation equality: Matter radiation equality:

• Recombination: Recombination: 1+zrec=1000• Matter dominated and flat:Matter dominated and flat:• Radiation dominated and flat:Radiation dominated and flat:

• Vacuum energy Vacuum energy (p=-c2 follows from energy conservation)follows from energy conservation):

1 21 1 23900m r eq/ ( z ) z h

2

2 2

2

8

3 3Empty De Sitter space:

8 where

3 3

vv

Ht v

G c

H H

G cR e H

2 3

1 2

/

/

R(t ) t

R(t ) t

10/5/2004 New Windows on the Universe

Observations (3.4)Observations (3.4)

Luminosity distance:Luminosity distance: the apparent distance assuming the apparent distance assuming inverse square law for light intensity reductioninverse square law for light intensity reduction-Luminosity Luminosity L : power output/4 : power output/4-Radiation flux density Radiation flux density S: energy received per unit area per sec: energy received per unit area per sec

02 2 20

11 lum k

k

LS D ( z )R S ( r )

R S ( r )( z )

Redshift for photon energy and one for rateRedshift for photon energy and one for rateAngular-diameter distance:Angular-diameter distance: the apparent distance based on the apparent distance based onobserved diameter assuming euclidean universeobserved diameter assuming euclidean universe

0

1k

em k A

R S (r )R(t )S ( r ) D

z

10/5/2004 New Windows on the Universe

Lensing equation; lensing potential (4.1)Lensing equation; lensing potential (4.1)

Gravitational lensingGravitational lensing

2 2

2 21 2

d y v d d

dt c dy dy

Relativistic particles in weak fields (eq. 2.24):Relativistic particles in weak fields (eq. 2.24):

Bend angle (use angular diameter distances):Bend angle (use angular diameter distances):

2

2a d

c Approximation: geometricallyApproximation: geometrically

thin lensesthin lenses

10/5/2004 New Windows on the Universe

Gravitational lenses are flawed!!!Gravitational lenses are flawed!!!

10/5/2004 New Windows on the Universe

Gravitational imaging

10/5/2004 New Windows on the Universe

Lensing equationLensing equation

DLDLS

DS

where is

mapping between 2D object and image planes

SI S I SL I

LS

DD

D ����������������������������������������������������������������������

Flux density from image is: Flux density from image is:

3

Amplification is ratio of areas

is invariantI

S

S I image area

I A

��������������

��������������

10/5/2004 New Windows on the Universe

Lensing potentialLensing potential

2 22 2 2

2 2 2a d d d

c c c ��������������������������������������������������������

LSI S IL I

S

DD

D

����������������������������������������������������������������������Notation: Notation: - potential!- potential!

22

2

82 Poisson

surface density

critical sd 4

L LS

S c

Sc

L LS

D D G

D c

d

D c

D D G

21

c

( ) ( ') ln ' d '

����������������������������������������������������������������������

10/5/2004 New Windows on the Universe

2

4

where is closest distance

and is mass in projection l I

M bG

c b

b D

M b

Multiple imagesMultiple imagesSimple lenses (4.2)Simple lenses (4.2)

DLS

DL

Circularly symmetric surfaceCircularly symmetric surfacemass density:mass density:

10/5/2004 New Windows on the Universe

Einstein ringEinstein ring

S OL

rE

SD

LD

1/ 2 1/ 22 2S LS S

ES L L

R D R

D D D

10/5/2004 New Windows on the Universe

Typical numbersTypical numbers

Einstein Radius point mass:Einstein Radius point mass:

ER isothermal sphere:ER isothermal sphere:

Critical surface density:Critical surface density:

1 2 1 2

11

2

2c

arcsec10 M Gpc

arcsec186 km/s

Gpc3 5 kg/m

Gpc Gpc

/ /

L S LSE

v LSE

S

LS

L S

M D D / D

D

D

D /.

D / D /

10/5/2004 New Windows on the Universe

DLDLS

DS

SI SL I

LS

DD

D ������������������������������������������

b

Time delaysTime delays

Time lags between multiple images because of:Time lags between multiple images because of:1.1. Path length difference:Path length difference:

2. Reduced coordinate speed of light (static weak fields):2. Reduced coordinate speed of light (static weak fields):

2

1 1 12 2 2

I S L I S L Sg L L L

LS

D D Dbc t z z z

D

22 2 2 22 2 2

2 2 21 1 1p Lc d c dt dr c t z d

c c c

10/5/2004 New Windows on the Universe

Fermat’s principle (4.3)Fermat’s principle (4.3)Images form along paths where the time delay is stationaryImages form along paths where the time delay is stationary

21

1 2LS

I S I S I

L L S

D, c t

z D D

����������������������������������������������������������������������

Note: differentiation wrt Note: differentiation wrt II recovers lens equation.recovers lens equation.

Example: from a to d: Example: from a to d: introduction of increasing mass introduction of increasing mass (increasing -(increasing -) leads to extra) leads to extraStationary points (minima,Stationary points (minima,Maxima, saddle points in Maxima, saddle points in ))

10/5/2004 New Windows on the Universe

Caustics and catastrophe theoryCaustics and catastrophe theory

10/5/2004 New Windows on the Universe

Lens model for flattened galaxy at two different relative distances.Lens model for flattened galaxy at two different relative distances.a: density contours c: caustics in image planea: density contours c: caustics in image planeb: time surface contoursb: time surface contours d: dual caustics in source plane d: dual caustics in source plane

10/5/2004 New Windows on the Universe

Observations (4.4-4.6)Observations (4.4-4.6)Light deflection around the SunLight deflection around the Sun

The SunThe Sun 1.75”1.75”

1,75'' 2

24 SRGM

R c R

10/5/2004 New Windows on the Universe

Newton/Soldner versus EinsteinNewton/Soldner versus Einstein

10/5/2004 New Windows on the Universe

10/5/2004 New Windows on the Universe

Total eclipseTotal eclipse21 september 192221 september 1922Western Australia,Western Australia,92 stars (dots are92 stars (dots arereference positions,reference positions,lines displacements,lines displacements,enlarged!)enlarged!)

10/5/2004 New Windows on the Universe

Strong lensingStrong lensing

10/5/2004 New Windows on the Universe

10/5/2004 New Windows on the Universe

ModellingModelling

10/5/2004 New Windows on the Universe

10/5/2004 New Windows on the Universe

10/5/2004 New Windows on the Universe

10/5/2004 New Windows on the Universe

10/5/2004 New Windows on the Universe

Robert J. NemiroffRobert J. Nemiroff1993:1993:Sky as seen pastSky as seen pasta compact star,a compact star,1/3 bigger than its1/3 bigger than itsSchwarzschildSchwarzschildradius, and at a radius, and at a distance of 10 distance of 10 Schwarzschild radii.Schwarzschild radii.The star has a The star has a terrestrial surfaceterrestrial surfacetopographytopography

10/5/2004 New Windows on the Universe

OrionOrionOrion Orion

SiriusSiriusSirius Sirius

10/5/2004 New Windows on the Universe


Recommended