+ All Categories
Home > Documents > 11. Integrals of Bessel Functions

11. Integrals of Bessel Functions

Date post: 14-Apr-2015
Category:
Upload: cleber-pereira-de-sousa
View: 121 times
Download: 5 times
Share this document with a friend
13
11. Integrals of Bessel Functions YUDELL L. LUKE’ Contents Mathematical Properties . . . . . . . . . . . . . 11.1. Simple Istegrals of Bessel Functions . . . . 11.2. Repeated Integrals of J,,(z) and &(z) -. . . 11.3. Reduction Formulaa for Indefinite Integrals 11.4. Definite Integrals . . . . . . . . . . . . Numerical Methoda . . . . . . . . . . . . . . . 11.5. Use and Extension of the Tables . . . . . Page . . . . . . . 480 . . . . . . . 480 . . . . . . . 482 . . . . . . . 483 . . . . . . . 485 . . . . . . . 488 . . . . . . . 4aa References . . . . . . . . . . . . . . . . . . . . . . . . . . 490 Table 11.1 Integrals of Bessel Functions . . . . . . . . . . . . . 492 Table 11.2 Integrals of Bessd Functions . . . . . . . . . . . . . 494 The author acknowledges the assistance of Geraldine Coombs, Betty Kahn, Marilyn Kemp, Betty Ruhlman, and Anna Lee Samuels for checking formulas and developing numerical examples, only a portion of which could be accommodated here. Midwest Research Institute. (Prepared under contract with the National Bureau of Standards.) 479
Transcript
Page 1: 11. Integrals of Bessel Functions

11. Integrals of Bessel Functions YUDELL L. LUKE’

Contents

Mathematical Properties . . . . . . . . . . . . . 11.1. Simple Istegrals of Bessel Functions . . . . 11.2. Repeated Integrals of J,,(z) and &(z) - . . . 11.3. Reduction Formulaa for Indefinite Integrals 11.4. Definite Integrals . . . . . . . . . . . .

Numerical Methoda . . . . . . . . . . . . . . . 11.5. Use and Extension of the Tables . . . . .

Page . . . . . . . 480 . . . . . . . 480 . . . . . . . 482 . . . . . . . 483 . . . . . . . 485 . . . . . . . 488 . . . . . . . 4aa

References . . . . . . . . . . . . . . . . . . . . . . . . . . 490 Table 11.1 Integrals of Bessel Functions . . . . . . . . . . . . . 492

Table 11.2 Integrals of Bessd Functions . . . . . . . . . . . . . 494

The author acknowledges the assistance of Geraldine Coombs, Betty Kahn, Marilyn Kemp, Betty Ruhlman, and Anna Lee Samuels for checking formulas and developing numerical examples, only a portion of which could be accommodated here.

Midwest Research Institute. (Prepared under contract with the National Bureau of Standards.)

479

Page 2: 11. Integrals of Bessel Functions

11. Integrals of Bessel Functions Mathematical Properties

11.1. Simple Integrals of Beesel Functions

p , ( t ) d t

11.1.1

(Wb+v+l)>O)

11.1.3 So'J,.(t)dl=S'J.(t)dt-2 0 % k=O Jzs+l(z)

11.1.4 So'J2m+1(t)dt=1-J0(z)-2 5 k=1 J&)

Recurrence Relations

11.1.8 1 F0 ( t ) d t = ;cz,(z) +z fl{ -LO(z)Z1(z) +Ll(Z)Z"(d 1

.Z,(z) =AI, (2) + Be'**K, (z) ,v = 0'1

A and B are constants.

E&) and L,(z) are Struve functions (see chapter 12).

11.1.9

y (Euler's constant)=.57721 56649 . . .

In this and all other integrals of 11.1, z is real and positive although all the results remain valid for extended portions of the complex plane unless stated to the contrary.

11.1.10

l-f= &(t)dt=i s': 0 Jo(t)dt+i f Y,(t)dt

11.1.11

Page 3: 11. Integrals of Bessel Functions

INTEGRALS OF BE8SEL FUNCMONB 481

2 3 4 5 6 7

11.1.14 2'e-z~Z0(t)dt-(2r)-* 2 k-0 a$-*

.00100 89872 .00178 70944

.OOO63 66169 .OOO67 40148

.OOO39 92825 .OOO41 00676

.Ooo27 55037 .Ooo25 43955

.OOO12 70039 .OOO11 07299

.00002 68482 .00002 26238

where the at are defined as in 11.1.12.

11.1.15 dezl" Ko(t)dt-(g) r t OD (-)'aF' k-0

where the at are defined m in 11.1.12.

Polynomial Approximatione f

11.1.16 8 1 x 1 . .

P "

7 1

11.1.17 8 9 5 -

a9e-'JZ lo(t) dt=$ -0 dt(x/8)-t+c(x) 0

le(z)l52XlO-'

k dr 0 ,39894 23 1 .03117 34 2 .00591 91 3 .00559 56 4 --.01148 58 5 .01774 40 6 -. 00739 95

11.1.18 71x5..

6

k-0 d8s.O' ~ o ( t ) dt = ( - )*et (x/7) -t+ t (z)

le(~)l 52x10-7

k ek

0 1.25331 414 1 0.11190 289 2 .02576 646 3 .00933 994 4 .00417 454 5 .00163 271 6 .00033 934

11.1.19

For #(z), see 6.3.

11.1.20

I 11.1.21

I 11.1.22

11.1.23 2 Approximation 11.1.16 is from A. J. M. Hitchcock.

Polynomial approximations to Bessel functions of order zero and one and to related functions, Math. Tables Aids Comp. 11, 86-88 (1957) (with permission).

Page 4: 11. Integrals of Bessel Functions

INTEQRALS OF BESSEL FUNCTION13 482 Aeymptotic Expamiom

where

11.1.25

where 13 co=l, c1=- 8 11.1.27

where ck is defined as in ll.l.!Z?.

Polynomial Approximations

11.1.29 5 5 x 5

- k

0 1 2 3 4 5 6 7 8 9

1. 0 0. 15999 2815 . 10161 9385 . 13081 1585 .20740 4022 .28330 0508 .27902 9488 . 17891 5710 .06622 8328 .01070 2234

bk

1. 0 0.81998 6629

10702 2336

11.1.30 4 5 x 5

Ic(z) I 5 6X lo-'

k 0 1.25331 41 1 0.50913 39 2 .32191 84 3 .26214 46 4 .20601 26 5 .11103 96 6 .02724 00

11.1.31 5 5 2 5 Q)

k 0 1 2 3 4 5 6 7 8 9

10

fk

0.39893 14 . 13320 55

1.47800 44

28.12214 78

40.39473 40 -11.90943 95 -3.51950 09

2.19454 64

-. 04938 43

-8.65560 13

-48.05241 15

Repeated Intqgrals of J,(z)

11.2.3

Page 5: 11. Integrals of Bessel Functions

INTEGRALS OF BESSEL FUNCTIONS 483 Recurrence Relatiom

11.2.5

11.2.6

mim

11.2.10

(9?220, w>o, wz>o, r=O) 11.2.11

Ki,(z) =-

(WZ20, Wr>O)

11.2.12

U ij r(r+3) - r (3) (r+ 1)

11.2.13 KL+,(O) -

11.2.14

rKir+l(z) = -zKir(z) + (T- l)Kir-l(z) +ZKi,-a(z)

11.3. Reduction Formulas for Indefinite Integrals

Let

11.3.1 g,,,.(z)=f’ e-P‘trZ,(t)dt

where Z&) represents any of the Bessel functions of the first three kinds or the modified Beasel functions. The parameters a and b appearing in the reduction formulae are associated with the particular type of Bessel function as delineated in the following table.

11.3.7 g.,,(z)=- 2v+l

i + 2 ” - ~ v - - 1) r

11.3.11

11.3.12

Page 6: 11. Integrals of Bessel Functions

484 INTEQRALS OF BESSEL FUNCTIONS

11.3.13

11.3.24

s,’ t.Y,-,(t)dt=z.Y, (z)+- 2’r(v) (L@v>O) U

1 11.3.26 s,’ t-’l,+l(t)dt=z-’l,(z) -2,r (v+l)

11.3.27

s,’ t.~.-,(t)dt=--z.~,(2)+2’-1r(~) (gV>o)

11.3.28

I n d a t e Integrab of Productcl of h l FUIME~~OM

Let Wp(z) and 9,(z) denote any two cylinder

1- t - .K,+, (t) dt = 2 - .K.(Z)

functions of orders p and v respectively.

11.3.29

11.3.33

11.3.35

= 2 Ji(Z) k-n+l

*see page XI.

Page 7: 11. Integrals of Bessel Functions

485 INTEGRALS OF BESSEL FUNCTIONS

m > o , *>-I) 11.3.41

11.4. Definite Integrals

Orthogonality Pmpertiea of -1 Functions

Let %(z) be a cylinder function of order u. In particular, let

11.4.1 %(z) -AJ,(z) +BP,(z)

where A and B are real constants. Then

11.4.2

provided the following two conditions hold: 1. A,,isarealzeroof

11.4.3 h,AV*,(Ab)-hl%(hb) =o

2. There must exist numbers kl and 4 (both not zero) so that for all n

11.4.4 klAnV*i (La) -B%(AaU) =O

In connection with these formulae, see 11.3.29. If a=O, the above is,valid provided B=O. This case is covered by the following result.

11.4.5

So'tJ,(%t)J,(%t)dt==O (mZn, u>-1)

=3[J;(41' (m=n, b=O, Y>-I)

(m=n, b ZO, Y 2 - 1)

( ~ 1 , a¶, . . . are the positive zeros of ccJ,(z)+bz..Z(z)=O, where a and b are red con- stants.

11.4.6

Definite Inregrab Over a Finite Range

11.4.7

11.4.8 Lr J0(22 sin t) cos 2ntdt=~J:(z)

11.4.9 l' Y0(2z sin t) cos 2ntdt=i Jn(z)Y,(z)

11.4.10

f J2=(2Z sin t)dt=2 R s,(z)

I

11.4.11

f J,(z sin* t)J,(z cos4 t) c8c 2tdt

Page 8: 11. Integrals of Bessel Functions

486 INTEGRALS OF BESSEL FUNCTIONS

Infinite Integrals

Inyrab of the Form

11.4.12

(gP<;t a(r+v)>o) 11.4.13

pCI<;t W(r+v)>O) 11.4.14

11.4.15

(I 4<1) arc sinh b (l+b')+

SO0 sin bt K,(t)dt=

11.4.17 J,(t)dt=l (Bv>-1)

11.4.18

11.4.19

2 r

11.4.21 JmYo (t)dt =O

11.4622

11.4.23

= 0 (@'> 1)

where T,,(w) is the Chebyshev polynomial of the first kind (see chapter 22).

11.4.25

$-;t-1e-"'Jn (t)dt

2i n -- (-i)"(l-~Z)+u~~~(@)(~*<l)

=0(wZ>1)

where UJw) is the Chebyshev polynomial of the second kind (see chapter 22).

11.4.26

wbere r(a, z) is the incomplete gamma function (see chapter 6).

Integra& of the Form c."WZ,[&)dt L= 11.4.28

(B(CI+v)>O, ga'>O)

where the notation M(a, b, z) stands for the con- fluent hypergeometric function (see chapter 13).

11.4.29

(Wu>-l, @a*>O)

Page 9: 11. Integrals of Bessel Functions

487 11.4.31 11.4.30

hl v-

d - 2u [I. (2) tan a w

e-""Y,,(bt)dt=-- e

+: K, (5) sec m] (19ul<r 1

11.4.31

(Wu>- 1,9a*>O) 11.4.32

Weber-Schafheitlin Type Integrals 11.4.33

sin [ p arc sin :] som J,(at) sin bt dt= (a2- b2)+ (O,<b<a)

b'r (u-p)

Page 10: 11. Integrals of Bessel Functions

488 INTEGRALS OF BESSEL FUNCTIONS

Hankel-Nicholson Tope Integrda I 11.4.47

11.4.44

(a>o, Bz>O,-l<BY<29P+;)

11.4.45 OD J,(at)dt !r =- [I,(az)-L,(az)]

t’(t*+ZZ) 22.+1 (a>o, B2>0, .%>-ij 5,

b 11.4.46

(a>O, BZ>O, 9?v>-1)

11.449

Numerical Methods

11.5. Use and Extension of the Tables

For moderate values of 2, use 11.1.2 and 11.1.7- 11.1.10 as appropriate. For z suf6ciently large, use the asymptotic expansions or the polynomial approximations 11.1.11-11.1.18.

Example 1. Compute l’M Jo(t)dt to 5D.

Using 11.1.2 and interpolating in Tables 9.1 and 9.2, we have

13.M Jo(t)dt=2[.32019 09 + .31783 69 + .04611 52 +. 00283 19 + .00009 72+ .OOOOO 211

= 1.37415

Example 2. Compute l.’’ Jo(t)dt to 5D by

interpolation of Table 11.1 using Taylor’s formula. We have

ha h‘ +3 [Jz(z)-Jo(z)I+gg [3J1(4--Ja(dI+ - - Then with z=3.0 and h=.05,

~~J0(t)dt=1.387567+(.05)(-.260052) - (.00125) (.339059) + (.OOOOlO) (.746143) = 1.37415

This value is readily checked using 2 ~ 3 . 1 and h=-.05. Now IJo(z)l 51 for all 2 and IJ,,(z)l <2-4, rill for all 2. In Table 11.1, we can always choose Ihl5.05. Thus if all terms of O(h4) and higher are neglected, then a bound for the absolute error is 2+h4/48<.3.10-6 for all z if Ihl - <.05. Similarly, the absolute error for quadratic interpolation does not exceed

h3 (24 + 2)/24 < .2 - lo--?

Example 3. Interpolation of Simpson’s rule. We have

and with IhII .05, it follows that

lRl<.9 10-10

Thus if 2=3.0 and h=.05

~‘06Jo(t)dt=1.38756 72520+- ( 05) [-.26005 19549 6

+4(-.26841 13883)-.27653 495991 =1.37414 86481

Page 11: 11. Integrals of Bessel Functions

INTEQRALS OF BESSEL FUNCTION8 489 which is correct to 10D. The above procedure gives high accuracy though it may be necessary to

interpolate twice in Jo(z) to compute J o 1:+-

and Jo(r+h). A similar technique based on the trapezoidal rule is less accurate, but at most only one interpolation of Jo(z) is required.

Example 4. Cornputel Jo(t)dt a n d l YdtW

to 5D using the representation in terms of Struve functions and the tables in chapters 9 and 12.

( 3

For 2=3, from Tablea 9.1 and 12.1 Jo=-. 260052 J1= ,339059 Yo= .376850 Y1= .324674 I&= .574306 &=l. 020110

Using 11.1.7, we have

Jo(t)dt=3(-.260052) +? [(.574306)(.339059)

- (1.0201 10) (- .26OO52) 1 = 1.38757

Similarly,

Using 11.1.8 and Tables 9.8 and 12.1, one can

compute1 Io(t)dt a n d l Ko(t)dt.

Jm Jo(;)dt,S," Yo(i)dt,1 Vo( t ) - 1 l d l , l Ko(t)dt

For moderate values of z, use 11.1.19-11.1.23. For z sufficiently large, use the asymptotic ex- pansions or the polynomial approximations 11.1.24-11.1.31.

t t

Repeated Integrals of J&)

For moderate values of z and r, use 11.2.4. If r=l, see Example 1. For moderate values of 2, use tha recurrence formula 11.2.5. If 1: is large and z ~ r , see tho discussion below.

Compute j r , &)=jr(z) to 5D for 2=2 and r=0(1)5 using 11.2.6. We have

Example 5.

d r+ l (z) =zfrCz) - (r-1)jr-i (r) +S fr-,(z)

j-1(1:> = - Jl(4, f o b ) = JO(z1, f~(z> =r Jo (t) dt 0

and the termson this last line are tabulated. Thus for 2=2,

f-l=--.57672 48,fo=.22389 08,fl=1.42577 03

The recurrence formula gives

Similarly, fi= 2 (f1 4-f-1) = 1.69809 10

f3=1.20909 66,f4=.62451 73,f5=.25448 17

When r>>r, it is convenient to use the auxil- iary function

Si(%) = (T- l) !~- '+'fr(;~)

This satisfies the recurrence relation

a2gr+i(x)=$gr- (T- l)2gr-1(z) + (r- 1) (~-2)gr-2(2) r 1 3

93 (4 = Vg2 (4 - 91 (4 + Z J O O ) 1/39 91 (4 = s' JON dt, 92 (4 = 91 (3) - J1(4

0

Example 6. Compute g,(z) to 5D for z=10 and r=0(1)6. We have for z=lO,

Jo=-.24593 58, J17.04347 27, g1=1.06701 13

Thus g2331.02353 86, g3=.98827 49

and the forward recurrence formula gives

g4=.96867 36, g,=.94114 12, g,=.90474 64

For tables of 2-77(1:), see [11.16].

Repeated Integrals of &(x)

For moderate values of z, use the recurrence

Example 7. Compute Ki,(z) to 5D for 2=2 formula 11.2.14 for all T.

and r=0(1)5. We have

rKir+1(z)=-2Kir(z)+ (r-1)Kir-1(z)+~Kir-2(z) m

KLl(z) =Kl(z), Kio(z) =KO(%), Ki,(z)=S Ko(t)dt

and the functions on this last line are tabulated Thus for ,2=2,

K0=.11389 39, K1=.13986 59, Kil=.09712 06

Ki2=-2Kil+2K1=.08549 06 and

Similarly,

Kia=.07696 36, Ki4=.07043 17, Kis=.06525 22

If x/r is not large the formula can still be used provided that the starting values are sufliciently accurate to offset the growth of rounding error.

For tables of Kit(%), see [11.11].

Page 12: 11. Integrals of Bessel Functions

490 INTEGRALS QF BESSEL FUNCTIONS

Now

fo(d =SK0(t)dt,j1(2) 0 = [l -zK1(41/z

the latter following from 11.3.27 with v= l . In 11.3.5, put a=l , b=-1, p=O and v=O. Let p=m. Then

j n ( 4 = [(m - 1 >Ynl-2(4 - 2KI (4 - 4m-1>~0(41/2 (m>l>

Using tabular values of jo and f l , one can compute in succession j2, js, . . . provided that m/x is not large.

Example 8. Compute j,,,(z) to 5 D for 2=5 and m=0(1)6. We have, retaining two additional decimals

&= -00369 11 K1=. 00404 46 jo=l. 56738 74 fi=. 19595 54

Thus

j2=.05791 27,j,=.01458 93,j6=.00685 36

Similarly starting with jl, we can compute j3 and js. If m>z, employ the recurrence formula in

backward form and write

fm-2(z>=[22fm(2)+~~~(~>+~(m--1)Ko(~)l/(m--1)2

In the latter expression, replace j,,, by gn. Take r>m and assume gr=O. gr-4, etc. Then

Fix 2. Compute gr-2,

lim gr-w(z)=j,,,(z), m=r-2k r-m

Apart from roundaff error, the value of r needed to achieve a stated accuracy for given x and m can be determined a priori. Let

Then

Qr-2k= (~-1)~(r-3)~. . . (r-2k+1)2

Qr I [ ~ K I (5) +dr- 1 )Ko(z) I/(r- 1)

since for 2 fixed, jr(Z) is positive and decreases as r increases.

Example 9. Compute j,,,(z) to 5D for 2=3 and m=0(2)10. We have

&=.03473 95 K1=.04015 64

If r= 16, ~6<.86*1O-’ q0<1.4-1O-~

Taking g16=0, we compute the following values of g14) g12, . . ., go by recurrence. Also recorded are the required values off,,, to 5D.

m

14 12 10 8 6 4 2 0

9.,

.00855 42

.01061 09

.01325 05

.01751 39

.02548 09

.04447 31

. 11936 90 1. 53994 71

.01325

.01751

.02548

.04447

. 11937 1.53995

For tables of j,,,(z), see [11.21].

References Tests

[11.1] H. Bateman and R. C. Archibald, A guide to tables of Bessel functions, Math. Tables Aids a m p . 1, 247-252 (1943). See also Supplements I, 11, IV, same journal, 1,403-404 (1943); 2,59 (1946); 2, 190 (1946), respectively.

(11.21 A. Erd6lyi et al., Higher transcendental functions, vol. 2, ch. 7 (McGraw-Hill Book Co., Inc., New York, N.Y., 1953).

[11.3] A. ErdQyi et al., Tables of integral transforms, vola. 1, 2 (McGraw-Hill Book Co., Inc., New York, N.Y., 1954).

[11.4] W. Grirbner and N. Hofreiter, Integraltafel, I1 Teil (Springer-Verlag, Wien and Innsbruck, Austria,

[11.5] L. V. King, On the convection of heat from small cylinders in a stream of fluid, Trans. Roy. Soo. London 214A, 373-432 (1914).

[11.6] Y. L. Luke, Some notes on integrals involving Bessel functions, J. Math. Phys. 29, 27-30

1949-1950).

(1960).

fn

[11.7] Y. L. Luke, An associated Bessel function, J. Math.

[11.8] F. Oberhettinger, On some expansions for Bessel integral functions, J. Research NBS 59, 197-201 (1957) RP 2786.

[11.9] G. Petiau, La thQrie des fonctions de Bessel (Centre National de la Recherche Scientifique, Paris, France, 1955).

[11.10] G. N. Watson, A treatise on the theory of Bessel functions, 2d ed. (Cambridge Univ. Press, Cambridge, England, 1958).

Phys. 31, 131-138 (1952).

Tables

[11.11] W. G. Bickley ana J. Nayler, A short table of the functions Kin@), from n= l to n=16. Philos.

Mag. 7,20,343-347 (1935). Kil(z)=LmKo(t)&,

Ki,(z) =Jm Ki,,-I(t)&, n=1(1)16, z=0(.06).2

(.1)2, 3, QD.

Page 13: 11. Integrals of Bessel Functions

INTEGRALS OF BESSEL FUNCTIONS 491 [11.12] V. R. Bursian and V. Pock, Table of the functions

Akad. Nauk, Leningrad, Inst. Fiz. Mat.,

Trudy (Travaux) 2, 6-10 (1931). JmKo(t)dl,

z=O(.1)12, 7D; e= Ko(t)dt, z=O(.l)l6, 7D; L- Zo(t)dt, z=O(.1)6, 7D; e-= Zo(t)dt, z=

0 (.1)16, 7D. [11.13] E. A. Chistova, Tablitay funktsii Besselya ot

deistvitel’ nogo argumenta i integralov ot nikh (Izdat. Akad. Nauk SSSR., MOSCOW, U.S.S.R.,

n=O, 1; z=0(.001)15(.01)100, 7 0 . Also tabulated are auxiliary expressions to facil- itate interpolation near the origin.

[11.14] A. J. M. Hitchcock, Polynomial approximations to Bessel functions of order zero and one and to related functions, Math. Tables Aids a m p . 11, 86-88 (1957). Polynomial approximations

for i‘Jo(t)dt and KKo(t)dt.

[ l l . l5] C. W. Horton, A short table’ of Struve functions and of some integrals involving Bessel and Struve functions, J. Math. Phys. 29, 66-68

(1960). C,(z) =$ tJ,(t)dt, n= 1 (1) 4,2=O( .I) 10,

4D; D,(z) =J’ t”E.(t)dt, n=0(1)4, ~=0(.1)10,

4D, where E,@) is Struve’s function; see chapter 12.

[ l l . l6] J. C. Jaeger, Repeated integrals of Bessel functions and the theory of transienta in filter circuita, J. Math. Phys. 27, 210-219 (1948). f~(z)=

l’ Jo(t)dl, f,(z)=Jzf,l(t)dt, 2-%(z), r=1(1)7,

Z=0(1)24, 8D. Also +,(z) =~mJ~[2(~t)“]Jn(t)~p

an@), *i(z), n=1(1)7, ~=0(1)24, 4D. [11.17] L. N. Karmaeina and E. A. Chistova, Tablitay

funktaii Besselya ot mnimogo argumenta i integralov ot nikh (Izdat. Akad. Nauk SSSR., MOSCOW, U.S.S.R., 1958). e-+Zo(z), e-+Zl(z),

e=Ko(z), ezK1(z), e=, e-=f Zo(t)dl, e = c Ko(t)dt,

z=0(.001)5(.005)15(.01)100, 7D except for e’ which is 78. Also tabulated are auxiliary expres- sions to facilitate interpolation near the origin.

[11.18] H. L. Knudsen, Bidrag til teorien for antenne- systemer med he1 eller delvis rotations-symmetri. I (Kommission Has Teknisk Forlag, Copenhagen,

Denmark, 1953). J” J,(t)dt, n=0(1)8, z=

0(.01)10, SD. Also J.(t)ecodl, a=t, a=z-t.

(11.191 Y. 5. Luke and D. Ufford, Tables of the function

&(z) =6’Ko(t)dt. Math. Tables Aids Comp.

UMT 129. Z(z) = - [r+h (~/2)1Ai(~) + Aa(z), Ai@), A&). z=0(.01).5(.05)1, 8D.

f

[11.20] C. Mack and M. Castle, Tables of Zo(z)& and

JamKo(z)&, Roy. Soc. Unpublished Math. Table

File No. 6. a=0(.02)2(.1)4, QD. [11.21] G. M. Muller, Table of the function

s,”

Kj,(z) =z-ns,’unKo(u)du,

Office of Technical Services, U.S. Department of Commerce, Washington, D.C. (1954). n=0(1)31, ~=0(.01)2(.02)5, 89.

(11.221 National Bureau of Standards, Tables of functions and zeros of functions, Applied Math. Series 37 (U.S. Government Printing Office, Washington,

D.C., 1954). (1) pp. 21-31: s,’Jo(t)dt, Y~(t)dt,

z=O(.01)10, 10D. (2) pp. 33-39: Jo(t)dt/t,

~=0(.1)10(1)22, 10D; F(z)=Jm Jo(t)dl/t

+In (z/2), z=0(.1)3, 10D; F(”(z)/n!, z= lO( l)22, n=O(1)13, 12D.

[11.23] National Physical Laboratory, Integrals of Bessel functions, Roy. Soc. Unpublished Math. Table

[11.24] M. Rothman, Table of PO(Z)& for 0(.1)20(1)26,

Quart. J. Mech. Appl. Math. 2, 212-21.7 (1949). 85-98.

Jo(t)dt for large z,

J. Math. Phys. 34, 169-172 (1955). 2=10(.2)40, 6D.

(11.261 G. N. Watson, A treatise on the theory of Bessel functions, 2d ed. (Cambridge Univ. Press, Cam- bridge, England, 1958). Table VIII, p. 752:

i p ~ ( t ) d t , ; fY~ ( t ) d t , 2=0(.02)1, 7D, with

the first 16 maxima and minima of the integrals to 7D.

[11.26] P. W. Schmidt, Tables of 6’


Recommended