+ All Categories
Home > Documents > 11 UV-Vis Spectroscopy 2019 - Cook...

11 UV-Vis Spectroscopy 2019 - Cook...

Date post: 31-Jan-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
40
©2019 Gregory R. Cook, NDSU UV-Vis Spectroscopy Chem 744 Spring 2019
Transcript
  • ©2019 Gregory R. Cook, NDSU

    UV-Vis SpectroscopyChem 744

    Spring 2019

  • ©2019 Gregory R. Cook, NDSU

    The EM Spectrum

    2

  • ©2019 Gregory R. Cook, NDSU

    UV-Vis Spectroscopy

    200 300 400

    ultraviolet

    ‣ Every organic molecule absorbs UV-visible light

    ‣ Energy of electronic transitions

    ‣ saturated functionality not in region that is easily accessible (obscured by solvent and atmosphere)

    ‣ Conjugation


    3

  • ©2019 Gregory R. Cook, NDSU

    Basic Instrument Design

    4

  • ©2019 Gregory R. Cook, NDSU

    Electronic Transitions

    5

    σ

    π

    n

    π∗

    σ∗

    σ σ∗

    σ π∗

    π π∗

    n σ∗

    n π∗

    possible electronic transitions

    alkanes

    carbonyls

    alkenes, carbonyls, alkynes, etc.

    heteroatoms - O, N, S, X, etc.

    carbonyls

    E

    ΔE = [Eexcited - Eground] = hν

  • ©2019 Gregory R. Cook, NDSU

    Electronic Transitions

    6

    http://chemwiki.ucdavis.edu

    http://chemwiki.ucdavis.edu

  • ©2019 Gregory R. Cook, NDSU

    Electronic Transitions

    7

    http://chemwiki.ucdavis.edu

    http://chemwiki.ucdavis.edu

  • ©2019 Gregory R. Cook, NDSU

    Electronic Transitions

    8

    http://chemwiki.ucdavis.edu

    http://chemwiki.ucdavis.edu

  • ©2019 Gregory R. Cook, NDSU

    Electronic Transitions

    9

    http://chemwiki.ucdavis.edu

    http://chemwiki.ucdavis.edu

  • ©2019 Gregory R. Cook, NDSU

    Electronic Transitions

    10

    http://chemwiki.ucdavis.edu

    http://chemwiki.ucdavis.edu

  • ©2019 Gregory R. Cook, NDSU

    Beer-Lambert Law

    A = log ( I0 / I1 ) = ε l c

    11

    ‣ A is absorbance (no units)‣ ε is the molar absorptivity or 


    extinction coefficient (L mol-1 cm-1) 
(how strongly it absorbs - intrinsic)

    ‣ l is the path length of the sample (cm)‣ c is the concentration of the comppound (mol L-1)

    ‣ I0 is the intensity of the incident light

    ‣ I1 is the intensity of the transmitted light

  • ©2019 Gregory R. Cook, NDSU

    Organic Molecules UV-Vis Characteristics

    ‣ Most organic molecules absorb in UV region unless highly conjugated

    ‣ Most common detector for HPLC‣ best to have conjugated chromophore‣ Spectra are broad (why?) making it useful for

    qualitative identification

    ‣ Can quantitate using Beer’s law analysis

    12

  • ©2019 Gregory R. Cook, NDSU

    Presentation of Spectra

    ‣ many vibrational bands - many slightly different absorbances‣ Absorption of light occurs in 10-15 s, faster than vibrational changes‣ Franck-Codon principle - absorption occurs via a vertical transition 


    - all bond lengths, angles, conformations and solvation are conserved in the transition.

    13

    200 nm 800 nm

    λmax

    λmax

    hyperchromic

    bathochromichypsochromic

    hypochromic

    (blue) (red)A

  • ©2019 Gregory R. Cook, NDSU

    Presentation of Spectra

    14

  • ©2019 Gregory R. Cook, NDSU

    Electronic Transitions

    15

    http://chemwiki.ucdavis.edu

    http://chemwiki.ucdavis.edu

  • ©2019 Gregory R. Cook, NDSU

    Electronic Transitions

    16

    http://chemwiki.ucdavis.edu

    3

    http://chemwiki.ucdavis.eduhttp://chemwiki.ucdavis.edu

  • ©2019 Gregory R. Cook, NDSU

    Electronic Transitions

    17

    http://chemwiki.ucdavis.edu

    Blue Dye #1

    http://chemwiki.ucdavis.eduhttp://chemwiki.ucdavis.edu

  • ©2019 Gregory R. Cook, NDSU

    Solvents

    ‣ Measuring UV-Vis spectra

  • ©2019 Gregory R. Cook, NDSU

    Solvent effects on spectra

    19

    OH

  • ©2019 Gregory R. Cook, NDSU

    Selection Rules

    σ

    π

    n

    π∗

    σ∗

    possible electronic transitions

    E

    ‣ Not all transitions are observed‣ Depends on symmetry and multiplicity

    ‣ “Forbidden Transitions” (e.g. n-π*) can be seen but are weak

    ‣ Molecular vibrations
can disrupt the
symmetry


    20

  • ©2019 Gregory R. Cook, NDSU

    Transitions

    21

  • ©2019 Gregory R. Cook, NDSU

    Nature of absorption

    22

    C C

    H

    H H

    H

    HH

    ‣ Ethane - λmax = 135 nm

  • ©2019 Gregory R. Cook, NDSU

    Nature of absorption

    ‣ Acetone - λmax = ~166 nm (n-σ* ; ε = >10000) 
 λmax = 188 nm (π-π* ; ε = 1860) 
 λmax = 279 nm (n-π* ; ε = 15)

    23

    O

    O

    O

    O

  • ©2019 Gregory R. Cook, NDSU

    Tetraphenyldicyclopentadienone

    24

    O

  • ©2019 Gregory R. Cook, NDSU

    Electronic Transitions

    25

    http://chemwiki.ucdavis.edu

    NADH / NAD+

    http://chemwiki.ucdavis.edu

  • ©2019 Gregory R. Cook, NDSU

    Ethylene

    26

    ‣ Ethylene π-π* λmax = 165 nm (n-σ* ; ε = 16,000)

    ‣ Substitution with an atom containing non-bonding electrons (–OH, OR, –NH2, –NHR, –SH, –SR, –Hal) results in a bathochromic shift –> the non-bonding electrons interact with the π-orbitals of the double bond

    ‣ the energy difference between the HOMO and LUMO decreases

  • ©2019 Gregory R. Cook, NDSU

    Conjugation

    27

  • ©2019 Gregory R. Cook, NDSU

    Conjugation

    28

    ‣ Conjugation of two or more double bonds results in decreasing energy difference between the HOMO and LUMO

    λmax 217 253 220 227 227 256 263

  • ©2019 Gregory R. Cook, NDSU

    Conjugation

    29

  • ©2019 Gregory R. Cook, NDSU

    Conjugation

    30

    ‣ Woodward-Fieser Rules work well up to 4 double bonds

    base 2172 alkyls 10exo bond 5total 232 (actual 237)

    base 2143 alkyls 15exo bond 5total 234 (actual 235)

    for more than 4 conjugated double bonds: Fieser-Kuhn Rules

    λmax = 114 + 5(# alkyl substituents) + n(48 - 1.7n) - 16.5(# endo) - 10(# exo)

  • ©2019 Gregory R. Cook, NDSU

    Conjugation

    31

    ‣ Lycopene and beta-carotene

    λmax = 114 + 5(8) + 11(48 - 1.7•11) - 0 - 0 = 476 nm

    λmax (actual) = 474

    λmax = 114 + 5(10) + 11(48 - 1.7•11) - 16.5(2) - 0 = 453.3 nm

    λmax (actual) = 452

    λmax = 114 + 5(# alkyl substituents) + n(48 - 1.7n) - 16.5(# endo) - 10(# exo)

  • ©2019 Gregory R. Cook, NDSU

    Conjugation

    32

    lycopene (red color of tomatos)

  • ©2019 Gregory R. Cook, NDSU

    Benzene

    33

  • ©2019 Gregory R. Cook, NDSU

    Aromatic Substituent Effects

    34

  • ©2019 Gregory R. Cook, NDSU

    Aromatic Substituent Effects

    35

  • ©2019 Gregory R. Cook, NDSU

    Aromatic Dyes

    36

    O

    R3'

    R4'

    R5'

    R3

    R5R6

    R7

    anthocyaninsR = H, OH, OCH3

    O

    OHR

    R

    OROH

    HO NaOH O

    OR

    R

    OROH

    O

  • ©2019 Gregory R. Cook, NDSU

    Polyaromatic Systems

    37

  • ©2019 Gregory R. Cook, NDSU

    Carbonyl Compounds

    38

  • ©2019 Gregory R. Cook, NDSU

    Carbonyl Compounds

    39

    C O aldehyde or ketone n -> σ* 166 nm ε = 16,000π -> π* 189 nm ε = 900n -> π* 166 nm ε = 10-20

    O279

    O279

    O288

    O295

    O299

    O285

    H

    O290

    H

    O292

    O290

    OH

    O204

    OEt

    O207

    NH2

    O220

    Cl

    O235

    O225

    H

    O

  • ©2019 Gregory R. Cook, NDSU

    Carbonyl Compounds

    40


Recommended