+ All Categories
Home > Documents > 10_Linearized Equations.pdf

10_Linearized Equations.pdf

Date post: 09-Nov-2015
Category:
Upload: anonymous-ry7aem
View: 224 times
Download: 0 times
Share this document with a friend
Popular Tags:
13
Linearized Equations and Modes of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 2010 Linearization of nonlinear dynamic models Nominal flight path Perturbations about the nominal flight path Modes of motion Longitudinal Lateral-directional Copyright 2010 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www. princeton . edu/~stengel/FlightDynamics .html Nominal and Actual Flight Paths Nominal and Actual Trajectories Nominal (or reference) trajectory and control history x N (t ), u N (t ), w N (t ) { } for t in [t o , t f ] Actual trajectory perturbed by Small initial condition variation, !x o (t o ) Small control variation, !u(t) x(t ), u(t ), w(t ) { } for t in [t o , t f ] = x N (t ) + !x(t ), u N (t ) + !u(t ), w N (t ) + !w(t ) { } x : dynamic state u : control input w : disturbance input Both Paths Satisfy the Dynamic Equations Dynamic models for the actual and the nominal problems are the same ! x N (t ) = f [ x N (t ), u N (t ), w N (t )], x N t o ( ) given ! x(t ) = f [ x(t ), u(t ), w(t )], x t o ( ) given ! x(t ) = ! x N (t ) + ! ! x(t ) x(t ) " x N (t ) + !x(t ) # $ % & % ( % ) % in t o , t f * + , - !x(t o ) = x(t o ) " x N (t o ) !u(t ) = u(t ) " u N (t ) !w(t ) = w(t ) " w N (t ) # $ % & % ( % ) % in t o , t f * + , - Differences in initial condition and forcing ... ... perturb rate of change and the state
Transcript
  • Linearized Equationsand Modes of Motion

    Robert Stengel, Aircraft Flight Dynamics

    MAE 331, 2010

    Linearization of nonlinear dynamic models

    Nominal flight path

    Perturbations about the nominal flight path

    Modes of motion

    Longitudinal

    Lateral-directional

    Copyright 2010 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    Nominal and ActualFlight Paths

    Nominal and Actual

    Trajectories

    Nominal (or reference)trajectory and control history

    xN (t), uN (t),wN (t){ } for t in [to,t f ]

    Actual trajectory perturbed by Small initial condition variation, !xo(to)

    Small control variation, !u(t)

    x(t), u(t),w(t){ } for t in [to,t f ]

    = xN (t) + !x(t), uN (t) + !u(t),wN (t) + !w(t){ }

    x : dynamic state

    u : control input

    w : disturbance input

    Both Paths Satisfy theDynamic Equations

    Dynamic models for the actual and thenominal problems are the same

    !xN

    (t) = f[xN

    (t),uN

    (t),wN

    (t)], xNto( ) given

    !x(t) = f[x(t),u(t),w(t)], x to( ) given

    !x(t) = !xN (t) + !!x(t)

    x(t) " xN (t) + !x(t)

    #$%

    &%

    '(%

    )% in to,t f*+ ,-

    !x(to ) = x(to ) " xN (to )

    !u(t) = u(t) " uN (t)

    !w(t) = w(t) " wN (t)

    #$%

    &%

    '(%

    )% in to,t f*+ ,-

    Differences in initialcondition and forcing ...

    ... perturb rate ofchange and the state

  • Approximate Neighboring

    Trajectory as a Linear Perturbationto the Nominal Trajectory

    !x(t) = !xN(t) + !!x(t)

    " f[xN(t),u

    N(t),w

    N(t),t]+

    #f

    #x!x(t) +

    #f

    #u!u(t) +

    #f

    #w!w(t)

    Approximate the new trajectory as the sum of thenominal path plus a linear perturbation

    !xN(t) = f[x

    N(t),u

    N(t),w

    N(t),t]

    !x(t) = !xN(t) + !!x(t) = f[x

    N(t) + !x(t),u

    N(t) + !u(t),w

    N(t) + !w(t),t]

    Linearized Equation ApproximatesPerturbation Dynamics

    Solve for the nominal and perturbation trajectoriesseparately

    ... where the Jacobian matrices of the linear modelare evaluated along the nominal trajectory

    !xN

    (t) = f[xN

    (t),uN

    (t),wN

    (t),t], xNto( ) given

    !!x(t) "#f

    #xt( )!x(t) +

    #f

    #ut( )!u(t) +

    #f

    #wt( )!w(t)

    = F(t)!x(t) +G(t)!u(t) + L(t)!w(t), !x to( ) given

    F(t) =!f

    !x x=xN (t )u=u

    N(t )

    w=wN(t )

    ; G(t) =!f

    !u x=xN (t )u=u

    N(t )

    w=wN(t )

    ; L(t) =!f

    !w x=xN (t )u=u

    N(t )

    w=wN(t )

    dim(x) = n !1

    dim(u) = m !1

    dim(w) = s !1

    dim(!x) = n "1

    dim(!u) = m "1

    dim(!w) = s "1

    to < t < t f

    Jacobian Matrices Express the Solution

    Sensitivity to Small Perturbations

    Sensitivity to state perturbations: stability matrixis square

    F(t) =!f

    !x x=xN (t )u=uN (t )w=wN (t )

    =

    ! f1

    !x1

    !! f

    1

    !xn

    ! ! !

    ! fn!x

    1

    !! fn

    !xn

    "

    #

    $$$$$

    %

    &

    '''''x=xN (t )u=uN (t )w=wN (t )

    G(t) =!f

    !u x=xN (t )u=u

    N(t )

    w=wN(t )

    L(t) =!f

    !w x=xN (t )u=u

    N(t )

    w=wN(t )

    Sensitivity to control and disturbance perturbations issimilar, but matrices may not be square

    dim(F) = n ! n

    dim(G) = n ! m dim(L) = n ! s

    Linear and nonlinear, time-varying and time-invariant dynamic models Numerical integration (time domain)

    Linear, time-invariant (LTI) dynamic models Numerical integration (time domain)

    State transition (time domain)

    Transfer functions (frequency domain)

    How Is System

    Response Calculated?

  • Numerical Integration of Ordinary

    Differential Equations Given

    Initial condition, control, and disturbance histories

    x(t0)

    u(t),w(t) for t in [to,t f ]

    Path is approximated by executing a numerical algorithm

    Nonlinear equations of motion

    x (t) = f[x(t),u(t),w(t), t] , x(t0) given

    Linear, time-invariant equations of motion

    ! x (t) = F!x(t) + G!u(t) + L!w(t), !x(to) given

    Integration Algorithms Rectangular (Euler) Integration

    x(tk) = x(t

    k!1) + "x(t

    k!1,tk)

    # x(tk!1) + f x(t

    k!1),u(t

    k!1),w(t

    k!1)[ ] "t , "t = tk ! tk!1

    Trapezoidal (modified Euler) Integration (~MATLAB!s ode23)

    x(tk) ! x(t

    k"1) +1

    2#x

    1+ #x

    2[ ]

    where

    #x1

    = f x(tk"1),u(t

    k"1),w(t

    k"1)[ ] #t

    #x2

    = f x(tk"1) + #x

    1,u(t

    k),w(t

    k)[ ] #t

    See MATLAB manual for descriptions of ode45 and ode15s

    Linear Approximation ofPerturbation Dynamics

    Stiffening Linear-Cubic Spring

    Example Nonlinear, time-invariant (NTI) equation

    !x1(t) = f

    1= x

    2(t)

    !x2(t) = f

    2= !10x

    1(t) !10x

    1

    3(t) ! x

    2(t)

    Integrate equations to produce nominal path

    x1(0)

    x2(0)

    !

    "

    ##

    $

    %

    &&'

    f1N

    f2N

    !

    "

    ##

    $

    %

    &&dt'

    0

    t f

    (x1N(t)

    x2N(t)

    !

    "

    ##

    $

    %

    &&

    in 0,t f!" $%

    Analytical evaluation of time-varying partial derivatives

    ! f1

    !x1

    = 0;! f

    1

    !x2

    = 1

    ! f2

    !x1

    = "10 " 30x1N

    2(t);

    ! f2

    !x2

    = "1

    ! f1

    !u= 0;

    ! f1

    !w= 0

    ! f2

    !u= 0;

    ! f2

    !w= 0

  • Nominal (NTI) and Perturbation

    (LTV) Dynamic Equations

    !xN(t) = f[x

    N(t)], x

    N(0) given

    !x1N(t) = x

    2N(t)

    !x2N(t) = !10x

    1N(t) !10x

    1N

    3(t) ! x

    2N(t)

    !!x(t) = F(t)!x(t), !x(0) given

    !!x1(t)

    !!x2(t)

    "

    #

    $$

    %

    &

    ''=

    0 1

    ( 10 + 30x1N

    2(t)( ) (1

    "

    #

    $$

    %

    &

    ''

    !x1(t)

    !x2(t)

    "

    #

    $$

    %

    &

    ''

    x1N

    (0)

    x2N

    (0)

    !

    "

    ##

    $

    %

    &&=

    0

    9

    !

    "#

    $

    %&;

    'x1(0)

    'x2(0)

    !

    "

    ##

    $

    %

    &&=

    0

    1

    !

    "#

    $

    %&

    NTI

    LTV

    Initial

    Conditions

    Comparison of Approximate and Exact Solutions

    xN(t)

    !x(t)

    xN(t) + !x(t)

    x(t)

    Initial Conditions

    x2N

    (0) = 9 !x2(0) = 1

    x2N

    (t) + !x2(t) = 10 x

    2(t) = 10

    !xN(t)

    !!x(t)

    !xN(t) + !!x(t)

    !x(t)

    Suppose xN (0) = 0

    !xN

    (t) = f[xN

    (t)], xN

    (0) = 0, xN

    (t) = 0 in 0,![ ]

    Nominal solution remains at equilibrium

    Perturbation equation is linear and time-invariant (LTI)

    !!x1(t)

    !!x2(t)

    "

    #

    $$

    %

    &

    ''=

    0 1

    (10 (1

    "

    #$

    %

    &'

    !x1(t)

    !x2(t)

    "

    #

    $$

    %

    &

    ''

    Separation of theEquations of Motion intoLongitudinal and Lateral-

    Directional Sets

  • Rigid-Body Equations ofMotion (Scalar Notation)

    Rate of change of Translational Position

    Rate of change of Angular Position

    Rate of change of Translational Velocity

    Rate of change of Angular Velocity (Ixy and Iyz = 0)

    x1

    x2

    x3

    x4

    x5

    x6

    x7

    x8

    x9

    x10

    x11

    x12

    !

    "

    ##################

    $

    %

    &&&&&&&&&&&&&&&&&&

    =

    u

    v

    w

    x

    y

    z

    p

    q

    r

    '

    ()

    !

    "

    ################

    $

    %

    &&&&&&&&&&&&&&&&

    State Vector

    !u = X / m ! gsin" + rv ! qw

    !v = Y / m + gsin# cos" ! ru + pw

    !w = Z / m + gcos# cos" + qu ! pv

    !xI= cos! cos"( )u + # cos$ sin" + sin$ sin! cos"( )v + sin$ sin" + cos$ sin! cos"( )w

    !yI= cos! sin"( )u + cos$ cos" + sin$ sin! sin"( )v + # sin$ cos" + cos$ sin! sin"( )w

    !zI= # sin!( )u + sin$ cos!( )v + cos$ cos!( )w

    !! = p + qsin! + r cos!( ) tan"!" = qcos! # r sin!

    !$ = qsin! + r cos!( )sec"

    Grumman F9F

    !p = IzzL + I

    xzN ! I

    xzIyy! I

    xx! I

    zz( ) p + Ixz2 + Izz Izz ! Iyy( )"# $%r{ }q( ) Ixx Izz ! Ixz2( )!q = M ! I

    xx! I

    zz( ) pr ! Ixz p2 ! r2( )"# $% Iyy

    !r = IxzL + I

    xxN ! I

    xzIyy! I

    xx! I

    zz( )r + Ixz2 + Ixx Ixx ! Iyy( )"# $% p{ }q( ) Ixx Izz ! Ixz2( )

    Rearrange the State VectorLongitudinal, Lateral-Directional

    State Vector

    x1

    x2

    x3

    x4

    x5

    x6

    x7

    x8

    x9

    x10

    x11

    x12

    !

    "

    ##################

    $

    %

    &&&&&&&&&&&&&&&&&&new

    =xLon

    xLat'Dir

    !

    "##

    $

    %&&=

    u

    w

    x

    z

    q

    (v

    y

    p

    r

    )

    *

    !

    "

    ################

    $

    %

    &&&&&&&&&&&&&&&&

    First six elements ofthe state arelongitudinal variables

    Second six elementsof the state are lateral-directional variables

    Longitudinal

    Equations of Motion Dynamics of position, velocity, angle, and

    angular rate in the vertical plane

    !u = X / m ! gsin" + rv ! qw = !x1= f

    1

    !w = Z / m + gcos# cos" + qu ! pv = !x2= f

    2

    !xI = cos" cos$( )u + ! cos# sin$ + sin# sin" cos$( )v + sin# sin$ + cos# sin" cos$( )w = !x3 = f3!zI = ! sin"( )u + sin# cos"( )v + cos# cos"( )w = !x4 = f4

    !q = M ! Ixx ! Izz( ) pr ! Ixz p2 ! r2( )%& '( Iyy = !x5 = f5

    !" = qcos# ! r sin# = !x6= f

    6

    !xLon(t) = f[x

    Lon(t),u

    Lon(t),w

    Lon(t)]

    !v = Y / m + gsin! cos" # ru + pw = !x7= f

    7

    !yI = cos" sin$( )u + cos! cos$ + sin! sin" sin$( )v + # sin! cos$ + cos! sin" sin$( )w = !x8 = f8

    !p = IzzL + IxzN # Ixz Iyy # Ixx # Izz( ) p + Ixz2 + Izz Izz # Iyy( )%& '(r{ }q( ) Ixx Izz # Ixz2( ) = !x9 = f9!r = IxzL + IxxN # Ixz Iyy # Ixx # Izz( )r + Ixz2 + Ixx Ixx # Iyy( )%& '( p{ }q( ) Ixx Izz # Ixz2( ) = !x10 = f10!! = p + qsin! + r cos!( ) tan" = !x

    11= f

    11

    !$ = qsin! + r cos!( )sec" = !x12= f

    12

    Lateral-Directional

    Equations of Motion Dynamics of position, velocity, angle, and

    angular rate out of the vertical plane

    !xLD(t) = f[x

    LD(t),u

    LD(t),w

    LD(t)]

  • Sensitivity to Small Motions (12 x 12) stability matrix for the entire system

    F(t) =

    ! f1

    !x1

    ! f1

    !x2

    ...! f

    1

    !x12

    ! f2

    !x1

    ! f2

    !x2

    ...! f

    2

    !x12

    ... ... ... ...

    ! fn!x

    1

    ! fn!x

    2

    ...! fn

    !x12

    "

    #

    $$$$$$$$

    %

    &

    ''''''''

    =

    ! f1

    !u! f

    1

    !w ...! f

    1

    !(

    ! f2

    !u! f

    2

    !w ...! f

    2

    !(

    ... ... ... ...

    ! f12

    !u! f

    12

    !w ...! f

    12

    !(

    "

    #

    $$$$$$$$

    %

    &

    ''''''''

    Four (6 x 6) blocks distinguish longitudinal and lateral-directionaleffects

    F =FLon

    FLat!DirLon

    FLon

    Lat!DirFLat!Dir

    "

    #

    $$

    %

    &

    ''

    Effects of longitudinal perturbationson longitudinal motion

    Effects of longitudinal perturbations

    on lateral-directional motion

    Effects of lateral-directional

    perturbations on longitudinal motion

    Effects of lateral-directional perturbations

    on lateral-directional motion

    Sensitivity to

    Control Inputs Control input vector and perturbation

    Four (6 x 3) blocks distinguish longitudinal and lateral-directionaleffects

    G =G

    LonG

    Lat!DirLon

    GLon

    Lat!DirG

    Lat!Dir

    "

    #

    $$

    %

    &

    ''

    Effects of longitudinal controls onlongitudinal motion

    Effects of longitudinal controls on

    lateral-directional motion

    Effects of lateral-directional controls

    on longitudinal motion

    Effects of lateral-directional controls on

    lateral-directional motion

    u(t) =

    !E(t)

    !T (t)

    !F(t)

    !A(t)

    !R(t)

    !SF(t)

    "

    #

    $$$$$$$$

    %

    &

    ''''''''

    Elevator, deg or rad

    Throttle,%

    Flaps, deg or rad

    Ailerons, deg or rad

    Rudder, deg or rad

    Side Force Panels, deg or rad

    !u(t) =

    !"E(t)

    !"T (t)

    !"F(t)

    !"A(t)

    !"R(t)

    !"SF(t)

    #

    $

    %%%%%%%%

    &

    '

    ((((((((

    DecouplingApproximation for

    Small Perturbations

    Restrict the Nominal Flight Path

    to the Vertical Plane

    Nominal longitudinal equations reduce to

    Nominal lateral-directional motions are zero

    x1

    x2

    x3

    x4

    x5

    x6

    x7

    x8

    x9

    x10

    x11

    x12

    !

    "

    ##################

    $

    %

    &&&&&&&&&&&&&&&&&&N

    =xLon

    xLat'Dir

    !

    "

    ##

    $

    %

    &&N

    =

    uN

    wN

    xN

    zN

    qN

    (N

    0

    0

    0

    0

    0

    0

    !

    "

    ################

    $

    %

    &&&&&&&&&&&&&&&&

    !uN= X / m ! gsin"

    N! q

    NwN

    !wN= Z / m + gcos"

    N+ q

    NuN

    !xIN= cos"

    N( )uN + sin"N( )wN!zIN= ! sin"

    N( )uN + cos"N( )wN

    !qN=M

    Iyy

    !"N= q

    N

    !xLat!Dir

    N

    = 0

    xLat!Dir

    N

    = 0

    Nominal State Vector

    BUT, Lateral-directional perturbations need not bezero

    !!xLat"Dir

    N

    # 0

    !xLat"Dir

    N

    # 0

  • Restrict the Nominal Flight Path to

    Steady, Level Flight

    Calculate conditions for trimmed (equilibrium) flight See Flight Dynamics and FLIGHT program for a

    solution method

    0 = X / m ! gsin"N! q

    NwN

    0 = Z / m + gcos"N+ q

    NuN

    VN= cos"

    N( )uN + sin"N( )wN0 = ! sin"

    N( )uN + cos"N( )wN

    0 =M

    Iyy

    0 = qN

    Trimmed State Vector isconstant

    Specify nominal airspeed (VN) and altitude (hN = zN)

    u

    w

    x

    z

    q

    !

    "

    #

    $$$$$$$

    %

    &

    '''''''Trim

    =

    uTrim

    wTrim

    VN(t

    zN

    0

    !Trim

    "

    #

    $$$$$$$$

    %

    &

    ''''''''

    Small Perturbation Effects are Uncoupled inSteady, Symmetric, Level Flight

    Assume the airplane is symmetric and its nominal pathis steady, level flight

    Small longitudinal and lateral-directional perturbationsare approximately uncoupled from each other

    (12 x 12) system is

    block diagonal

    constant, i.e., linear, time-invariant (LTI)

    decoupled into two separate (6 x 6) systems

    F =FLon

    0

    0 FLat!Dir

    "

    #

    $$

    %

    &

    ''

    G =G

    Lon0

    0 GLat!Dir

    "

    #

    $$

    %

    &

    ''

    L =L

    Lon0

    0 LLat!Dir

    "

    #

    $$

    %

    &

    ''

    !!x

    Lon(t) = F

    Lon!x

    Lon(t) +G

    Lon!u

    Lon(t) + L

    Lon!w

    Lon(t)

    !xLon

    =

    !x1

    !x2

    !x3

    !x4

    !x5

    !x6

    "

    #

    $$$$$$$$

    %

    &

    ''''''''Lon

    =

    !u

    !w

    !x

    !z

    !q

    !(

    "

    #

    $$$$$$$

    %

    &

    '''''''

    (6 x 6) LTI LongitudinalPerturbation Model

    !uLon

    =

    !"T

    !"E

    !"F

    #

    $

    %%%

    &

    '

    (((

    !wLon =

    !uwind

    !wwind

    !qwind

    "

    #

    $$$

    %

    &

    '''

    (6 x 6) LTI Lateral-DirectionalPerturbation Model

    !!x

    Lat"Dir(t) = F

    Lat"Dir!x

    Lat"Dir(t) +G

    Lat"Dir!u

    Lat"Dir(t) + L

    Lat"Dir!w

    Lat"Dir(t)

    !xLat"Dir =

    !x1

    !x2

    !x3

    !x4

    !x5

    !x6

    #

    $

    %%%%%%%%

    &

    '

    ((((((((Lat"Dir

    =

    !v!y

    !p

    !r!)

    !*

    #

    $

    %%%%%%%%

    &

    '

    ((((((((

    !uLat"Dir =

    !#A

    !#R

    !#SF

    $

    %

    &&&

    '

    (

    )))

    !wLon =

    !vwind

    !pwind

    !rwind

    "

    #

    $$$

    %

    &

    '''

  • Frequency DomainDescription of LTISystem Dynamics

    Fourier Transform ofa Scalar Variable

    Transformation from time domain to frequency domain

    F !x(t)[ ] = !x( j" ) = !x(t)e# j" t

    #$

    $

    % dt, " = frequency, rad / s

    !x(t)

    !x( j" ) = a(" ) + jb(" )

    !x(t) : real variable

    !x( j" ) : complex variable

    = a(" ) + jb(" )

    = A(" )e j# (" )

    A : amplitude

    ! : phase angle

    j! : Imaginary operator, rad/s

    Laplace Transform of

    a Scalar Variable Laplace transformation from time domain to frequency domain

    L !x(t)[ ] = !x(s) = !x(t)e" st

    0

    #

    $ dts = ! + j"

    = Laplace (complex) operator, rad/s

    Laplace transformation is a linear operation

    L !x1(t) + !x

    2(t)[ ] = L !x1(t)[ ] + L !x2 (t)[ ] = !x1(s) + !x2 (s)

    L a!x(t)[ ] = aL !x(t)[ ] = a!x(s)

    !x(t) : real variable

    !x(s) : complex variable

    = a(s) + jb(s)

    = A(s)e j" (s )

    Laplace Transforms of

    Vectors and Matrices Laplace transform of a vector variable

    L !x(t)[ ] = !x(s) =

    !x1(s)

    !x2(s)

    ...

    "

    #

    $$$

    %

    &

    '''

    Laplace transform of a matrix variable

    L A(t)[ ] = A(s) =

    a11(s) a

    12(s) ...

    a21(s) a

    22(s) ...

    ... ... ...

    !

    "

    ###

    $

    %

    &&&

    Laplace transform of a time-derivative

    L !!x(t)[ ] = s!x(s) " !x(0)

  • Laplace Transform of

    a Dynamic System

    !!x(t) = F!x(t) +G!u(t) + L!w(t)

    System equation

    Laplace transform of system equation

    s!x(s) " !x(0) = F!x(s) +G!u(s) + L!w(s)

    dim(!x) = (n "1)

    dim(!u) = (m "1)

    dim(!w) = (s "1)

    Laplace Transform of

    a Dynamic System

    Rearrange Laplace transform of dynamic equation

    s!x(s) " F!x(s) = !x(0) +G!u(s) + L!w(s)

    sI ! F[ ]"x(s) = "x(0) +G"u(s) + L"w(s)

    !x(s) = sI " F[ ]"1!x(0) +G!u(s) + L!w(s)[ ]

    Modes of Motion

    Characteristic Polynomial

    of a LTI Dynamic System

    sI ! F[ ]!1=Adj sI ! F( )

    sI ! F(n x n)

    Characteristic polynomial of the system

    is a scalar

    defines the system!s modes of motion

    sI ! F = det sI ! F( ) " #(s)

    = sn+ a

    n!1sn!1

    + ...+ a1s + a

    0

    !x(s) = sI " F[ ]"1!x(0) +G!u(s) + L!w(s)[ ]

  • Eigenvalues (or Roots) of

    a Dynamic System

    !(s) = sn+ a

    n"1sn"1

    + ...+ a1s + a

    0= 0

    = s " #1( ) s " #2( ) ...( ) s " #n( ) = 0

    Characteristic equation of the system

    ... where !i are the eigenvalues of F or the rootsof the characteristic polynomial

    Eigenvalues are complex numbers thatcan be plotted in the s plane

    s Plane

    !i= "

    i+ j#

    i

    Complex conjugate

    !*

    i= "

    i# j$

    iPositive real part

    represents instability

    LongitudinalModes of Motion

    !Lon (s) = s " #1( ) s " #2( ) ...( ) s " #6( ) = 0

    = s " #range( ) s " #height( ) s " #phugoid( ) s " #*phugoid( ) s " #short period( ) s " #*short period( )

    !!x

    Lon(t) = F

    Lon!x

    Lon(t) +G

    Lon!u

    Lon(t) + L

    Lon!w

    Lon(t)

    !Lon (s) = s " #ran( ) s " #hgt( ) s2 + 2$P%nPs +%nP2( ) s2 + 2$SP%nSP s +%nSP

    2( ) = 0

    LongitudinalModes of Motion

    Eigenvalues determine the damping and natural frequenciesof the linear system!s modes of motion

    !ran : range mode " 0

    !hgt :height mode " 0

    #P ,$nP( ) : phugoid mode

    #SP ,$nSP( ) : short - period mode

    Longitudinal characteristic equationhas 6 eigenvalues

    4 eigenvalues normally appear as 2complex pairs

    Range and height modes usuallyinconsequential

    Lateral-DirectionalModes of Motion

    !LD (s) = s " #1( ) s " #2( ) ...( ) s " #6( ) = 0

    = s " #crossrange( ) s " #heading( ) s " #spiral( ) s " #roll( ) s " #Dutch roll( ) s " #*Dutch roll( )

    !!x

    Lat"Dir(t) = F

    Lat"Dir!x

    Lat"Dir(t) +G

    Lat"Dir!u

    Lat"Dir(t) + L

    Lat"Dir!w

    Lat"Dir(t)

    !LD(s) = s " #

    cr( ) s " #head( ) s " #S( ) s " #R( ) s2+ 2$

    DR%

    nDRs +%

    nDR

    2( ) = 0

  • Lateral-DirectionalModes of Motion

    Lateral-directional characteristicequation has 6 eigenvalues

    2 eigenvalues normally appear as acomplex pair

    Crossrange and heading modesusually inconsequential

    !cr : crossrange mode " 0

    !head :heading mode " 0

    !S : spiral mode

    !R : roll mode

    #DR ,$nDR( ) :Dutch roll mode

    Next Time:Longitudinal Dynamics

    SupplementalMaterial

    Sensitivity to Small Control and

    Disturbance Perturbations

    Control-effect matrix

    G(t) =!f

    !u x=xN (t )u=uN (t )w=wN (t )

    =

    ! f1

    !u1

    ! f1

    !u2

    ...! f

    1

    !um

    ! f2

    !u1

    ! f2

    !u2

    ...! f

    2

    !um

    ... ... ... ...

    ! fn!u

    1

    ! fn!u

    2

    ...! fn

    !um

    "

    #

    $$$$$$$$

    %

    &

    ''''''''x=xN (t )u=uN (t )w=wN (t )

    F(t) =!f

    !x x=xN (t )u=u

    N(t )

    w=wN(t )

    ; G(t) =!f

    !u x=xN (t )u=u

    N(t )

    w=wN(t )

    ; L(t) =!f

    !w x=xN (t )u=u

    N(t )

    w=wN(t )

    Disturbance-effect matrix

    L(t) =!f

    !w x=xN (t )u=uN (t )w=wN (t )

    =

    ! f1

    !w1

    ! f1

    !w2

    ...! f

    1

    !ws

    ! f2

    !w1

    ! f2

    !w2

    ...! f

    2

    !ws

    ... ... ... ...

    ! fn!w

    1

    ! fn!w

    2

    ...! fn

    !ws

    "

    #

    $$$$$$$$

    %

    &

    ''''''''x=xN (t )u=uN (t )w=wN (t )

  • How Do We Calculate the

    Partial Derivatives?

    Numerically First differences in f(x,u,w)

    Analytically Symbolic evaluation of analytical

    models of F, G, and L

    F(t) =!f

    !x x=xN (t )u=u

    N(t )

    w=wN(t )

    G(t) =!f

    !u x=xN (t )u=u

    N(t )

    w=wN(t )

    L(t) =!f

    !w x=xN (t )u=u

    N(t )

    w=wN(t )

    Numerical Estimation of theJacobian Matrices

    F(t) !

    f1

    x1+ "x

    1( )

    x2

    !

    xn

    #

    $

    %%%%%

    &

    '

    (((((

    ) f1

    x1) "x

    1( )

    x2

    !

    xn

    #

    $

    %%%%%

    &

    '

    (((((

    2"x1

    f1

    x1

    x2+ "x

    2( )

    !

    xn

    #

    $

    %%%%%

    &

    '

    (((((

    ) f1

    x1

    x2+ "x

    2( )

    !

    xn

    #

    $

    %%%%%

    &

    '

    (((((

    2"x2

    !

    f1

    x1

    x2

    !

    xn + "xn( )

    #

    $

    %%%%%

    &

    '

    (((((

    ) f1

    x1

    x2

    !

    xn + "xn( )

    #

    $

    %%%%%

    &

    '

    (((((

    2"xn

    f2

    x1+ "x

    1( )

    x2

    !

    xn

    #

    $

    %%%%%

    &

    '

    (((((

    ) f2

    x1) "x

    1( )

    x2

    !

    xn

    #

    $

    %%%%%

    &

    '

    (((((

    2"x1

    f2

    x1

    x2+ "x

    2( )

    !

    xn

    #

    $

    %%%%%

    &

    '

    (((((

    ) f2

    x1

    x2+ "x

    2( )

    !

    xn

    #

    $

    %%%%%

    &

    '

    (((((

    2"x2

    ! !

    ! ! ! !

    fn

    x1+ "x

    1( )

    x2

    !

    xn

    #

    $

    %%%%%

    &

    '

    (((((

    ) fn

    x1) "x

    1( )

    x2

    !

    xn

    #

    $

    %%%%%

    &

    '

    (((((

    2"x1

    ! !

    fn

    x1

    x2

    !

    xn + "xn( )

    #

    $

    %%%%%

    &

    '

    (((((

    ) fn

    x1

    x2

    !

    xn + "xn( )

    #

    $

    %%%%%

    &

    '

    (((((

    2"xn

    #

    $

    %%%%%%%%%%%%%%%%%%%%%%%%%%

    &

    '

    ((((((((((((((((((((((((((x=xN (t)u=u

    N(t)

    w=wN(t)

    Matrix Inverse

    A[ ]!1=Adj A( )

    A=Adj A( )

    detA

    (n " n)

    (1 " 1)

    =C

    T

    detA; C = matrix of cofactors

    Cofactors are signed

    minors of A

    ijth minor of A is the

    determinant of A with

    the ith row and jth

    column removed

    y = Ax; x = A!1ydim(x) = dim(y) = (n !1)

    dim(A) = (n ! n)

    Matrix Inverse

    A =a11

    a12

    a21

    a22

    !

    "

    ##

    $

    %

    &&; A

    '1=

    a22

    'a21

    'a12

    a11

    !

    "

    ##

    $

    %

    &&

    T

    a11a22

    ' a12a21

    =

    a22

    'a12

    'a21

    a11

    !

    "

    ##

    $

    %

    &&

    a11a22

    ' a12a21

    A =

    a11

    a12

    a13

    a21

    a22

    a23

    a31

    a32

    a33

    !

    "

    ###

    $

    %

    &&&; A

    '1=

    a22a33

    ' a23a32( ) ' a21a33 ' a23a31( ) a21a32 ' a22a31( )

    ' a12a33

    ' a13a32( ) a11a33 ' a13a31( ) ' a11a32 ' a12a31( )

    a12a23

    ' a13a22( ) ' a11a23 ' a13a21( ) a11a22 ' a12a21( )

    !

    "

    ####

    $

    %

    &&&&

    T

    a11a22a33+ a

    12a23a31+ a

    13a21a32

    ' a13a22a31

    ' a12a21a33

    ' a11a23a32

    =

    a22a33

    ' a23a32( ) ' a12a33 ' a13a32( ) a12a23 ' a13a22( )

    ' a21a33

    ' a23a31( ) a11a33 ' a13a31( ) ' a11a23 ' a13a21( )

    a21a32

    ' a22a31( ) ' a11a32 ' a12a31( ) a11a22 ' a12a21( )

    !

    "

    ####

    $

    %

    &&&&

    a11a22a33+ a

    12a23a31+ a

    13a21a32

    ' a13a22a31

    ' a12a21a33

    ' a11a23a32

    dim(A) = (2 ! 2)

    dim(A) = (3! 3)

    A = a; A!1=1

    a

    dim(A) = (1!1)

  • Sensitivity toDisturbance Inputs

    Disturbance input vector and perturbation

    Four (6 x 3) blocks distinguish longitudinal and lateral-directionaleffects

    L =L

    LonL

    Lat!DirLon

    LLon

    Lat!DirL

    Lat!Dir

    "

    #

    $$

    %

    &

    ''

    Effects of longitudinal disturbanceson longitudinal motion

    Effects of longitudinal disturbances

    on lateral-directional motion

    Effects of lateral-directional

    disturbances on longitudinal motion

    Effects of lateral-directional disturbances

    on lateral-directional motion

    w(t) =

    uw (t)

    ww (t)

    qw (t)

    vw (t)

    pw (t)

    rw (t)

    !

    "

    ########

    $

    %

    &&&&&&&&

    Axial wind, m / s

    Normal wind, m / s

    Pitching wind shear, deg / s or rad / s

    Lateral wind, m / s

    Rolling wind shear, deg / s or rad / s

    Yawing wind shear, deg / s or rad / s

    !w(t) =

    !uw(t)

    !ww(t)

    !qw(t)

    !vw(t)

    !pw(t)

    !rw(t)

    "

    #

    $$$$$$$$

    %

    &

    ''''''''


Recommended