+ All Categories
Home > Documents > 11051_2014_2503_MOESM1_ESM.docx - Springer Static …10.1007/s110…  · Web viewMany studies were...

11051_2014_2503_MOESM1_ESM.docx - Springer Static …10.1007/s110…  · Web viewMany studies were...

Date post: 13-Apr-2018
Category:
Upload: truongtu
View: 217 times
Download: 3 times
Share this document with a friend
39
Emerging Patterns for Engineered Nanomaterials in the Environment: A Review of Fate and Toxicity Studies Kendra L. Garner and Arturo A. Keller UC Center on the Environmental Implications of Nanotechnology and School of Environmental Science and Management, University of California, Santa Barbara, CA 93106 Supporting Information 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Transcript

Emerging Patterns for Engineered Nanomaterials in the Environment:

A Review of Fate and Toxicity Studies

Kendra L. Garner and Arturo A. Keller

UC Center on the Environmental Implications of Nanotechnology and School of Environmental Science and Management, University of California, Santa Barbara, CA 93106

Supporting Information

1

1

2

3

4

56

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Many studies were considered for determining the merging patterns for fate and toxicity

represented in Figures 2-5. These sources are summarized in Table S1. Some of these sources

provided direct process rate information, while others provided additional conditions or

exceptions to the generalized results, as discussed in the main manuscript.

Table S1. References for rates of aggregation, sedimentation, and dissolution, as well as

specifically how ENMs interact with NOM, transport in porous media, and toxicity.

NP Specific Process

References

Aggregation Rates

Adeleye et al., 2013; Afrooz et al., 2013; Aruoja et al., 2009; Baalousha, 2009; Baalousha et al., 2008; Bennett et al., 2013; Bian et al., 2011; Chen et al., 2007, 2006, 2012; Chen and Elimelech, 2007, 2006; Chinnapongse et al., 2011; Chowdhury et al., 2011; Cornelis et al., 2011; Delay et al., 2011; Diedrich et al., 2012; Domingos et al., 2009; Dunphy Guzman et al., 2006; Elzey and Grassian, 2010; Fabrega et al., 2009; Fairbairn et al., 2011; Fang et al., 2009; Fortner et al., 2005; Franklin et al., 2007; French et al., 2009; Furman et al., 2013; Ghosh et al., 2010; Gong et al., 2011; Griffitt et al., 2008; He and Zhao, 2005; Hoecke et al., 2009; Hotze et al., 2010; Huynh and Chen, 2011; Hyung et al., 2006; Jones and Su, 2012; Keller et al., 2012, 2010; T. Li et al., 2010; Li et al., 2011, 2010; Limbach et al., 2008; Lin et al., 2010; Liu et al., 2009; Ma et al., 2013; Miller et al., 2010; Pakrashi et al., 2012; Pelley and Tufenkji, 2008; Petosa et al., 2012; Pettibone et al., 2008; Phenrat et al., 2007; Quik et al., 2013; Reinsch et al., 2012; N. Saleh et al., 2008; N. B. Saleh et al., 2008; Schrick et al., 2004; Shih et al., 2012; Simon-Deckers et al., 2009; Stankus et al., 2010; Stebounova et al., 2011; Thio et al., 2011; Unrine et al., 2010; Velzeboer et al., 2008; von der Kammer et al., 2010; P. Wang et al., 2008; Y. Wang et al., 2012; Wang et al., 2011; Wong et al., 2010; Yin et al., 2012; Zhang et al., 2009, 2008; Zhou and Keller, 2013, 2010; Zhu et al., 2012; Zook et al., 2012

Sedimentation Rates

Adeleye et al., 2013; Aruoja et al., 2009; Battin et al., 2009; Bennett et al., 2013; Bian et al., 2011; Chen et al., 2012; Chen and Elimelech, 2006; Chinnapongse et al., 2011; Chowdhury et al., 2011; Fairbairn et al., 2011; Fang et al., 2009; Ferry et al., 2009; Fortner et al., 2005; Franklin et al., 2007; Gilbert et al., 2007; Griffitt et al., 2008; He and Zhao, 2005; Hyung and Kim, 2008; Jones and Su, 2012; Keller et al., 2010; Kennedy, et al.,

2

24

25

26

27

28

29

2008; Z. Li et al., 2010; Limbach et al., 2008; Lowry et al., 2012; Ma et al., 2013; Mackenzie et al., 2012; Miller et al., 2010, p. 201; Montes et al., 2012; Pettibone et al., 2008; Quik et al., 2013, 2010; N. Saleh et al., 2008; Schrick et al., 2004; Stankus et al., 2010; Stebounova et al., 2011; Thio et al., 2011; von der Kammer et al., 2010; P. Wang et al., 2008; Y. Wang et al., 2012; Yin et al., 2012; Zhang et al., 2009, 2008; Zhou and Keller, 2010; Zhou et al., 2012b; Zhu and Cai, 2012; Zhu et al., 2012, 2007

Dissolution Rates

Adeleye et al., 2013; Baalousha et al., 2008; Benn and Westerhoff, 2008; Bian et al., 2011; Blaser et al., 2008, p. 2; Blinova et al., 2010; Cornelis et al., 2011; David et al., 2012; Diedrich et al., 2012; Dobias and Bernier-Latmani, 2013, p. 2; Elzey and Grassian, 2010; Fabrega et al., 2009; Fairbairn et al., 2011; Fang et al., 2009; Franklin et al., 2007; Gaiser et al., 2011; Griffitt et al., 2008; Hitchman et al., 2013; Ho et al., 2010; Huynh and Chen, 2011; Judy et al., 2011; Kasemets et al., 2009; Keller et al., 2010; Levard et al., 2011; Li et al., 2013; Li et al., 2011, 2010; Liu and Hurt, 2010; Liu et al., 2010, 2009; Ma et al., 2013; Mahmood et al., 2011; Miller et al., 2010; Montes et al., 2012; Mortimer et al., 2010; Pakrashi et al., 2012; Petosa et al., 2012; Reed et al., 2012; Reinsch et al., 2012; Rimer et al., 2007; Roelofs and Vogelsberger, 2006, 2004; Simon-Deckers et al., 2009; Stebounova et al., 2011; Vogelsberger et al., 2008; Wang et al., 2011; Wong et al., 2010; Xia et al., 2008; Yin et al., 2012; Zook et al., 2012

Interactions with NOM

Baalousha, 2009; Baalousha et al., 2008; Bennett et al., 2013; Bian et al., 2011; Blinova et al., 2010; Chen et al., 2012; Chinnapongse et al., 2011; Delay et al., 2011; Fabrega et al., 2009; Franklin et al., 2007; Furman et al., 2013; Ghosh et al., 2010; Hitchman et al., 2013; Huynh and Chen, 2011; Hyung and Kim, 2008; Hyung et al., 2006; Jones and Su, 2012; Kennedy, et al., 2008; Z. Li et al., 2010; Limbach et al., 2008; Liu and Hurt, 2010; Lowry et al., 2012; Pelley and Tufenkji, 2008; Quik et al., 2010; N. B. Saleh et al., 2008; Shoults-Wilson et al., 2011; Stankus et al., 2010; Thio et al., 2011; von der Kammer et al., 2010; P. Wang et al., 2008; Y. Wang et al., 2012; Wang et al., 2011; Westerhoff et al., 2013; Xie et al., 2008; Yin et al., 2012; Zhang et al., 2009; Zhou and Keller, 2010

Zeta Potential Adeleye et al., 2013; Battin et al., 2009; Bian et al., 2011; Delay et al., 2011; Elzey and Grassian, 2010; French et al., 2009; Ghosh et al., 2010; Griffitt et al., 2009, 2008; Handy et al., 2008; Hitchman et al., 2013; Jiang et al., 2009; Judy et al., 2011; Limbach et al., 2008; Mackenzie et al., 2012; Petosa et al., 2012; Quik et al., 2010; Reed et al., 2012; Sunkara et al., 2010; P. Wang et al., 2008; Wang et al., 2011; Yin et al., 2012

Fate and Transport in Porous Media

Ben-Moshe et al., 2010; Boxall et al., 2007; Bradford et al., 2002; Brant et al., 2005; Cheng et al., 2005; Chowdhury et al., 2011; Cornelis et al., 2010; Darlington et al., 2009; Espinasse et al., 2007; Fang et al., 2009; Ghosh et

3

al., 2008; Godinez and Darnault, 2011; Grant et al., 2001; Grolimund et al., 2001; Jaisi and Elimelech, 2009; Jaisi et al., 2008; Jeong and Kim, 2009; Johnson et al., 2009; Jones and Su, 2012; Kanel et al., 2008; Kool et al., 2011; Lecoanet and Wiesner, 2004; Lecoanet et al., 2004; Li et al., 2008; Z. Li et al., 2011; Liu et al., 2009; Mattison et al., 2011; Milani et al., n.d.; Pelley and Tufenkji, 2008; Petosa et al., 2012; Phenrat et al., 2010; N. Saleh et al., 2008; Schrick et al., 2004; Shoults-Wilson et al., 2011; Tian et al., 2012, 2010; Tiede et al., 2009; Tosco et al., 2012; Tourinho et al., 2012; Tufenkji and Elimelech, 2004; Vecchia et al., 2009; C. Wang et al., 2012; Y. Wang et al., 2012, 2008; Xiao and Wiesner, 2013

Toxicity (Adams et al., 2006; Aruoja et al., 2009; Baek and An, 2011; Battin et al., 2009; Baun et al., 2008; Ben-Moshe et al., 2013; Bennett et al., 2013; Blinova et al., 2010; L. Canesi et al., 2010; Laura Canesi et al., 2010; Coleman et al., 2010; Crane et al., 2008; Fabrega et al., 2009; Franklin et al., 2007; Gaiser et al., 2011; García et al., 2011; Gomes et al., 2011; Gong et al., 2011; Griffitt et al., 2009, 2008, 2007; Heinlaan et al., 2008; Ho et al., 2010; Hoecke et al., 2009; Horie et al., 2013, 2009; Ji et al., 2011; Jiang et al., 2009; Judy et al., 2011; Kadar et al., 2010; Kasemets et al., 2009; Keller et al., 2013, 2012; Kennedy, et al., 2008; Kool et al., 2011; Li et al., 2009, 2013; M. Li et al., 2011; T. Li et al., 2010; Z. Li et al., 2010; Manabe et al., 2011; Manzo et al., 2011; Miao et al., 2009; Miller et al., 2010; Mortimer et al., 2010; Pakrashi et al., 2012; Parks et al., 2013; Reinsch et al., 2012; Ringwood et al., 2009; Rogers et al., 2010; Shoults-Wilson et al., 2011; Simon-Deckers et al., 2009; Singh et al., 2011; Tedesco et al., 2010; Tong et al., 2007; Velzeboer et al., 2008; Wong et al., 2010; Xia et al., 2008; Zhu et al., 2012, 2009, 2007; Zook et al., 2012)

Figure 2 in main manuscript was created using Table S2, which considers aggregation rates

observed in many different waters. For ENMs with multiple studies on the rates of aggregation in

a water type, we used the most common rate provided, meaning that if two sources estimated the

rate of aggregation as days and one sources as weeks, we put days, and noted in the footnotes

that the third source estimated weeks. Red indicates aggregation within hours, orange indicates

aggregation within days, yellow indicates aggregation within weeks, and green indicates minimal

aggregation over months or longer. These categorizations are solely with respect to the rate of

aggregation without evaluating exposure or risk. Key details, deviations and exceptions are noted

in the footnotes. Asterisks indicate the presence of a coating on the ENMs.

4

30

31

32

33

34

35

36

37

38

39

Table S2. Aggregation rates by water type

NP Stormwater (low IS, high NOM)

Freshwater (low IS, mid NOM)

Groundwater (mid IS, low NOM)

Seawater (high IS, low NOM)

AgFabrega et al., 2009; Huynh and Chen, 2011*; Chinnapongse et al., 2011*

Fabrega et al., 2009; Huynh and Chen, 2011*; Chinnapongse et al., 2011*

Huynh and Chen, 2011*; Chinnapongse et al., 2011*

Li et al., 20111; Chinnapongse et al., 2011*2

Al2O3Pakrashi et al., 2012

AuStankus et al., 2010* Stankus et al., 2010*; Li et

al., 2010Unrine et al., 2010; Afrooz et al., 2013*3; Stankus et al., 2010*

Afrooz et al., 2013*

CeO2Keller et al., 2010 Keller et al., 2010;

Cornelis et al., 2011*;Keller et al., 2010 Keller et al., 2010; Hoecke

et al., 2009

CuO Jones and Su, 20124

C60Adeleye and Keller, 2014; Chen and Elimelech, 2007

Adeleye and Keller, 2014; Chen and Elimelech, 2007

Adeleye and Keller, 20145; Fortner et al., 2005; Chen and Elimelech, 2007

Adeleye and Keller, 20146; Chen and Elimelech, 2006; Fortner et al., 2005; Chen and Elimelech, 2007

FeOOHGilbert et al., 20077 Gilbert et al., 20078

FeO/Fe2O3Baalousha, 2009 Baalousha, 2009 Zhang et al., 2008 Chen et al., 2006*

LatexPelley and Tufenkji, 2008

MWCNTsSaleh et al., 2008 Saleh et al., 2008 Lin et al., 20109 Lin et al., 201010

NiO Gong et al., 2011 Zhang et al., 2008

nZVISaleh et al., 2008* Keller et al., 2012*11 Keller et al., 2012*; Yin et

al., 2012Keller et al., 2012*; Yin et al., 2012*

SiO2Zhang et al., 2009 Zhang et al., 2009 Zhang et al., 2009; Zhang

et al., 2008Zhang et al., 2009

SWCNTsBennett et al., 2013; Wang Bennett et al., 2013; Wang Bennett et al., 2013 Bennett et al., 2013

1 Aggregation of coated Ag is on the order of weeks at IS below 400 mMol NaCl2 Aggregation of Ag in seawater occured within hours3 Coated Au aggregates within hours in the presence of common groundwater cations4 Aggregation of CuO in groundwater ranges from days to weeks5 Significant C60 aggregation occurs within hours in groundwater6 Significant C60 aggregation occurs within hours in seawater7 Tests completed at g/L concentrations8 Tests completed at g/L concentrations9 Tests completed at 200 mg/L10 Tests completed at 200 mg/L11 Uncoated nZVI will aggregate within minutes in freshwater

5

40

123456789

1011

et al., 2008 et al., 2008

TiO2Domingos et al., 2009; von der Kammer et al., 2010; Shih et al., 2012

Velzeboer et al., 200812; Keller et al., 2010; Thio et al., 2011; Domingos et al., 2009; von der Kammer et al., 2010; Shih et al., 2012

Thio et al., 2011; Zhang et al., 2008; French et al., 200913; Chen et al., 2012; von der Kammer et al., 2010; Shih et al., 2012

Keller et al., 2010; Chowdhury et al., 2011; Domingos et al., 2009; French et al., 2009; Chen et al., 2012; von der Kammer et al., 2010; Simon-Deckers et al., 2009; Shih et al., 2012

ZnOZhou and Keller, 2010 Zhou and Keller, 2010;

Keller et al., 2010; Franklin et al., 200714

Zhou and Keller, 2010; Zhang et al., 200815; Bian et al., 2011

Zhou and Keller, 2010; Keller et al., 2010; Miller et al., 2010; Fairbairn et al., 2011; Bian et al., 2011; Wong et al., 2010

Figure 3 in the main manuscript was created using the Table S3, which considers sedimentation

rates observed in different studies. Colors follow Table S2. Categorizations do not evaluate

exposure or risk. Key details, deviations and exceptions are noted in the footnotes.

Table S3. Sedimentation rates by water type

NP Stormwater (low IS, high NOM)

Freshwater (low IS, mid NOM)

Groundwater (mid IS, low NOM)

Seawater (high IS, low NOM)

Ag Chinnapongse et al., 2011* Lowry et al., 2012; Chinnapongse et al., 2011*; Griffitt et al., 2008; Quik et al., 2013*

Stebounova et al., 2011*; Chinnapongse et al., 2011*; Quik et al., 2013*16

Au Stankus et al., 2010* Stankus et al., 2010* Stankus et al., 2010* Ferry et al., 2009

CeO2Keller et al., 2010; Quik et al., 2010; Limbach et al., 2008

Keller et al., 201017; Zhou et al., 2012; Quik et al., 2010; Quik et al., 2013

Keller et al., 2010 Keller et al., 2010; Fairbairn et al., 2011 ; Montes et al., 2012; Quik et al., 2010; Limbach et al., 2008; Quik et al., 201318

12 No significant aggregation of TiO2 occurred in pond water over the course of weeks13 TiO2 aggregates in hours in the presence of any IS14 ZnO aggregates within 6 hours for in freshwater15 ZnO aggregates within days in tap water16 Ag will sediment over the course of weeks to months17 CeO2 sedimentation takes more than weeks in freshwater18 CeO2 sediments in seawater over the course of days to weeks

6

41

42

43

44

12131415161718

CuO Griffitt et al., 2008

C60Adeleye and Keller, 2014; Fortner et al., 2005; Zhu and Cai, 2012;

Adeleye and Keller, 2014; Fortner et al., 2005; Zhu and Cai, 2012; Quik et al., 201319

Adeleye and Keller, 201420; Fortner et al., 2005; Zhu and Cai, 2012

Adeleye and Keller, 201421; Chen and Elimelech, 2006; Fortner et al., 2005; Zhu and Cai, 2012; Quik et al., 2013

FeOOHGilbert et al., 2007 Gilbert et al., 2007

FeO/Fe2O3Zhu et al., 201222 Zhang et al., 2008

MWCNTs Wang et al., 2008; Hyung and Kim, 2008; Hyung et al., 2006; Lin et al., 2010

Wang et al., 2008; Hyung and Kim, 2008; Hyung et al., 2006; Lin et al., 2010

Zhu and Cai, 2012; Hyung and Kim, 2008; Lin et al., 2010

NiO Griffitt et al., 2008 Zhang et al., 2008

nZVI Schrick et al., 2004* Schrick et al., 2004* Li et al., 2010*; Saleh et al., 2008*

Li et al., 2010; Yin et al., 2012*23

SiO2Zhang et al., 2009 Zhang et al., 2009 Zhang et al., 2009; Zhang

et al., 200824Zhang et al., 2009

SWCNTsWang et al., 2008 Wang et al., 2008

TiO2Keller et al., 2010; Wang et al., 2012; von der Kammer et al., 2010

Keller et al., 2010; Zhou et al., 201225; Wang et al., 2012; von der Kammer et al., 2010; Battin et al., 200926

Keller et al., 2010; Zhang et al., 2008; Chen et al., 2012; Fang et al., 200927; von der Kammer et al., 2010

Keller et al., 2010; Fairbairn et al., 2011; Chen et al., 2012

ZnO Keller et al., 2010; Zhou and Keller, 2010; Keller et al., 201028; Zhou et al., 2012; Franklin et al., 200729

Keller et al., 2010; Zhang et al., 200830

Zhou and Keller, 2010; Keller et al., 2010; Miller et al., 201031; Fairbairn et al., 2011

Figure 4 on dissolution rates was created using the studies in Table S4. Red indicates dissolution

within hours, orange indicates dissolution within days, yellow indicates dissolution within

weeks, and green indicates minimal dissolution over months or longer. These categorizations do

not evaluate exposure or risk. Key details, deviations and exceptions are noted in the footnotes.

Asterisks indicate the presence of a coating on the ENM.

Table S4. Dissolution rates by water type

19 C60 sediments within days in freshwater20 Significant sedimentation of C60 occurred within 8 days21 Some C60 was still found in seawater after 8 days, indicating sedimentation over the course of weeks22 Uncoated Fe2O3 settles within days in zebrafish culture medium23 Coated nZVI sedimented in the presence of IS over the course of hours24 SiO2 sediments over the course of weeks in tap water25 TiO2 sediments over weeks in low IS freshwater26 TiO2 sediments within hours in natural lake water27 TiO2 sediments in days to weeks in soil water28 ZnO did no aggregate in 8 hours in freshwater29 ZnO sedimentation occurred with 6 hours in freshwater30 ZnO sedimented in tapwater within days31 ZnO sediments in seawater within hours at ZnO concentrations above 10 mg/L, but may take a week at lower concentrations

7

45

46

47

48

49

50

1920212223242526272829303132

NP Stormwater (low IS, high NOM)

Freshwater (low IS, mid NOM) Groundwater (mid IS, low NOM)

Seawater (high IS, low NOM)

Ag

Dobias and Bernier-Latmani, 2013*32; Fabrega et al., 2009; Huynh and Chen, 2011*; Griffitt et al., 2008; Gaiser et al., 2011; Quik et al., 2013*33

Shoults-Wilson et al., 2011*; Liu and Hurt, 2010*; Benn and Westerhoff, 2008

Liu and Hurt, 2010*34; Li et al., 2010*; Quik et al., 2013*35

Al2O3

Griffitt et al., 2008; Pakrashi et al., 2012

Simon-Deckers et al., 2009; Roelofs and Vogelsberger, 2006

Au

Hitchman et al., 2013*36

Hitchman et al., 2013* Unrine et al., 2010; Hitchman et al., 2013*; Judy et al., 2011*

Hitchman et al., 2013*

CeO2

Cornelis et al., 2011*; Gaiser et al., 2011; Quik et al., 2013

Cornelis et al., 2011* Montes et al., 2012; Quik et al., 2013

CuO

Wang et al., 2011 Blinova et al., 2010; Aruoja et al., 2009; Griffitt et al., 2008; Wang et al., 2011; Mortimer et al., 2010

Wang et al., 2011 Wang et al., 2011

FeO/ Fe2O3 Baalousha et al., 2008 Baalousha et al., 2008

NiOMahmood et al., 201137

Griffitt et al., 2008; Mahmood et al., 2011

Mahmood et al., 2011 Mahmood et al., 2011

nZVI Adeleye et al., 2013*PbS Liu et al., 2009

TiO2

Keller et al., 2010; Miller et al., 2010

Miller et al., 2010; Griffitt et al., 2008 Keller et al., 2010; Miller et al., 2010

Keller et al., 2010; Miller et al., 2010

ZnO

Li et al., 2013 Li et al., 2013; Bian et al., 2011; Blinova et al., 201038; Franklin et al., 2007; Reed et al., 2012; Mortimer et al., 2010

Reed et al., 2012; Kool et al., 2011;

Miller et al., 2010; Fairbairn et al., 2011; Li et al., 2013; Wong et al., 2010; Xia et al., 2008; Montes et al., 201239; David et al., 2012

Table S5 includes a summary of toxicity tests for various ENMs on various species in different

media. Toxicity observed at environmentally relevant concentrations are highlighted in red.

Toxicity observed at environmentally relevant concentrations if they were to increase 100-fold

are highlighted in orange. Toxicity observed at < 10 mg/L are highlighted in yellow. Minimal

toxicity observed at concentrations > 10 mg/L are highlighted in light green. When no toxicity

was observed at all tested concentrations, the cells are highlighted in dark green. White indicates

32 In river water, only half of the coated Ag dissolved over four months33 Coated Ag dissolution may take months in freshwater34 Ag dissolved in seawater between 6 and 125 days35 Coated Ag dissolution in seawater will take from weeks to months36 PVP-stabilized Au is essentially insoluble in all media37 NiO dissolution is negligible between pH7-11, even in presence of salts for all media38 ZnO at 10 mg/L dissolved over hours to days39 ZnO at concentrations below 10 mg/L dissolves over the course of days

8

51

52

53

54

55

56

57

3334353637383940

that not enough data were given to place the study into one of the above categories. Asterisks

indicate the presence of a coating on the ENM.

Table S5. Toxicity of ENMs to various species.

NP Species Toxic Concentration ReferenceAg E. coli Minimum inhibitory concentration 100 μM Ho et al., 2010*Ag Hemolytic toxicity All AgNPs caused at least 75% hemolysis at the highest

concentration of 100 ug/ml, and caused no additional hemolysis compared to theDMEM at the lowest concentration of 10 ug/ml.

Zook et al., 2012*

Ag P. fluorescens Ag reduced bacterial growth entirely at 2000 ppb (19 μM) under all conditions and adversely affected growth at 200 ppb (1.9 μM) under some conditions, indicating some toxicity

Fabrega et al., 2009

Ag E. fetida Toxicity observed at 7.41 mg/kg in sandy loam soil Shoults-Wilson et al., 2011*

Ag E. coli Dissolved Ag concentrations measured in the E. coli growth inhibition media with AgNP concentrations equal to 50 mg/L were 8−10 μg/L for the unsulfidized and lowest sulfidized AgNP (agg) samples

Reinsch et al., 2012*

Ag D. magna LC50 ~ 3 ug/L Li et al., 2010Ag D. pulex, D. rerio, P.

kirchneriellaLC50 0.04-7.2 mg/L Griffitt et al., 2008

Ag D. magna Acute toxicity 56% death at 0.1 mg/L, 100% death at 1 mg/L, chronic toxicity at 0.001 mg/L

Gaiser et al., 2011

Ag Thalassiosira weissflogii Photosynthesis and chlorophyll were severely suppressed beyond around 1*10^-11 M.

Miao et al., 2009

Al2O3 Microtox (bacteria), pulse-amplitude modulation (algae), Chydotox (crustaceans), and Biolog (soil enzymes)

No effects were observed up to 100 mg/L Velzeboer et al., 2008

Al2O3 C. metallidurans CH34 and E. coli MG1655

Toxic at all concentrations (10 – 500 mg/L) Simon-Deckers et al., 2009

Al2O3 B. subtilis, E. coli and P. fluorescens

36-70% of bacteria died at 20 mg/L Jiang et al., 2009

Al2O3 D. magna EC50 ~114.357 mg/L, LC50 ~162.392 Zhu et al., 2009Al2O3 D. pulex, D. rerio, P.

kirchneriellaLC50 3.99 - >10 mg/L Griffitt et al., 2008

Al2O3 E. fetida No mortality occurred in subchronic exposures, although reproduction decreased at ≥3,000 mg/kg nano-sized Al2O3

Coleman et al., 2010

Au E fetida Bioavalable and reproduction was negatively affected at 8 and 3.4% of bulk soil concentrations

Unrine et al., 2010

Au D. magna LC50 ~ 70 mg/L Li et al., 2010Au M. sexta biomagnification factor 6.2 - 11.6 Judy et al., 2011*Au Mytilus edulis Oxidative stress occurred within 24 hours at 750 ppb Tedesco et al., 2010CeO2 Microtox (bacteria),

pulse-amplitude No effects were observed up to 100 mg/L Velzeboer et al., 2008

9

58

59

60

NP Species Toxic Concentration Referencemodulation (algae), Chydotox (crustaceans), and Biolog (soil enzymes)

CeO2 P. subcapitata, D. magna, and T. platyurus, and embryos of D. rerio

No acute toxicity was observed for the two crustaceans and D.rerio embryos, up to test concentrations of 1000, 5000, and 200mg/L, respectively. In contrast, significant chronic toxicity to P. subcapitata with EC10s between 2.6-5.4 mg/L was observed.

Hoecke et al., 2009

CeO2 RAW 264.7 and BEAS-2B cell lines

CeO2 (25 ug/mL) NPs were taken up intact the cells without inflammation or cytotoxicity

Xia et al., 2008

CeO2 D. magna LC50 ~0.012 mg/ml García et al., 2011CeO2 P. subcapitata LC50 10.3 mg/L Rogers et al., 2010CeO2 D. magna No acute toxicity. Chronic toxicity at 10 mg/L Gaiser et al., 2011Cr2O3 E. coli As the concentration of Cr2O3 (100 nm) in the culture

media increased from 0 – 100 ug/mL, the percentage of live cells decreased linearly

Singh et al., 2011

Cr2O3 Human lung carcinoma A549 cells and human keratinocyte HaCaT cells

HaCaT cells showed a greater reduction in cell viability by Cr2O3 exposure than A549 cells. In particular, the cytotoxicity of NPs washigher than that for fine particles at a high concentration of Cr2O3 (0.5 mg/mL)

Horie et al., 2013

Cu D. rerio LC50 1.56 mg/L Griffitt et al., 2007CuO D. magna, T. platyurus,

and T. thermophilaThe L (E)C50 values of nanoCuO for both crustaceans in natural water ranged from 90 to 224 mg Cu/l

Blinova et al., 2010

CuO P. subcapitata EC50 = 0.71 mg Cu/l Aruoja et al., 2009CuO Soil microbe community soil microbe community changed, indicating toxicity at 1

and 5% w/w dry soilChen et al., 2006

CuO E. coli, B. subtilis, and S. aureus

EC50 ranged from 28.6 – 65.9 mg/L Baek and An, 2011

CuO V. fischeri, D. magna, and T. platyurus

L (E)C59 ~ 2.1 – 79 mg/L Heinlaan et al., 2008

CuO D. pulex, D. rerio, P. kirchneriella

LC50 0.06 - 0.94 mg/L Griffitt et al., 2008

CuO S. cerevisiae 8-h EC50 were 20.7 mg/L and 24-h EC50 were 13.4 mg/L

Kasemets et al., 2009

CuO T. thermophila EC50 128 mg/L Mortimer et al., 2010

CuO Mytilus galloprovincialis CuO NPs induced oxidative stress in mussels by overwhelming gills antioxidant defense system at 10 ug/L

Gomes et al., 2011

C60 Microtox (bacteria), pulse-amplitude modulation (algae), Chydotox (crustaceans), and Biolog (soil enzymes)

Toxic effects were observed at greater than 1 mg/L Velzeboer et al., 2008

C60 P. subcapitata and D. magna

The mobility of daphnids was not affected in the tested concentrations (≤50 mg C60/l). The algal growth rate was inhibited up to 30% at 90 mg C60/l, but no reproducible concentration–response relationships could be

Baun et al., 2008

10

NP Species Toxic Concentration Referenceestablished

C60 D. rerio C60 at 1.5 mg/L delayed zebrafish embryo and larval development

Zhu et al., 2007

C60 D. magna EC50 ~9.344 mg/L and LC50 ~ 10.515 mg/L Zhu et al., 2009C60 Soil microbe community No effect on structure, function, or processes Tong et al., 2007C60 Crassostrea virginica Significant toxicity at 10 ppb Ringwood et al.,

2009C60 Mytilus galloprovincialis Some effects observed at 5 mg/L Canesi et al., 2010Fe2O3 D. rerio EC50 ~ 36.06 mg/L, LC50 ~ 53.35mg/L Zhu et al., 2012Fe2O3 Mytilus galloprovincialis no significant effect was detected following exposure of

embryos to Fe up to 8 mg/LKadar et al., 2010

Fe3O4 Soil microbe community minimal changes to microbial community, indicating limited toxicity at 1 and 5% w/w dry soil

Chen et al., 2006

Fe3O4 D. magna LC50 ~23·10-4 mg/ml García et al., 2011Latex O. latipes Survival decreased under some conditions at 1 mg/L Manabe et al., 2011MWCNTs C. metallidurans CH34

and E. coli MG165550 – 60% viability loss at 100 mg/L Simon-Deckers et al.,

2009MWCNTs C. dubia, L. plumulosus

and H. aztecaAqueous exposures to raw MWNTs decreased C. dubia viability, but such effects were not observed during exposure to functionalized MWNTs (>80 mg/L). Sediment exposures of the amphipods indicated mortality increased as particle size decreased, although raw MWNTs induced lower mortality (LC50 50 to >264 g/kg) than carbon black (LC50 18–40 g/kg) and activated carbon (LC50 12–29 g/kg).

Kennedy, et al., 2008

MWCNTs D. magna EC50 ~8.723 mg/L and LC50 ~22.751 mg/L Zhu et al., 2009NiO C. vulgaris NiO NPs had severe impacts on the algae, with 72 h

EC50 values of 32.28 mg NiO/LGong et al., 2011

NiO E. coli, B. subtilis, and S. aureus

EC50 ranged from 121.1 – 160.2 mg/L Baek and An, 2011

NiO Human keratinocyte HaCaT cells, Human lung carcinoma A549 cells

The cell proliferation was completely inhibited by 50 μg/mL Ni2+

Horie et al., 2009

NiO D. pulex, D. rerio, P. kirchneriella

LC50 0.35 - >10 mg/L Griffitt et al., 2008

nZVI I. galbana, D. tertiolecta, T. pseudonana, P. subcapitata, and D. magna

Growth was suppressed between 0.4 and 12 mg/L Keller et al., 2012*

nZVI E. coli Minimum inhibitory concentration (MIC) after 24 h was 5 mg/L for uncoated nZVI. MIC for coated nZVI ranged from 100-500 mg/L

Li et al., 2010*

nZVI O. latipes Toxicity observed at 0.5 mg/L Li et al., 2009*Sb2O3 E. coli, B. subtilis, and S.

aureusEC50 ranged from 144.7 – 324 mg/L Baek and An, 2011

SiO2 B. subtilis and E. coli SiO2 at 5000 mg/L resulted in 99% growth reduction of B. subtilis, but only 48% growth reduction of E. coli at 5000 mg/L

Adams et al., 2006

SiO2 B. subtilis, E. coli and P. fluorescens

40-70% of bacteria died at 20 mg/L Jiang et al., 2009

SiO2 Mytilus galloprovincialis Some negative effects at 10 mg/L Canesi et al., 2010

11

NP Species Toxic Concentration ReferenceSiO2 Mytilus galloprovincialis No effect observed up to 5 mg/L Canesi et al., 2010SiO2 Chlorella sp. No toxic effect observed up to 1000 mg/L Ji et al., 2011SWCNTs P. subcapitata Exposure to 10 mg/L CNT does negatively influence the

growth of algae across most treatments. However, decreased growth was observed compared with the control.

Bennett et al., 2013

SWCNTs D. magna EC50 ~1.306 mg/L and LC50 ~2.425 mg/L Zhu et al., 2009SWCNTs A. abdita, A. bahia, L.

plumulosusNo significant mortality to any species via sediment or food matrices was observed at concentrations up to 100 ppm.

Parks et al., 2013

TiO2 Microtox (bacteria), pulse-amplitude modulation (algae), Chydotox (crustaceans), and Biolog (soil enzymes)

No effects were observed up to 100 mg/L Velzeboer et al., 2008

TiO2 T. pseudonana, and S. marinoi, D. tertiolectaand I. galbana

No toxic effects up to g/L concentrations Miller et al., 2010

TiO2 B. subtilis and E. coli 72% growth reduction in E. coli exposed to 5000 mg/L and 75% growth reduction in B. subtilis exposed to 1000 mg/L

Adams et al., 2006

TiO2 C. metallidurans CH34 and E. coli MG1655

Significant loss of viability was observed after exposure to the smallest TiO2 NP (10 to 25 nm) and viability decreased from 15-52% at 100 mg/L.

Simon-Deckers et al., 2009

TiO2 RAW 264.7 and BEAS-2B cell lines

TiO2 (25 ug/mL) did not elicit any adverse or protective effects

Xia et al., 2008

TiO2 P. subcapitata EC50=5.83 mg Ti/l Aruoja et al., 2009TiO2 Phytoplankton and

Biofilms24 h of exposure nano-TiO2 (initial concentration, 5.3mgL-1) had significantly damaged cell membranes. Similar, but less damaging effects were observed in biofilms

Battin et al., 2009

TiO2 B. subtilis, E. coli and P. fluorescens

TiO2 NPs did not affect bacterial populations Jiang et al., 2009

TiO2 V. fischeri, D. magna, and T. platyurus

Not toxic even at 20 g/L Heinlaan et al., 2008

TiO2 D. rerio Not toxic up to 100 mg/L Griffitt et al., 2009TiO2 D. magna EC50 ~ 35.306 mg/L and LC50 ~ 143.387 mg/L Zhu et al., 2009TiO2 D. magna LC50 ~0.016 mg/ml García et al., 2011TiO2 D. pulex, D. rerio, P.

kirchneriellaLC50 >10 mg/L Griffitt et al., 2008

TiO2 S. cerevisiae Not toxic even at 20000 mg/L Kasemets et al., 2009

ZnO T. pseudonana, and S. marinoi, D. tertiolectaand I. galbana

NEC 428 μg L-1 for S. marinoi, 233 μg L-1 for T. pseudonana. NEC for other two species around 500 - 1000 μg L-1.

Miller et al., 2010

ZnO E. coli Toxic in soft water at 1.2 mg/L, no toxicity observed at 100 mg/L in hard water

Li et al., 2013

ZnO S. costatum, T. pseudonana,

T. japonicas, E. Rapax, and O. melastigma

96 hour LC50 values ranged from 0.85 – 4.56 mg/L Wong et al., 2010

12

NP Species Toxic Concentration ReferenceZnO B. subtilis and E. coli At 10 mg/L, ZnO resulted in 90% growth reduction of B.

subtilis but only 48% growth reduction in E. coli resulted at 1000 mg/L ZnO

Adams et al., 2006

ZnO D. magna, T. platyurus, and T. thermophila

L (E)C50 values for nanoZnO were 1.1–16 mg Zn/l Blinova et al., 2010

ZnO P. subcapitata 72-h LC50 value near 60 μg Zn/L, attributable solely to dissolved zinc

Franklin et al., 2007

ZnO RAW 264.7 and BEAS-2B cell lines

ZnO (25 ug/mL) induced toxicity in both cells, leading to the generation of reactive oxygen species (ROS), oxidant injury, excitation of inflammation, and cell death.

Xia et al., 2008

ZnO P. subcapitata 72 h EC50 ~0.04 mg Zn/l Aruoja et al., 2009ZnO E. coli, B. subtilis, and S.

aureusE50 ranged from 85.5 - >125 mg/L Baek and An, 2011

ZnO E. coli All media exhibited strong toxicity with 3 h LC50 at lower than 0.1 mg Zn L-1.The bacterialmortality all exceeded 90% at concentrations of zinc higher than 1.0 mg L-1

M. Li et al., 2011

ZnO B. subtilis, E. coli and P. fluorescens

All bacteria died at 20 mg/L Jiang et al., 2009

ZnO V. fischeri, D. magna, and T. platyurus

L (E)C 50 ~ 0.18 – 3.2 mg/L Heinlaan et al., 2008

ZnO D. magna EC50 ~ 0.622 mg/L and LC50 ~1.511 mg/L Zhu et al., 2009

ZnO S. cerevisiae 8-h EC50 121–134 mg ZnO/l and 24-h EC50 131–158 mg/l

Kasemets et al., 2009

ZnO T. thermophila EC50 5 mg/L Mortimer et al., 2010

ZnO F. candida No effect up to 6400 mg/kg. Reproduction was affected at just under 2000 mg/kg

Kool et al., 2011

ZrO2 Microtox, algae, Chydotox, and Biolog

No effects were observed up to 100 mg/L Velzeboer et al., 2008

References

Adams, L. K., Lyon, D. Y., Alvarez, P. J. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40 (19), 3527–3532.

Adeleye, A.S., Keller, A.A., 2014. Long-term colloidal stability and metal leaching of single wall carbon nanotubes: Effect of temperature and extracellular polymeric substances. Water Res. 49, 236–250.

Adeleye, A. S., Keller, A. A., Miller, R. J., Lenihan, H. S. (2013). Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products. J. Nanoparticle Res. 15 (1), 1–18.

13

61

62

63

64

65

66

67686970717273

Afrooz, A. R. M. N., Sivalapalan, S. T., Murphy, C. J., Hussain, S. M., Schlager, J. J., Saleh, N. B. (2013). Spheres vs. rods: The shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere. 91 (1), 93–98.

Aruoja, V., Dubourguier, H.-C., Kasemets, K., Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 407 (4), 1461–1468.

Baalousha, M. (2009), Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 407 (6), 2093–2101.

Baalousha, M., Manciulea, A., Cumberland, S., Kendall, K., Lead, J. R. (2008). Aggregation and surface properties of iron oxide nanoparticles: Influence of ph and natural organic matter. Environ. Toxicol. Chem. 27 (9), 1875–1882.

Baek, Y. W., An, Y. J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ. 409 (8), 1603–1608.

Battin, T. J., Kammer, F. v. d., Weilhartner, A., Ottofuelling, S., Hofmann, T. (2009). Nanostructured TiO2: Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions. Environ. Sci. Technol. 43 (21), 8098–8104.

Baun, A., Sørensen, S. N., Rasmussen, R. F., Hartmann, N. B., Koch, C. B. (2008). Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat. Toxicol. 86 (3), 379–387.

Ben-Moshe, T., Dror, I., Berkowitz, B. (2010). Transport of metal oxide nanoparticles in saturated porous media. Chemosphere, 81 (3), 387–393.

Ben-Moshe, T., Frenk, S., Dror, I., Minz, D.,, Berkowitz, B. (2013). Effects of metal oxide nanoparticles on soil properties. Chemosphere, 90 (2), 640–646.

Benn, T. M., and Westerhoff, P. (2008). Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environ. Sci. Technol. 42 (11), 4133–4139.

Bennett, S. W., Adeleye, A., Ji, Z., Keller, A. A. (2012). Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Res.

Bian, S. W., Mudunkotuwa, I. A., Rupasinghe, T., Grassian, V. H. (2011). Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir, 27 (10), 6059–6068.

Blaser, S. A., Scheringer, M., MacLeod, M., Hungerbühler, K. (2008). Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 390 (2–3), 396–409.

Blinova, I., Ivask, A., Heinlaan, M., Mortimer, M., Kahru, A. (2010). Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut. 158 (1), 41–47.

Boxall, A., Chaudhry, Q., Sinclair, C., Jones, A., Aitken, R., Jefferson, B., Watts, C. (2007). Current and future predicted environmental exposure to engineered nanoparticles; Available at: http://hero.epa.gov/index.cfm?action=reference.details&reference_id=196111

Bradford, S. A., Yates, S. R., Bettahar, M., Simunek, J. (2002). Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 38 (12), 1327.

14

7475767778798081828384858687888990919293949596979899

100101102103104105106107108109110111112113114115116117118119

Brant, J., Lecoanet, H., Wiesner, M. R. (2005). Aggregation and Deposition Characteristics of Fullerene Nanoparticles in Aqueous Systems. J. Nanoparticle Res. 7 (4-5), 545–553.

Canesi, L. Ciacci, C., Vallotto, D., Gallo, G., Marcomini, A., Pojana, G. (2010b). In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat. Toxicol. 96 (2), 151–158.

Canesi, L., Fabbri, R., Gallo, G., Vallotto, D., Marcomini, A., Pojana, G. (2010). Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2). Aquat. Toxicol. 100 (2), 168–177.

Chen, G., Liu, X., Su, C. (2012). Distinct Effects of Humic Acid on Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Sand Columns. Environ. Sci. Technol. 46 (13), 7142–7150.

Chen, K. L., and Elimelech, M. (2006). Aggregation and Deposition Kinetics of Fullerene (C60) Nanoparticles. Langmuir, 22 (26), 10994–11001.

Chen, K. L., and Elimelech, M. (2007). Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci. 309 (1), 126–134.

Chen, K. L., Mylon, S. E., Elimelech, M. (2006). Aggregation Kinetics of Alginate-Coated Hematite Nanoparticles in Monovalent and Divalent Electrolytes. Environ. Sci. Technol. 40 (5), 1516–1523.

Chen, K. L., Mylon, S. E., Elimelech, M. (2007). Enhanced Aggregation of Alginate-Coated Iron Oxide (Hematite) Nanoparticles in the Presence of Calcium, Strontium, and Barium Cations. Langmuir, 23 (11), 5920–5928.

Cheng, X., Kan, A. T., Tomson, M. B. (2005). Study of C60 transport in porous media and the effect of sorbed C60 on naphthalene transport. J. Mater. Res. 20 (12), 3244–3254.

Chinnapongse, S. L., MacCuspie, R. I., Hackley, V. A. (2011). Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci. Total Environ. 409 (12), 2443–2450.

Chowdhury, I., Hong, Y., Honda, R. J., Walker, S. L. (2011). Mechanisms of TiO2 nanoparticle transport in porous media: Role of solution chemistry, nanoparticle concentration, and flowrate. J. Colloid Interface Sci. 360 (2), 548–555.

Coleman, J. G., Johnson, D. R., Stanley, J. K., Bednar, A. J., Weiss, C. A., Boyd, R. E., Steevens, J. A. (2010). Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida. Environ. Toxicol. Chem. 29 (7), 1575–1580.

Cornelis, G., Kirby, J. K., Beak, D., Chittleborough, D., McLaughlin, M. J. (2010). A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils. Environ. Chem. 7 (3), 298–308.

Cornelis, G.; Ryan, B., McLaughlin, M. J., Kirby, J. K., Beak, D., Chittleborough, D. (2011). Solubility and Batch Retention of CeO2 Nanoparticles in Soils. Environ. Sci. Technol. 45 (7), 2777–2782.

Crane, M., Handy, R., Garrod, J., Owen, R. (2008). Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles - Springer. Ecotoxicology, 17, 421–437.

Darlington, T. K., Neigh, A. M., Spencer, M. T., Guyen, O. T. N., Oldenburg, S. J. (2009). Nanoparticle characteristics affecting environmental fate and transport through soil. Environ. Toxicol. Chem. 28 (6), 1191–1199.

15

120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163

David, C. A., Galceran, J., Rey-Castro, C., Puy, J., Companys, E., Salvador, J., Monné, J., Wallce, R, Vakourov, A. (2012). Dissolution Kinetics and Solubility of ZnO Nanoparticles Followed by AGNES. J. Phys. Chem. C, 116 (21), 11758–11767.

Delay, M., Dolt, T., Woellhaf, A., Sembritzki, R., Frimmel, F. H. (2011). Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength. J. Chromatogr. A. 1218 (27), 4206–4212.

Diedrich, T., Dybowska, A., Schott, J., Valsami-Jones, E., Oelkers, E. H. (2012). The Dissolution Rates of SiO2 Nanoparticles As a Function of Particle Size. Environ. Sci. Technol. 46 (9), 4909–4915.

Dobias, J., and Bernier-Latmani, R. (2013). Silver Release from Silver Nanoparticles in Natural Waters. Environ. Sci. Technol.

Domingos, R. F., Tufenkji, N., Wilkinson, K. J. (2009). Aggregation of Titanium Dioxide Nanoparticles: Role of a Fulvic Acid. Environ. Sci. Technol. 43 (5), 1282–1286.

Dunphy Guzman, K. A., Finnegan, M. P., Banfield, J. F. (2006). Influence of Surface Potential on Aggregation and Transport of Titania Nanoparticles. Environ. Sci. Technol. 40 (24), 7688–7693.

Elzey, S., and Grassian, V. (2010). Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J. Nanoparticle Res. 12 (5), 1945–1958.

Espinasse, B., Hotze, E. M., Wiesner, M. R. (2007). Transport and Retention of Colloidal Aggregates of C60 in Porous Media:  Effects of Organic Macromolecules, Ionic Composition, and Preparation Method. Environ. Sci. Technol. 41 (21), 7396–7402.

Fabrega, J., Fawcett, S. R., Renshaw, J. C., Lead, J. R. (2009). Silver Nanoparticle Impact on Bacterial Growth: Effect of pH, Concentration, and Organic Matter. Environ. Sci. Technol. 43 (19), 7285–7290.

Fairbairn, E. A., Keller, A. A., Mädler, L., Zhou, D., Pokhrel, S., Cherr, G. N. (2011). Metal oxide nanomaterials in seawater: Linking physicochemical characteristics with biological response in sea urchin development. J. Hazard. Mater. 192 (3), 1565–1571.

Fang, J., Shan, X., Wen, B., Lin, J., Owens, G. (2009). Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ. Pollut. 157 (4), 1101–1109.

Ferry, J. L., Craig, P., Hexel, C., Sisco, P., Frey, R., Pennington, P. L., Fulton, M. H., Scott, G. I., Decho, A. W., Kashiwada, S., Murphy, C. J, Saw, T. J. (2009). Transfer of gold nanoparticles from the water column to the estuarine food web. Nat. Nanotechnol. 4 (7), 441–444.

Fortner, J. D., Lyon, D. Y., Sayes, C. M., Boyd, A. M., Falkner, J. C., Hotze, E. M., Alemany, L. B., Tao, Y. J., Guo, W., Ausman,K. D., Colvin, V. L., Hughes, J. B. (2005). C60 in Water:  Nanocrystal Formation and Microbial Response. Environ. Sci. Technol. 39 (11), 4307–4316.

Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., Casey, P. S. (2007). Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility. Environ. Sci. Technol. 41 (24), 8484–8490.

French, R. A., Jacobson, A. R., Kim, B., Isley, S. L., Penn, R. L., Baveye, P. C. (2009). Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles. Environ. Sci. Technol. 43 (5), 1354–1359.

16

164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209

Furman, O., Usenko, S., Lau, B. L. T. (2013), Relative Importance of the Humic and Fulvic Fractions of Natural Organic Matter in the Aggregation and Deposition of Silver Nanoparticles. Environ. Sci. Technol. 47 (3), 1349–1356.

Gaiser, B. K., Biswas, A., Rosenkranz, P., Jepson, M. A., Lead, J. R., Stone, V., Tyler, C. R., Fernandes, T. F. (2011). Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J. Environ. Monit. 13 (5), 1227.

García, A., Espinosa, R., Delgado, L., Casals, E., González, E., Puntes, V., Barata, C., Font, C., Sanchez, A. (2011). Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination. 269 (1–3), 136–141.

Ghosh, S., Mashayekhi, H., Bhowmik, P., Xing, B. (2010). Colloidal Stability of Al2O3 Nanoparticles as Affected by Coating of Structurally Different Humic Acids. Langmuir. 26 (2), 873–879.

Ghosh, S., Mashayekhi, H., Pan, B., Bhowmik, P., Xing, B. (2008). Colloidal Behavior of Aluminum Oxide Nanoparticles As Affected by pH and Natural Organic Matter. Langmuir. 24 (21), 12385–12391.

Gilbert, B., Lu, G., Kim, C. S. (2007). Stable cluster formation in aqueous suspensions of iron oxyhydroxide nanoparticles. J. Colloid Interface Sci. 313 (1), 152–159.

Godinez, I. G., and Darnault, C. J. G. (2011). Aggregation and transport of nano-TiO2 in saturated porous media: Effects of pH, surfactants and flow velocity. Water Res. 45 (2), 839–851.

Gomes, T., Pinheiro, J. P., Cancio, I., Pereira, C. G., Cardoso, C., Bebianno, M. J. (2011). Effects of Copper Nanoparticles Exposure in the Mussel Mytilus galloprovincialis. Environ. Sci. Technol. 45 (21), 9356–9362.

Gong, N., Shao, K., Feng, W., Lin, Z., Liang, C., Sun, Y. (2011). Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere. 83 (4), 510–516.

Grant, S. B., Kim, J. H., Poor, C. (2001). Kinetic Theories for the Coagulation and Sedimentation of Particles. J. Colloid Interface Sci. 238 (2), 238–250.

Griffitt, R. J., Hyndman, K., Denslow, N. D., Barber, D. S. (2009). Comparison of Molecular and Histological Changes in Zebrafish Gills Exposed to Metallic Nanoparticles. Toxicol. Sci. 107 (2), 404–415.

Griffitt, R. J., Luo, J., Gao, J., Bonzongo, J. C., Barber, D. S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 27 (9), 1972–1978.

Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D., Barber, D. S. (2007). Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio rerio). Environ. Sci. Technol. 41 (23), 8178–8186.

Grolimund, D., Elimelech, M., Borkovec, M. (2001). Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. Colloids Surfaces -Physicochem. Eng. Asp. 191 (1-2), 179–188.

Handy, R., Kammer, F. von der, Lead, J., Hassellöv, M., Owen, R., Crane, M. (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17 (4), 287–314.

He, F., and Zhao, D. (2005). Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water. Environ. Sci. Technol. 39 (9), 3314–3320.

17

210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255

Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C.; Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71 (7), 1308–1316.

Hitchman, A., Sambrook Smith, G. H., Ju-Nam, Y., Sterling, M., Lead, J. R. (2013). The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere, 90 (2), 410–416.

Ho, C., Yau, S., Lok, C., So, M., Che, C. (2010). Oxidative Dissolution of Silver Nanoparticles by Biologically Relevant Oxidants: A Kinetic and Mechanistic Study. Chem. - Asian J. 5 (2), 285–293.

Hoecke, K. V., Quik, J. T. K., Mankiewicz-Boczek, J., Schamphelaere, K. A. C. D., Elsaesser, A., Meeren, P. V. der, Barnes, C., Howard, C. V., Meent,D. V. D., Rydzynski, K., Dawson, K. A., Salvati, A., Lesniak, A., Silversmit, G., Samber, B. D., Vincze, L., Janssen, C. R. (2009). Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests. Environ. Sci. Technol. 43 (12), 4537–4546.

Horie, M., Nishio, K., Endoh, S., Kato, H., Fujita, K., Miyauchi, A., Nakamura, A., Kinugasa, S., Yamamoto, K., Niki, E., Yoshida, Y., Iwahashi, H. (2013). Chromium(III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells. Environ. Toxicol. 28 (2), 61–75.

Horie, M., Nishio, K., Fujita, K., Kato, H., Nakamura, A., Kinugasa, S., Endoh, S., Miyauchi, A., Yamamoto, K., Murayama, H., Niki, E., Iwahashi, H., Nakanishi, J. (2009). Ultrafine NiO Particles Induce Cytotoxicity in Vitro by Cellular Uptake and Subsequent Ni(II) Release. Chem. Res. Toxicol. 22 (8), 1415–1426.

Hotze, E. M., Phenrat, T., Lowry, G. V. (2010). Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. J. Environ. Qual. 39 (6), 1909.

Huynh, K. A. and Chen, K. L. (2011). Aggregation Kinetics of Citrate and Polyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and Divalent Electrolyte Solutions. Environ. Sci. Technol. 45 (13), 5564–5571.

Hyung, H., Fortner, J. D., Hughes, J. B., Kim, J. H. (2006). Natural Organic Matter Stabilizes Carbon Nanotubes in the Aqueous Phase. Environ. Sci. Technol. 41 (1), 179–184.

Hyung, H. and Kim, J.-H. (2008). Natural Organic Matter (NOM) Adsorption to Multi-Walled Carbon Nanotubes: Effect of NOM Characteristics and Water Quality Parameters. Environ. Sci. Technol. 42 (12), 4416–4421.

Jaisi, D. P. and Elimelech, M. (2009). Single-Walled Carbon Nanotubes Exhibit Limited Transport in Soil Columns. Environ. Sci. Technol. 43 (24), 9161–9166.

Jaisi, D. P., Saleh, N. B., Blake, R. E., Elimelech, M. (2008). Transport of Single-Walled Carbon Nanotubes in Porous Media: Filtration Mechanisms and Reversibility. Environ. Sci. Technol. 42 (22), 8317–8323.

Jeong, S. W., and Kim, S. D. (2009). Aggregation and transport of copper oxide nanoparticles in porous media. J. Environ. Monit. 11 (9), 1595.

Ji, J., Long, Z., Lin, D. (2011). Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem. Eng. J. 170 (2–3), 525–530.

Jiang, W., Mashayekhi, H., Xing, B. (2009). Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 157 (5), 1619–1625.

Johnson, R. L., Johnson, G. O., Nurmi, J. T., Tratnyek, P. G. (2009). Natural Organic Matter Enhanced Mobility of Nano Zerovalent Iron. Environ. Sci. Technol. 43 (14), 5455–5460.

18

256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301

Jones, E. H., and Su, C. (2012). Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials. Water Res. 46 (7), 2445–2456.

Judy, J. D., Unrine, J. M., Bertsch, P. M. (2011). Evidence for Biomagnification of Gold Nanoparticles within a Terrestrial Food Chain. Environ. Sci. Technol. 45 (2), 776–781.

Kadar, E., Simmance, F., Martin, O., Voulvoulis, N., Widdicombe, S., Mitov, S., Lead, J. R., Readman, J. W. (2010). The influence of engineered Fe2O3 nanoparticles and soluble (FeCl3) iron on the developmental toxicity caused by CO2-induced seawater acidification. Environ. Pollut. 158 (12), 3490–3497.

Kanel, S. R., Goswami, R. R., Clement, T. P., Barnett, M. O., Zhao, D. (2008). Two Dimensional Transport Characteristics of Surface Stabilized Zero-valent Iron Nanoparticles in Porous Media. Environ. Sci. Technol. 42 (3), 896–900.

Kasemets, K., Ivask, A., Dubourguier, H. C., Kahru, A. (2009). Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro, 23 (6), 1116–1122.

Keller, A. A., Garner, K., Miller, R. J., Lenihan, H. S. (2012). Toxicity of Nano-Zero Valent Iron to Freshwater and Marine Organisms. PLoS ONE, 7 (8), e43983.

Keller, A. A., McFerran, S., Lazareva, A., Suh, S. (2013). Global life cycle releases of engineered nanomaterials. J. Nanoparticle Res. 15 (6), 1–17.

Keller, A. A., Wang, H., Zhou, D., Lenihan, H. S., Cherr, G., Cardinale, B. J., Miller, R., Ji, Z. (2010). Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environ. Sci. Technol. 44 (6), 1962–1967.

Kennedy, A. J., Hull, M. S., Steevens, J. A., Dontsova, K. M., Chappell, M. A., Gunter, J. C., Weiss,, C. A. (2008). Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ. Toxicol. Chem. 27 (9), 1932–1941.

Kool, P. L., Ortiz, M. D., Gestel, C. A. M. van. (2011). Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ. Pollut. 159 (10), 2713–2719.

Lecoanet, H. F., Bottero, J. Y., Wiesner, M. R. (2004). Laboratory Assessment of the Mobility of Nanomaterials in Porous Media. Environ. Sci. Technol. 38 (19), 5164–5169.

Lecoanet, H. F., and Wiesner, M. R. (2004). Velocity Effects on Fullerene and Oxide Nanoparticle Deposition in Porous Media. Environ. Sci. Technol. 38 (16), 4377–4382.

Levard, C., Reinsch, B. C., Michel, F. M., Oumahi, C., Lowry, G. V., Brown, G. E. (2011). Sulfidation Processes of PVP-Coated Silver Nanoparticles in Aqueous Solution: Impact on Dissolution Rate. Environ. Sci. Technol. 45 (12), 5260–5266.

Li, H., Zhou, Q., Wu, Y., Fu, J., Wang, T., Jiang, G. (2009). Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol. Environ. Saf. 72 (3), 684–692.

Li, M., Lin, D., Zhu, L. (2013). Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ. Pollut. 173, 97–102.

Li, M., Zhu, L., Lin, D. (2011). Toxicity of ZnO Nanoparticles to Escherichia coli: Mechanism and the Influence of Medium Components. Environ. Sci. Technol. 45 (5), 1977–1983.

Li, T., Albee, B., Alemayehu, M., Diaz, R., Ingham, L., Kamal, S., Rodriguez, M., Bishnoi, S. W. (2010). Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal. Bioanal. Chem. 398 (2), 689–700.

19

302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346

Li, X., Lenhart, J. J., Walker, H. W. (2010). Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles. Langmuir, 26 (22), 16690–16698.

Li, X., Lenhart, J. J., Walker, H. W. (2011). Aggregation Kinetics and Dissolution of Coated Silver Nanoparticles. Langmuir, 28 (2), 1095–1104.

Li, Y., Wang, Y., Pennell, K. D., Abriola, L. M. (2008). Investigation of the Transport and Deposition of Fullerene (C60) Nanoparticles in Quartz Sands under Varying Flow Conditions. Environ. Sci. Technol. 42 (19), 7174–7180.

Li, Z., Greden, K., Alvarez, P. J. J., Gregory, K. B., Lowry, G. V. (2010). Adsorbed Polymer and NOM Limits Adhesion and Toxicity of Nano Scale Zerovalent Iron to E. coli. Environ. Sci. Technol. 44 (9), 3462–3467.

Li, Z. Sahle-Demessie, E., Hassan, A. A., Sorial, G. A. (2011). Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Res. 45 (15), 4409–4418.

Limbach, L. K., Bereiter, R., Müller, E., Krebs, R., Gälli, R., Stark, W. J. (2008). Removal of Oxide Nanoparticles in a Model Wastewater Treatment Plant: Influence of Agglomeration and Surfactants on Clearing Efficiency. Environ. Sci. Technol. 42 (15), 5828–5833.

Lin, D., Liu, N., Yang, K., Xing, B., Wu, F. (2010). Different stabilities of multiwalled carbon nanotubes in fresh surface water samples. Environ. Pollut. 158 (5), 1270–1274.

Liu, J., Aruguete, D. M., Murayama, M., Hochella, M. F. (2009). Influence of Size and Aggregation on the Reactivity of an Environmentally and Industrially Relevant Nanomaterial (PbS). Environ. Sci. Technol. 43 (21), 8178–8183.

Liu, J., and Hurt, R. H. (2010). Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environ. Sci. Technol. 44 (6), 2169–2175.

Liu, J., Sonshine, D. A., Shervani, S., Hurt, R. H. (2010). Controlled Release of Biologically Active Silver from Nanosilver Surfaces. ACS Nano, 4 (11), 6903–6913.

Lowry, G. V., Espinasse, B. P., Badireddy, A. R., Richardson, C. J., Reinsch, B. C., Bryant, L. D., Bone, A. J., Deonarine, A., Chae, S., Therezien, M., Colman, B. P., Hsu-Kim, H., Bernhardt, E. S., Matson, C. W., Wiesner, M. R. (2012). Long-Term Transformation and Fate of Manufactured Ag Nanoparticles in a Simulated Large Scale Freshwater Emergent Wetland. Environ. Sci. Technol. 46 (13), 7027–7036.

Ma, R., Levard, C., Michel, F. M., Brown, G. E., Lowry, G. V. (2013). Sulfidation Mechanism for Zinc Oxide Nanoparticles and the Effect of Sulfidation on Their Solubility. Environ. Sci. Technol. 47 (6), 2527–2534.

Mackenzie, K., Bleyl, S., Georgi, A., Kopinke, F. D. (2012). Carbo-Iron – An Fe/AC composite – As alternative to nano-iron for groundwater treatment. Water Res. 46 (12), 3817–3826.

Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., Alum, A. (2011). Comparison of Different Methods for the Point of Zero Charge Determination of NiO. Ind. Eng. Chem. Res. 50 (17), 10017–10023.

Manabe, M., Tatarazako, N., Kinoshita, M. (2011). Uptake, excretion and toxicity of nano-sized latex particles on medaka (Oryzias latipes) embryos and larvae. Aquat. Toxicol. 105 (3–4), 576–581.

Manzo, S., Rocco, A., Carotenuto, R., Picione, F. D. L., Miglietta, M. L., Rametta, G., Francia, G. D. (2011). Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms. Environ. Sci. Pollut. Res. 18 (5), 756–763.

20

347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390

Mattison, N. T., O’Carroll, D. M., Kerry Rowe, R., Petersen, E. J. (2011). Impact of Porous Media Grain Size on the Transport of Multi-walled Carbon Nanotubes. Environ. Sci. Technol. 45 (22), 9765–9775.

Miao, A. J., Schwehr, K. A., Xu, C., Zhang, S.-J., Luo, Z., Quigg, A., Santschi, P. H. (2009). The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ. Pollut. 157 (11), 3034–3041.

Milani, N., McLaughlin, M., Hettiaratchchi, G., Beak, D., Kirby, J., Stacey, S., Gilkes, R. (2010) Fate of nanoparticulate zinc oxide fertilisers in soil: solubility, diffusion and solid phase speciation. Soil Solutions Chang. World 19th World Congr. Soil Sci. Brisb. QLD Aust.

Miller, R. J., Lenihan, H. S., Muller, E. B., Tseng, N., Hanna, S. K., Keller, A. A. (2010). Impacts of Metal Oxide Nanoparticles on Marine Phytoplankton. Environ. Sci. Technol. 44 (19), 7329–7334.

Montes, M. O., Hanna, S. K., Lenihan, H. S., Keller, A. A. (2012). Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J. Hazard. Mater. 225–226, 139–145.

Mortimer, M., Kasemets, K., Kahru, A. (2010). Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 269 (2–3), 182–189.

Pakrashi, S., Dalai, S., Ritika, Sneha, B., Chandrasekaran, N., Mukherjee, A. (2012). A temporal study on fate of Al2O3 nanoparticles in a fresh water microcosm at environmentally relevant low concentrations. Ecotoxicol. Environ. Saf. 84, 70–77.

Parks, A. N., Portis, L. M., Schierz, P. A., Washburn, K. M., Perron, M. M., Burgess, R. M., Ho, K. T. Chandler, G. T., Ferguson, P. L. (2013). Bioaccumulation and toxicity of single-walled carbon nanotubes to benthic organisms at the base of the marine food chain. Environ. Toxicol. Chem. 32 (6), 1270–1277.

Pelley, A. J. and Tufenkji, N. (2008). Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. J. Colloid Interface Sci. 321 (1), 74–83.

Petosa, A. R., Brennan, S. J., Rajput, F., Tufenkji, N. (2012). Transport of two metal oxide nanoparticles in saturated granular porous media: Role of water chemistry and particle coating. Water Res. 46 (4), 1273–1285.

Pettibone, J. M., Cwiertny, D. M., Scherer, M., Grassian, V. H. (2008). Adsorption of Organic Acids on TiO2 Nanoparticles: Effects of pH, Nanoparticle Size, and Nanoparticle Aggregation. Langmuir, 24 (13), 6659–6667.

Phenrat, T., Cihan, A., Kim, H. J., Mital, M., Illangasekare, T., Lowry, G. V. (2010). Transport and Deposition of Polymer-Modified Fe0 Nanoparticles in 2-D Heterogeneous Porous Media: Effects of Particle Concentration, Fe0 Content, and Coatings. Environ. Sci. Technol. 44 (23), 9086–9093.

Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., Lowry, G. V. (2007). Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions. Environ. Sci. Technol. 41 (1), 284–290.

Quik, J. T.K., Lynch, I., Hoecke, K. V., Miermans, C. J. H., Schamphelaere, K. A. C. D., Janssen, C. R., Dawson, K. A., Stuart, M. A. C., Meent, D. V. D. (2010). Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere, 81 (6), 711–715.

21

391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434

Quik, J.T.K., Velzeboer, I., Wouterse, M., Koelmans, A. A., Meent, D. van de. (2013). Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Res.

Reed, R. B., Ladner, D. A., Higgins, C. P., Westerhoff, P., Ranville, J. F. (2012). Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ. Toxicol. Chem. 31 (1), 93–99.

Reinsch, B. C., Levard, C., Li, Z., Ma, R., Wise, A., Gregory, K. B., Brown, G. E., Lowry, G. V. (2012). Sulfidation of Silver Nanoparticles Decreases Escherichia coli Growth Inhibition. Environ. Sci. Technol. 46 (13), 6992–7000.

Rimer, J. D., Trofymluk, O., Navrotsky, A., Lobo, R. F., Vlachos, D. G. (2007). Kinetic and Thermodynamic Studies of Silica Nanoparticle Dissolution. Chem. Mater. 19 (17), 4189–4197.

Ringwood, A. H., Levi-Polyachenko, N., Carroll, D. L. (2009). Fullerene Exposures with Oysters: Embryonic, Adult, and Cellular Responses. Environ. Sci. Technol. 43 (18), 7136–7141.

Roelofs, F., and Vogelsberger, W. (2004). Dissolution Kinetics of Synthetic Amorphous Silica in Biological-Like Media and Its Theoretical Description. J. Phys. Chem. B, 108 (31), 11308–11316.

Roelofs, F., and Vogelsberger, W. (2006). Dissolution kinetics of nanodispersed γ-alumina in aqueous solution at different pH: Unusual kinetic size effect and formation of a new phase. J. Colloid Interface Sci. 303 (2), 450–459.

Rogers, N. J., Franklin, N. M., Apte, S. C., Batley, G. E., Angel, B. M., Lead, J. R., Baalousha, M. (2010). Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ. Chem. 7 (1), 50–60.

Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., Lowry, G. V. (2008). Ionic Strength and Composition Affect the Mobility of Surface-Modified Fe0 Nanoparticles in Water-Saturated Sand Columns. Environ. Sci. Technol. 42 (9), 3349–3355.

Saleh, N. B., Pfefferle, L. D., Elimelech, M. (2008). Aggregation Kinetics of Multiwalled Carbon Nanotubes in Aquatic Systems: Measurements and Environmental Implications. Environ. Sci. Technol. 42 (21), 7963–7969.

Schrick, B., Hydutsky, B. W., Blough, J. L., Mallouk, T. E. (2004). Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater. Chem. Mater. 16 (11), 2187–2193.

Shih, Y., Zhuang, C., Peng, Y. H., Lin, C., Tseng, Y. (2012). The effect of inorganic ions on the aggregation kinetics of lab-made TiO2 nanoparticles in water. Sci. Total Environ. 435–436, 446–452.

Shoults-Wilson, W. A., Reinsch, B. C., Tsyusko, O. V., Bertsch, P. M., Lowry, G. V., Unrine, J. M. (2011). Role of Particle Size and Soil Type in Toxicity of Silver Nanoparticles to Earthworms. Soil Sci. Soc. Am. J. 75 (2), 365.

Simon-Deckers, A., Loo, S.; Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., Gouget, B., Carriere,M. (2009). Size-, Composition- and Shape-Dependent Toxicological Impact of Metal Oxide Nanoparticles and Carbon Nanotubes toward Bacteria. Environ. Sci. Technol. 43 (21), 8423–8429.

Singh, G., Vajpayee, P., Khatoon, I., Jyoti, A., Dhawan, A., Gupta, K. C., Shanker, R. (2011). Chromium Oxide Nano-Particles Induce Stress in Bacteria: Probing Cell Viability. J. Biomed. Nanotechnol. 7 (1), 166–167.

22

435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480

Stankus, D. P., Lohse, S. E., Hutchison, J. E., Nason, J. A. (2010). Interactions between Natural Organic Matter and Gold Nanoparticles Stabilized with Different Organic Capping Agents. Environ. Sci. Technol. 45 (8), 3238–3244.

Stebounova, L., Guio, E., Grassian, V. (2011). Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J. Nanoparticle Res. 13 (1), 233–244.

Sunkara, B., Zhan, J., He, J., McPherson, G. L., Piringer, G., John, V. T. (2010). Nanoscale Zerovalent Iron Supported on Uniform Carbon Microspheres for the In situ Remediation of Chlorinated Hydrocarbons. ACS Appl. Mater. Interfaces, 2 (10), 2854–2862.

Tedesco, S., Doyle, H., Blasco, J., Redmond, G., Sheehan, D. (2010). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat. Toxicol. 100 (2), 178–186.

Thio, B. J. R., Zhou, D., Keller, A. A. (2011). Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J. Hazard. Mater. 189 (1–2), 556–563.

Tian, Y., Gao, B., Wu, L., Muñoz-Carpena, R., Huang, Q. (2012). Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media. J. Hazard. Mater. 231–232, 79–87.

Tian, Y., Silvera-Batista, C., Ziegler, K. (2010). Transport of engineered nanoparticles in saturated porous media - Springer. J. Nanoparticle Res.

Tiede, K., Hassellöv, M., Breitbarth, E., Chaudhry, Q., Boxall, A. B. A. (2009). Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J. Chromatogr. A, 1216 (3), 503–509.

Tong, Z., Bischoff, M., Nies, L., Applegate, B., Turco, R. F. (2007). Impact of Fullerene (C60) on a Soil Microbial Community. Environ. Sci. Technol. 41 (8), 2985–2991.

Tosco, T., Bosch, J., Meckenstock, R. U., Sethi, R. (2012). Transport of Ferrihydrite Nanoparticles in Saturated Porous Media: Role of Ionic Strength and Flow Rate. Environ. Sci. Technol. 46 (7), 4008–4015.

Tourinho, P. S., Gestel, C. A. M. van, Lofts, S., Svendsen, C., Soares, A. M. V. M., Loureiro, S. (2012). Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 31 (8), 1679–1692.

Tufenkji, N., and Elimelech, M. (2004). Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media. Environ. Sci. Technol. 38 (2), 529–536.

Unrine, J. M., Hunyadi, S. E., Tsyusko, O. V., Rao, W., Shoults-Wilson, W. A., Bertsch, P. M. (2010). Evidence for Bioavailability of Au Nanoparticles from Soil and Biodistribution within Earthworms (Eisenia fetida). Environ. Sci. Technol. 44 (21), 8308–8313.

Vecchia, E. D., Luna, M., Sethi, R. (2009). Transport in Porous Media of Highly Concentrated Iron Micro- and Nanoparticles in the Presence of Xanthan Gum. Environ. Sci. Technol. 43 (23), 8942–8947.

Velzeboer, I., Hendriks, A. J., Ragas, A. M. J., Meent, D. van de. (2008). Aquatic ecotoxicity tests of some nanomaterials. Environ. Toxicol. Chem. 27 (9), 1942–1947.

Vogelsberger, W., Schmidt, J., Roelofs, F. (2008). Dissolution kinetics of oxidic nanoparticles: The observation of an unusual behaviour. Colloids Surfaces Physicochem. Eng. Asp. 324 (1–3), 51–57.

23

481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524

Kammer, F. von der, Ottofuelling, S., Hofmann, T. (2010). Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. Environ. Pollut. 158 (12), 3472–3481.

Wang, C., Bobba, A. D., Attinti, R., Shen, C., Lazouskaya, V., Wang, L.-P., Jin, Y. (2012). Retention and Transport of Silica Nanoparticles in Saturated Porous Media: Effect of Concentration and Particle Size. Environ. Sci. Technol. 46 (13), 7151–7158.

Wang, P., Shi, Q., Liang, H., Steuerman, D. W., Stucky, G. D., Keller, A. A. (2008). Enhanced Environmental Mobility of Carbon Nanotubes in the Presence of Humic Acid and Their Removal from Aqueous Solution. Small, 4 (12), 2166–2170.

Wang, Y., Gao, B., Morales, V. L., Tian, Y., Wu, L., Gao, J., Bai, W., Yang, L. (2012). Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions. J. Nanoparticle Res. 14 (9), 1–9.

Wang, Y., Li, Y., Pennell, K. D. (2008). Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands. Environ. Toxicol. Chem. 27 (9), 1860–1867.

Wang, Z., Li, J., Zhao, J., Xing, B. (2011). Toxicity and Internalization of CuO Nanoparticles to Prokaryotic Alga Microcystis aeruginosa as Affected by Dissolved Organic Matter. Environ. Sci. Technol. 45 (14), 6032–6040.

Westerhoff, P., Kiser, A., Hristovski, K. (2013). Nanomaterial Removal and Transformation During Biological Wastewater Treatment. Env. Eng. Sci.30(3):109-117.

Wong, S. W. Y., Leung, P. T. Y., Djurišić, A. B., Leung, K. M. Y. (2010).Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal. Bioanal. Chem. 396 (2), 609–618.

Xia, T., Kovochich, M.,, Liong, M., Mädler, L., Gilbert, B., Shi, H., Yeh, J. I., Zink, J. I., Nel, A. E. (2008). Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties. ACS Nano, 2 (10), 2121–2134.

Xiao, Y., and Wiesner, M. R. (2013). Transport and Retention of Selected Engineered Nanoparticles by Porous Media in the Presence of a Biofilm. Environ. Sci. Technol. 47 (5), 2246–2253.

Xie, B., Xu, Z., Guo, W., Li, Q. (2008). Impact of Natural Organic Matter on the Physicochemical Properties of Aqueous C60 Nanoparticles. Environ. Sci. Technol. 42 (8), 2853–2859.

Yin, K., Lo, I. M. C., Dong, H., Rao, P., Mak, M. S. H. (2012). Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: Aggregation, sedimentation, and contaminant desorption. J. Hazard. Mater. 227–228, 118–125.

Zhang, Y., Chen, Y., Westerhoff, P., Crittenden, J. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 43 (17), 4249–4257.

Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., Crittenden, J. C. (2008). Stability of commercial metal oxide nanoparticles in water. Water Res. 42 (8–9), 2204–2212.

Zhou, D., Bennett, S. W., Keller, A. A. (2012). Increased Mobility of Metal Oxide Nanoparticles Due to Photo and Thermal Induced Disagglomeration. PLoS ONE, 7 (5), e37363.

Zhou, D. and Keller, A. A. (2010). Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res. 44 (9), 2948–2956.

Zhou, D., and Keller, A. A. (2013). Influence of Material Properties of TiO2 Nanoparticle Agglomeration. PLOS ONE, In Press.

24

525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570

Zhu, X., Cai, Z. (2012). Behavior and effect of manufactured nanomaterials in the marine environment. Integr. Environ. Assess. Manag. 8 (3), 566–567.

Zhu, X., Tian, S., Cai, Z. (2012). Toxicity Assessment of Iron Oxide Nanoparticles in Zebrafish (Danio rerio) Early Life Stages. PLoS ONE, 7 (9).

Zhu, X., Zhu, L., Chen, Y., Tian, S. (2009). Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J. Nanoparticle Res. 11 (1), 67–75.

Zhu, X., Zhu, L., Li, Y., Duan, Z., Chen, W., Alvarez, P. J. J. (2007). Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: Buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem. 26 (5), 976–979.

Zook, J. M., Halter, M. D., Cleveland, D., Long, S. E. (2012). Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity. J. Nanoparticle Res. 14 (10), 1–9.

25

571572573574575576577578579580581582583584


Recommended