+ All Categories
Home > Documents > 1.2-peak

1.2-peak

Date post: 17-Jul-2016
Category:
Upload: mruet04
View: 215 times
Download: 0 times
Share this document with a friend
Description:
Cont.
64
Experiences Using SysML Parametrics to Represent Constrained Object-based Analysis Templates Russell Peak 1,* , Sandy Friedenthal 2 , Alan Moore 3 , Roger Burkhart 4 , Steve Waterbury 5 , Manas Bajaj 1 , Injoong Kim 1 1. Georgia Institute of Technology * Presenter 2. Lockheed Martin Corporation 3. ARTiSAN Software Tools Inc. 4. Deere & Company 5. NASA Goddard Space Flight Center pde2005 7th NASA-ESA Workshop on Product Data Exchange (PDE) The Workshop for Open Product & System Lifecycle Management (PLM/SLiM) April 19-22, 2005 Georgia Tech, Atlanta Copyright © All Rights Reserved. Permission to reproduce and distribute without changes for non-commercial purposes (including internal corporate usage) is hereby granted provided this notice and a proper citation are included.
Transcript

Experiences Using SysML Parametrics to Represent Constrained Object-based Analysis Templates

Russell Peak1,*, Sandy Friedenthal2, Alan Moore3, Roger Burkhart4, Steve Waterbury5, Manas Bajaj1, Injoong Kim1

1. Georgia Institute of Technology * Presenter2. Lockheed Martin Corporation3. ARTiSAN Software Tools Inc.4. Deere & Company5. NASA Goddard Space Flight Center

pde20057th NASA-ESA Workshop on Product Data Exchange (PDE)

The Workshop for Open Product & System Lifecycle Management (PLM/SLiM)April 19-22, 2005

Georgia Tech, Atlanta

Copyright © All Rights Reserved. Permission to reproduce and distribute without changes for non-commercial purposes (including internal corporate usage) is hereby granted provided this notice and a proper citation are included.

2

Abstract: Overview (p. 1/2)Experiences Using SysML Parametrics

to Represent Constrained Object-based Analysis Templates== Overview ==

This presentation overviews a collaborative effort to infuse constrained object (COB) concepts within the emerging SysML standard. SysML is "a new visual modeling language designed by systems engineers for specifying systems of systems"(SoS) [1].

Georgia Tech has developed the COB knowledge representation over the past 12+ years to capture fine-grained relations within and among diverse models. Applications include analysis templates that facilitate interoperability among engineering design and analysis models.

In this presentation we show how SysML (and its emerging parametrics capabilities in particular) can represent the flap link analysis template tutorial described below. The SysML Parametric Diagram represents a network of relations among the properties of a system such as F=ma and Total Weight = sum (Part Weights). These diagrams are intended to capture inter-model associativity, including bridging design models with engineering analysis models. This concept-rich test case helps both to evaluate and demonstrate SysML capabilities (e.g., parametric diagram scalability) and to identify aspects needing further development.

Envisioned applications include a widely accepted unified representation of domain-specific models and their fine-grained associativity with system models, ultimately resulting in fundamental capabilities for next-generation SoS and product lifecycle management (PLM).

http://eislab.gatech.edu/pubs/conferences/2005-pde-peak/Keywords: SysML, UML, parametric diagram, constrained object (COB); constraint graph; constraint schematic, design-analysis integration; CAD-CAE interoperability; multi-representation architecture (MRA); simulation-based design (SBD); multi-fidelity; multi-directional; systems of systems (SoS); product lifecycle management (PLM).

3

Abstract: Background (p. 2/2)== Constrained Object (COB) and Analysis Template Background [2, 3] ==

The variety of engineering design and analysis contexts makes the generalized integration of computer-aided design and engineering (CAD/CAE) a challenging proposition. Transforming a detailed product design into an idealized analysis model can be a time-consuming and complicated process, which typically does not capture idealization and simplification knowledge explicitly. Georgia Tech has developed the multi-representation architecture (MRA) and analyzable product model (APM) techniques to bridge the CAD-CAE gap with stepping stone representations that support design-analysis diversity. These techniques employ constrained objects (COBs) as a generalized underlying representation.

The COB representation is based on object and constraint graph concepts to benefit from their modularity and multi-directional capabilities. Object techniques provide a semantically rich way to organize and reuse the complex relations and properties that naturally underlie engineering models. Representing relations as constraints makes COBs flexible because constraints can generally accept any combination of I/O information flows. This multi-directionality enables, for example, design sizing (synthesis) and design verification (analysis) using the same COB-based simulation model. Engineers perform such activities throughout the product lifecycle, with the former being characteristic of early design stages and vice versa.

Wilson et al. [2] present basic examples to illustrate COB concepts, including applications to analysis building blocks (ABBs) utilized later in a flap link tutorial example [2].

This flap link tutorial [3] demonstrates an MRA-based design-analysis panorama that supports these capabilities in a unified manner: multiple levels of abstraction and a diversity of physical behaviors, analysis fidelities, and CAD/CAE methods and tools.

To validate the COB representation, other work implemented electronic packaging and aerospace test cases in a COB-based toolkit called XaiTools™. In all, these test cases utilize some 260 different types of COBs with some 370 relations, including automated solving using commercial math and finite element analysis tools. Results show that the COB representation makes the MRA reusable, modular, and multi-directional, thus enhancing physical behavior modeling and knowledge capture for a wide variety of design models, analysis models, and engineering computing environments.

References: 1 - http://www.SysML.org/2 - http://eislab.gatech.edu/pubs/conferences/2001-mit-cfsm-1-wilson-cobs/3 - http://eislab.gatech.edu/pubs/conferences/2001-mit-cfsm-2-peak-xai-example/

4

Georgia TechCOB/DAI-related Nomenclature

ABB-SMM transformation idealization relation between design and analysis attributes APM-ABB associativity linkage indicating usage of one or more iABB analysis building blockAMCOM U. S. Army Aviation and Missile CommandAPM analyzable product modelCAD computer aided designCAE computer aided engineeringCBAM context-based analysis modelCOB constrained objectCOI constrained object instanceCOS constrained object structureCORBA common ORB architectureDAI design-analysis integrationEIS engineering information systemsESB engineering service bureauFEA finite element analysisFTT fixed topology templateGUI graphical user interfaceIIOP Internet inter-ORB protocolMRA multi-representation architectureORB object request brokerOMG Object Management Group, www.omg.comPWA printed wiring assembly (a PWB populated with components)PWB printed wiring boardSBD simulation-based designSBE simulation-based engineeringSME small-to-medium sized enterprise (small business)SMM solution method modelProAM Product Data-Driven Analysis in a Missile Supply Chain (ProAM) project (AMCOM)PSI Product Simulation Integration project (Boeing)STEP Standard for the Exchange of Product Model Data (ISO 10303).VTMB variable topology multi-bodyXAI X-analysis integration (X= design, mfg., etc.)XCP XaiTools ChipPackage™

XFW XaiTools FrameWork™

XPWAB XaiTools PWA-B™

5

Outline Motivation

– Knowledge graphs for next-generation PLM/SLiM & education

» Design & analysis integration SysML Parametrics Working Group

– Round 1 objectives Examples

– Mechanical part: flap link & structural analysis– Modular library: generic analysis building blocks– Electronics assembly:

circuit board & thermomechanical analysis Results & Summary

6

Domain

Abs

tract

ion

Leve

l

Req

uire

men

ts

Sof

twar

e

Ele

ctro

nics

Stru

ctur

es

Systems Engineering

Models of varying abstractions and domains

Legend

Model interfaces:Fine-grained associativity relations among domain-specific models and system-level models

Dev

elop

men

t Pro

cess

Rich models: Information objects Parametric relations

… …

After Bajaj, Peak, & Waterbury2003-09

Next-Generation PLM/SLiM Framework with Fine-Grained Interoperability

Customer/Acquisitions…

Hum

an In

terfa

ces

2004-09

7

RR

R

Product Development Knowledge GraphTypical Current Issues

RR

RR

R

RR

DesignersSuppliers

R

RR

RR

R

RR

RR

RR

R R

R

R

R

R

ManufacturingAnalystsImplicit

Not Computer- interpretable

Not Interoperable

Coarse-grainedPDM

CAD1CAD2

FEM

ProcessPlanning

R

Source: Chris Paredis, 2004

8

Enhancing Education Using Constraint Graph-based Knowledge Representations [Cowan et al.]

Source: FS Cowan, M Usselman, D Llewellyn, A Gravitt (2003) Utilizing Constraint Graphs in High School Physics. Proc. ASEE Annual Conf. & Expo. http://www.cetl.gatech.edu/services/step/constraint.pdf

“I believe that this process will be helpful to others because I have been doing the same thing in my head to organize and understand the different equations and to help me solve the problems successfully.”[student comment]

Initial results with high school physics class: Students using constraint graphs did 70% better

9

SysML Parametrics Working GroupMembers

Manas Bajaj (Georgia Tech) – Implemented circuit board test case in Artisan RtS tool

Roger Burkhart (John Deere) Sandy Friedenthal (Lockheed Martin) – Lead Injoong Kim (Georgia Tech)

– Implemented mechanical part test case in Artisan RtS tool Alan Moore (Artisan) Russell Peak (Georgia Tech) Stephen Waterbury (NASA)

10

SysML Parametrics Working GroupObjectives & Deliverables - Round 1

Objectives– Validate scalability and usability of SysML parametric diagram

» Semantics, notation, interconnection with structural diagrams– Show design-analysis interoperability (DAI) via parametric diagrams

» Connect design models with engineering simulation models » Hence fundamental to systems engineering

– Help validate SysML against GIT constrained object (COB) experience – Infuse COB concepts within SysML

» Broaden audience and usability of such concepts

Deliverables– Sample problems for SysML Specification and reference material– Initial results of validation effort– Recommended updates/refinements to SysML parametrics capabilities

11

Outline Motivation

– Knowledge graphs for next-generation PLM/SLiM & education

» Design & analysis integration SysML Parametrics Working Group

– Round 1 objectives Examples

– Mechanical part: flap link & structural analysis– Modular library: generic analysis building blocks– Electronics assembly:

circuit board & thermomechanical analysis Results & Summary

12

Flap Link Mechanical PartA simple design ...

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

red = idealized parameter

Background

This simple part provides the basis for a benchmark tutorial for CAD-CAE interoperability and simulation template knowledge representation. This example exercises multiple capabilities relevant to such contexts (many of which are relevant to broader simulation and knowledge representation domains). See the following for further information (including papers overview this example):

http://eislab.gatech.edu/research/dai/ (begin with [Wilson et al. 2001] under Suggested Starting Points)

13

Design-Analysis Interoperability (DAI) PanoramaFlap Link Benchmark Tutorial - Constrained Object (COB)-based Constraint Schematic

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, Jradius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0Lr

JrTr

torque, Tr

xTT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

AF

edb.r1

oTTT

r3

LL

xFF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowableactual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rLws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowableactual

MS

ux mos model

Margin of Safety(> case)

allowableactual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowableactual

MS

Margin of Safety(> case)

allowableactual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

c

a

b

14

rib tapered_beam

hole

git_lib::git_geometr-y::circle

cross_section

basic_i_section tapered_i_section filleted_tapered_i_section

flap_link

sleeve1

sleeve21

sleeve11

rib21

rib11 shaft

1

1 cross section

1critical_cross_section

1 basic 1 tapered1 design

cls : Flap Link Structure

Flap Link APMSysML Assembly Class Diagram (partial)

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

red = idealized parameter

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

red = idealized parameter

15

Flap Linkage ExampleAnalyzable Product Model (APM) = Mfg. Product Model (MPM) Subset + Idealizations

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

Product Attribute

Idealized Attribute

Ri Idealization Relation

Ri Product Relation

Extended Constraint Graph

Partial COB Structure (COS)

effective_length, Leff == inter_axis_length -

(sleeve1.hole.cross_section.radius + sleeve2.hole.cross_section.radius)

Regarding COB notation and examples, see “Backup Slides”

(a COB diagram)

16

Flap Link APMSysML Parametric Diagram (partial)

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

red = idealized parameter

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

red = idealized parameter

flap_linkeffective_length

part_number

inter_axis_length

allowable_twist

allowable_twist_factor

allowable_inter_axis_length_change_factor

allowable_inter_axis_length_change

designer

description

«paramConstraint»: relation1

«paramConstraint»: relation2

«paramConstraint»: relation3

«paramConstraint»: relation4

«paramConstraint»: relation5

«paramConstraint»: relation6

«paramConstraint»: relation7

«paramConstraint»: relation8

«paramConstraint»: relation9

«paramConstraint»: relation10

effective_length

part_number

inter_axis_length

allowable_twist

allowable_twist_factor

allowable_inter_axis_length_change_factor

allowable_inter_axis_length_change

designer

description

«paramConstraint»: relation1

«paramConstraint»: relation2

«paramConstraint»: relation3

«paramConstraint»: relation4

«paramConstraint»: relation5

«paramConstraint»: relation6

«paramConstraint»: relation7

«paramConstraint»: relation8

«paramConstraint»: relation9

«paramConstraint»: relation10

flap_link.sleeve1.origin.y

flap_link.origin.y

flap_link.sleeve2.origin.y

flap_link.rib1.height

flap_link.sleeve1.width

flap_link.shaft.critical_cross_section.design.web_thickness

flap_link.rib2.height

flap_link.sleeve2.width

flap_link.rib1.thickness

flap_link.rib2.thickness

flap_link.sleeve1.[hole].cross section.radius

flap_link.sleeve2.[hole].cross section.radius

flap_link.sleeve1.outer_diameter

flap_link.shaft.critical_cross_section.basic.total_height

par : Flap Link Parametric Diagram

17

i_section

Quantity areaQuantity flange_widthQuantity flange_thicknessQuantity web_thicknessQuantity web_heightQuantity total_height

basic_i_section

...

filleted_tapered_i_section

Quantity flange_fillet_radius

...

tapered_i_section

Quantity flange_taper_thicknessQuantity flange_taper_angleQuantity flange_base_thickness

cls : I Section Classification

I Section Library SysML Class Diagram

Used by Flap Link

tfb tw

wf

rf

f

Section B-B(at critical_cross_section)

tft

A, I, J

tapered I

htotaltf tw

wf

tfb tw

wf

f

tft

hw hw hw

basic I

htotalhtotal

tf

Multifidelity Idealizations

A, I, J A, I, J

Detailed Design

18

filleted_tapered_i_section

flange_fillet_radius

area

flange_thickness

web_height

flange_taper_thickness

flange_taper_angle

flange_base_thickness

flange_width

web_thickness

total_height

flange_fillet_radius

area

flange_thickness

web_height

flange_taper_thickness

flange_taper_angle

flange_base_thickness

flange_width

web_thickness

total_height

tapered_i_section

flange_taper_thickness

flange_taper_angle

flange_base_thickness

flange_width

web_thickness

total_height

«paramConstraint»: relation13

«paramConstraint»: relation14

total_height

flange_width

flange_thickness

web_thickness

area

web_height

flange_taper_thickness

flange_taper_angle

flange_base_thickness

flange_width

web_thickness

total_height

«paramConstraint»: relation13

«paramConstraint»: relation14

total_height

flange_width

flange_thickness

web_thickness

area

web_height

basic_i_section

«paramConstraint»: relation13

area

flange_width

flange_thickness

web_thickness

web_height

total_height

«paramConstraint»: relation13

area

flange_width

flange_thickness

web_thickness

web_height

total_height

«paramConstraint»relation8

«paramConstraint»relation9

«paramConstraint»relation10

«paramConstraint»relation11

«paramConstraint»relation12

«paramConstraint»relation13

«paramConstraint»relation14

«paramConstraint»relation15

«paramConstraint»relation16

«paramConstraint»relation17

asm : Cross Section Assembly Diagram

I Section Library SysML Parametric Diagram

ParametricParametric

19

Outline Motivation

– Knowledge graphs for next-generation PLM/SLiM & education

» Design & analysis integration SysML Parametrics Working Group

– Round 1 objectives Examples

– Mechanical part: flap link & structural analysis– Modular library: generic analysis building blocks– Electronics assembly:

circuit board & thermomechanical analysis Results & Summary

20Engineering Information Systems Lab eislab.gatech.edu© 1993-2005 GTRC

Design-Analysis Interoperability (DAI) PanoramaFlap Link Benchmark Tutorial - Constrained Object (COB)-based Constraint Schematic

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, Jradius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0Lr

JrTr

torque, Tr

xTT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

AF

edb.r1

oTTT

r3

LL

xFF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowableactual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rLws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowableactual

MS

ux mos model

Margin of Safety(> case)

allowableactual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowableactual

MS

Margin of Safety(> case)

allowableactual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

c

b

a

21

Analysis Building Blocks (ABBs)

Analysis Primitives

Beam

q(x)

Distributed Load

RigidSupport

Cantilever Beam System

Analysis Systems- Primitive building blocks - Containers of ABB "assemblies"

Material Models

Specialized

General

- Predefined templates

- User-defined systemsAnalysis VariablesDiscrete Elements

Interconnections

Continua

Plane Strain BodyLinear-Elastic

BilinearPlastic PlateLow Cycle

Fatigue

N

Mass Spring Damper

x

y q(x)

Beam

Distributed Load

RigidSupport

No-Slipbody 1body 2

Temperature,

Stress,

Strain,

T

Geometry

Object representation of product-independent analytical engineering concepts

22

COB-based Libraries of Analysis Building Blocks (ABBs)Material Model and Continuum ABBs - Constraint Schematic-S

Material Model ABB

Continuum ABBs

modularre-usage

E

O n e D L i n e a rE la s t i c M o d e l

T

G

e

t

m a t e r i a l m o d e l

p o l a r m o m e n t o f i n e r t i a , Jr a d iu s , r

u n d e f o r m e d l e n g t h , L o

t w i s t ,

t h e t a s t a r t , 1

t h e t a e n d , 2

r 1

12

r 3

0Lr

JrT r

t o r q u e , T r

xTT

G , r , , ,J

L o

y

m ateria l m odel

tem perature, T

re ference tem perature, T o

force, F

area, A

undefo rm ed length, L o

to ta l e longation,L

length, L

start, x 1

end, x 2

E

O ne D LinearE lastic M odel

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

AF

edb.r1

oTTT

r3

LL

xFF

E, A ,

LL o

T , ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, telastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

Regarding COB notation and examples, see Backup Slides

23

1D Linear Elastic Model ABB SysML definition as an <<assembly>>

Note: this ABB (and other objects in this section) could have been implemented as a <<paramConstraint>>, in which case the intent would be that it is only usable within the dependent context of an assembly object. By implementing it instead as an <<assembly>>, it may be used as an independent object, or optionally in a dependent manner.

1D_ linear_elastic_model

«paramConstraint»r1 : relation1

«paramConstraint»r2 : relation2

«paramConstraint»r3 : relation3

«paramConstraint»r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

«paramConstraint»r1 : relation1

«paramConstraint»r2 : relation2

«paramConstraint»r3 : relation3

«paramConstraint»r4 : relation4 «paramConstraint»

r5 : relation5

elastic_strain

temperature_change

youngs_modulus

stress

cte

poissons_ratio thermal_strain

strain

shear_modulus

shear_stress shear_strain

name

E

T

G

t

e

G

)1(2

EG

Tt

Ee

te

asm : 1D Linear Elastic Material Model Assembly DiagramParametricParametric

24

Extensional Rod ABB SysML definition as <<assembly>>

includes usage of 1D Linear Elastic Model as a (dependent) paramConstraint

extensional_rod

«paramConstraint»material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

«paramConstraint»r1

«paramConstraint»r2

«paramConstraint»r3

«paramConstraint»r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»r11 «paramConstraint»

material_model : one_D_linear_elastic_model_noShear

temperature_change

stress strain

temperature_change

stress strain

«paramConstraint»r1

«paramConstraint»r2

«paramConstraint»r3

«paramConstraint»r4

temperature

reference_temperature

force

area

undeformed_length

start

end

total_elongation

length

«paramConstraint»r11

strain=total_elongation/length

total_elongation=length-undeformed_length

length=|end-start|

stress=force/area

temperature_change=temperature-reference_temperature

par : Extensional Rod Model Assembly DiagramParametric

25

Outline Motivation

– Knowledge graphs for next-generation PLM/SLiM & education

» Design & analysis integration SysML Parametrics Working Group

– Round 1 objectives Examples

– Mechanical part: flap link & structural analysis– Modular library: generic analysis building blocks– Electronics assembly:

circuit board & thermomechanical analysis Results & Summary

26

Multi-Representation Architecture (MRA)for Design-Analysis Integration (DAI)

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABBAPM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1body4

T0

Printed Wiring Board (PWB)

SolderJointComponent

AnalyzableProduct Model

Product-Specific

Product-Independent

See References re: MRA/DAI techniques

27

Design-Analysis Interoperability (DAI) PanoramaFlap Link Benchmark Tutorial - Constrained Object (COB)-based Constraint Schematic

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, Jradius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0Lr

JrTr

torque, Tr

xTT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

AF

edb.r1

oTTT

r3

LL

xFF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowableactual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rLws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowableactual

MS

ux mos model

Margin of Safety(> case)

allowableactual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowableactual

MS

Margin of Safety(> case)

allowableactual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

c

b

a

28

Flap Link and Associated Simulation TemplatesSysML class diagram (WIP draft)

1D_ linear_elastic_model

one_D_linear_elastic_model_noShear one_D_linear_elastic_model_isothermal

load_condition

flap_link_extensional_model

«assembly»flap_link

extensional_rod margin_of_safety_model

«context»flap_link_analysis_model

flap_link_torsional_model flap_link_plane_stress_model

torsional_rod flap_link_plane_stress_a-bb

1 deformation_model1

stress_MoS_model

1deformation_model11

ux_MoS_model

1material_model

1condition

1linkage

1

deformation_model

1

stress_MoS_model

1

twist_MoS_model

1

1

material_model

cls : Flap Link Analysis Model Structure

29

Test Case Flap Linkage: Analysis Template Reuse of APM

Linkage Extensional Model (CBAM)

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, Ecross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

stress mos model

Margin of Safety(> case)

allowableactual

MS

xFF

E, A,

LLo

T, ,

L

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

Flap link (APM)

reusable idealizations

COB diagrams

30

Test Case Flap Linkage: Analysis Template Reuse of ABBs

modular reusage

Extensional Rod (generic ABB)

Linkage Extensional Model (CBAM)

E

One D Linear

(no shear)

T

e

t

temperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, Lstart, x1

end, x2

mv6

mv5

smv1

mv1mv4

thermal strain, t

elastic strain, e

mv3

mv2

xFF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

AF

sr1

oTTT

r3LL

Elastic Model

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, Ecross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

ts1

A

Sleeve 1

A ts2

ds2

ds1

Sleeve 2

L

Shaft

Leff

s

stress mos model

Margin of Safety(> case)

allowableactual

MS

xFF

E, A,

LLo

T, ,

LCOB diagrams

31

Flap Link Simulation Template: Extensional ModelSysML parametric diagram (definition) - dot notation view

Caveat: materialModel properties would be better exposed as promoted ports on extensional_rod

«paramConstraint»load_condition

reaction

load

reaction

load

«paramConstraint»margin_of_safety_model

margin_of_safety allowable

determined

margin_of_safety allowable

determined

«paramConstraint»extensional_rod

area

undeformed_length

start

end

length

temperature

reference_temperature

force

«paramConstraint»material_model : one_D_linear_elastic_model_noShear

name

youngs_modulus

stress

total_elongation

area

undeformed_length

start

end

length

temperature

reference_temperature

force

«paramConstraint»material_model : one_D_linear_elastic_model_noShear

name

youngs_modulus

stress

name

youngs_modulus

stress

total_elongation

«paramConstraint»relation11

«paramConstraint»relation12

«paramConstraint»relation13

«paramConstraint»relation14

«paramConstraint»relation16

«paramConstraint»relation17

«paramConstraint»relation15

flap_link.effective_length

flap_link.shaft.critical_cross_section.basic.area

flap_link.[material].stress_strain_model.linear_elastic.youngs_modulus

flap_link.[material].yield_stress

flap_link.[material].name

asm : Flap Link Extensional Model Assembly DiagramParametricParametric

32

Flap Link Simulation Template: Extensional ModelSysML parametric diagram (definition) - nested part view

flap_link_extensional_model

«paramConstraint»stress_MoS_model : margin_of_safety_model

allowable

determinedmargin_of_safety

«paramConstraint»deformation_model : extensional_rod

«paramConstraint»material_model : one_D_linear_elastic_model_noShear

name

youngs_modulus

stress

undeformed_length

length

area

start

end

total_elongation

reference_temperature

force

temperature

«paramConstraint»condition : load_condition

reactiondescription

load

«paramConstraint»linkage : flap_link

«paramConstraint»shaft : tapered_beam

«paramConstraint»critical_cross_section : cross_section

«paramConstraint»basic : basic_i_section

area

«paramConstraint»: material

«paramConstraint»stress_strain_model : material_levels

«paramConstraint»linear_elastic : linear_elastic_model

youngs_modulus

yield_stress

name

effective_length «paramConstraint»r11 : equalR1

«paramConstraint»r12 : equalR1

«paramConstraint»r13 : equalR1

«paramConstraint»r14 : equalR1

«paramConstraint»r15 : equalR1

«paramConstraint»r16 : equalR1

«paramConstraint»r17 : equalR1

«paramConstraint»stress_MoS_model : margin_of_safety_model

allowable

determinedmargin_of_safety

allowable

determinedmargin_of_safety

«paramConstraint»deformation_model : extensional_rod

«paramConstraint»material_model : one_D_linear_elastic_model_noShear

name

youngs_modulus

stress

undeformed_length

length

area

start

end

total_elongation

reference_temperature

force

temperature

«paramConstraint»material_model : one_D_linear_elastic_model_noShear

name

youngs_modulus

stress

name

youngs_modulus

stress

undeformed_length

length

area

start

end

total_elongation

reference_temperature

force

temperature

«paramConstraint»condition : load_condition

reactiondescription

load

reactiondescription

load

«paramConstraint»linkage : flap_link

«paramConstraint»shaft : tapered_beam

«paramConstraint»critical_cross_section : cross_section

«paramConstraint»basic : basic_i_section

area

«paramConstraint»: material

«paramConstraint»stress_strain_model : material_levels

«paramConstraint»linear_elastic : linear_elastic_model

youngs_modulus

yield_stress

name

effective_length

«paramConstraint»shaft : tapered_beam

«paramConstraint»critical_cross_section : cross_section

«paramConstraint»basic : basic_i_section

area

«paramConstraint»critical_cross_section : cross_section

«paramConstraint»basic : basic_i_section

area«paramConstraint»

basic : basic_i_section

areaarea

«paramConstraint»: material

«paramConstraint»stress_strain_model : material_levels

«paramConstraint»linear_elastic : linear_elastic_model

youngs_modulus

yield_stress

name«paramConstraint»stress_strain_model : material_levels

«paramConstraint»linear_elastic : linear_elastic_model

youngs_modulus«paramConstraint»

linear_elastic : linear_elastic_model

youngs_modulusyoungs_modulus

yield_stress

name

effective_length «paramConstraint»r11 : equalR1

«paramConstraint»r12 : equalR1

«paramConstraint»r13 : equalR1

«paramConstraint»r14 : equalR1

«paramConstraint»r15 : equalR1

«paramConstraint»r16 : equalR1

«paramConstraint»r17 : equalR1

33

Flap Link Simulation Template: Extensional ModelSysML parametric diagram (definition) - flattened view

«paramConstraint»relation14

«paramConstraint»relation15

«paramConstraint»relation16

«paramConstraint»relation17

«paramConstraint»relation11

«paramConstraint»relation12

«paramConstraint»relation13

extensional_rod.total_elongation

flap_link.effective_lengthextensional_rod.undeformed_length

extensional_rod.areaflap_link.shaft.critical_cross_section.basic.area

flap_link.[material].stress_strain_model.linear_elastic.youngs_modulus extensional_rod.material_model.youngs_modulus

flap_link.[material].name extensional_rod.material_model.name

extensional_rod.force

load_condition.reaction

flap_link.[material].yield_stress margin_of_safety_model.allowable

extensional_rod.material_model.stress

margin_of_safety_model.determined

«paramConstraint»extensional_rod.r2 : relation2

«paramConstraint»extensional_rod.r4 : relation4

«paramConstraint»margin_of_safety_model.r1 : relation1

extensional_rod.lengthSTRD : Flap Link Extensional Model Parametric Diagram

34

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

shaftcritical_cross

_section

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowableactual

MS

description

area, Abasic

example 1, state 1

steel

10000 lbs

flaps mid position

1.125 in2

18000 psi

30e6 psi

1.025

5.0 in

8888 psi

1.43e-3 inFlap Link #3

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

shaftcritical_cross_section

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowableactual

MS

description

area, AbasicX

3.00e-3 in

1.125 in2

5.0 inFlap Link #3

0.0

steel10000 lbs

flaps mid position

18000psi

example 1, state 3

30e6 psi18000 psi

0.555 in2

Flap Linkage Instancewith Multi-Directional I/O States

Design Verification- Input: design details- Output: i) idealized design parameters ii) physical response criteria

Design Synthesis- Input: desired physical response criteria- Output: i) idealized design parameters (e.g., for sizing), or ii) detailed design parameters

COB diagrams

35

Flap Link Extensional ModelExample COB Instance in XaiTools (object-oriented spreadsheet)

Detailed CAD datafrom CATIA

Idealized analysis features in APM

Explicit multi-directional associativity between design & analysis

Modular generic analysis templates(ABBs)

Library data for materials

Focus Point ofCAD-CAE Integration

example 1, state 1

36

«paramConstraint»margin_of_safety_model

margin_of_safety = ?allowable = ?

determined = ?margin_of_safety = ?

allowable = ?

determined = ?

«paramConstraint»extensional_rod

area = ?

undeformed_length = ?

start

end

length

temperature

reference_temperature

force = ?

«paramConstraint»material_model : one_D_linear_elastic_model_noShear

name = ?

youngs_modulus = ?

stress = ?

total_elongation

area = ?

undeformed_length = ?

start

end

length

temperature

reference_temperature

force = ?

«paramConstraint»material_model : one_D_linear_elastic_model_noShear

name = ?

youngs_modulus = ?

stress = ?

name = ?

youngs_modulus = ?

stress = ?

total_elongation

«paramConstraint»relation11

«paramConstraint»relation12

«paramConstraint»relation13

«paramConstraint»relation14

«paramConstraint»relation16

«paramConstraint»relation17

«paramConstraint»relation15

«paramConstraint»load_condition

reaction = 10000

load

reaction = 10000

load

flap_link.shaft.critical_cross_section.basic.area = 1.125

flap_link.[material].stress_strain_model.linear_elastic.youngs_modulus = 30e6

flap_link.[material].name = steel

flap_link.[material].yield_stress = 18000

flap_link.effective_length = 5.0 5.0

1.125

10000

30e6

steel

88888888

1.025

example : Flap Link Extensional Model State 1.1

Flap Link Extensional Model - Usage: Solved StateSysML parametric diagram (instance)

37

Outline Motivation

– Knowledge graphs for next-generation PLM/SLiM & education

» Design & analysis integration SysML Parametrics Working Group

– Round 1 objectives Examples

– Mechanical part: flap link & structural analysis– Modular library: generic analysis building blocks– Electronics assembly:

circuit board & thermomechanical analysis Results & Summary

38

Circuit Board Design-Analysis IntegrationElectronic Packaging Examples: PWA/B

Analysis Modules (CBAMs) of Diverse Mode & Fidelity

Design Tools

Laminates DB

FEA Ansys

General MathMathematica

Analyzable Product Model

XaiToolsPWA-B

XaiToolsPWA-B

Solder JointDeformation*

PTHDeformation & Fatigue**

1D,2D

1D,2D,3D

Modular, ReusableTemplate Libraries

ECAD Tools Mentor Graphics,

Zuken, …

temperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

et

thermal strain, t

elastic strain, e

mv3

mv2

xFF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

AF

sr1

oTTT

r3LL

m a t e r ia l

e f f e c t i v e l e n g t h , L e f f

d e f o rm a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o rs i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c ro s s s e c t io n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

li n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n re a c t i o n

t s1

A

S le e v e 1

A t s2

d s2

d s1

S l ee v e 2

L

S h a f t

L ef f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b le s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b lea c t u a l

M S

M a rg i n o f S a f e t y( > c a s e )

a l l o w a b l ea c t u a l

M S

a l lo w a b l et w i s t Analysis Tools

PWBExtension

1D,2D

Materials DB

PWB Stackup ToolXaiTools PWA-B

STEP AP210‡

GenCAM**,PDIF*

‡ AP210 WD48 * = Item not yet available in toolkit (all others have working examples) ** = Item available via U-Engineer.com

PWBWarpage

39

PWB Analysis Model Structure

40

PWB Extensional Rod Model SysML Parametric Diagram

Parameters from the PWB APM

Same generic analysis building block (ABB) used by flap link

41

total_thicknesspwa

layup layers[0]

layers[1]

layers[2]

TOTAL

CU1T

CU2T

POLYT

PREPREGT

TETRA1T

EXCU

ALPXCU

EXEPGL

ALPXEGL

TO

deformation modelParameterized

FEA Model

ux mos model

Margin of Safety(> case)

allowableactual

MS

UX

condition

UY

SX

associated_pwb

nominal_thickness

prepregs[0] nominal_thickness

top_copper_layer nominal_thickness

related_core nominal_thickness

prepregs[0] nominal_thicknesslayers[3]

primary_structure_material linear_elastic_model E

cte

primary_structure_material linear_elastic_model E

cte

reference temperature

temperatureDELTAT

APM ABB

SMM

PWB Warpage Templatesa.k.a. CBAMs: COB-based analysis templates

deformation model

Thermal Bending Beam

L

b

T

Treference

t

T

total diagonalassociated_pwb

total thickness

coefficient of thermal bending

al1

al2

al6

al3

tTLb

2

warpage

wrapage mos model

allowable

MSactual

Marginof Safety

associated condition

al5

al4

temperature

reference temperature

pwa

APMABB

PWB Thermal Bending Model (1D formula-based CBAM)

PWB Plane Strain Model (2D FEA-based CBAM)

APMUsage of Rich Product Models

COB diagrams

42

PWB 1D Warpage ModelSysML Parametric Diagram

PWB APM usage

(AP210-baseddesign model)

43

Thermal Beam Bending Model (git_lib\git_abbs)SysML Parametric DiagramThis ABB is used for the 1D warpage model of the PWB

relationship reused (a = b - c)

44

Outline Motivation

– Knowledge graphs for next-generation PLM/SLiM & education

» Design & analysis integration SysML Parametrics Working Group

– Round 1 objectives Examples

– Mechanical part: flap link & structural analysis– Modular library: generic analysis building blocks– Electronics assembly:

circuit board & thermomechanical analysis Results & Summary

45

Recommendations - Round 1SysML Parametric Working Group

Clarify how parametric diagrams reference corresponding assembly contexts (for analysis models and assembly being analyzed)

Differentiate property types:– Value properties = basic types (no oids - ex. numbers, strings, etc.)– Parts = general types (have oids)

Update definitions– Assembly – add reference to value properties– ParamConstraint – include constraints among parameter values

Allow dot notation for both cases:– Nested parameters in paramConstraints – Nested properties of assemblies

Support graphical tree-like notation – Aid visualizing nested parts and value properties – Ensure structured ports support this

Support instance notation (including graph causality) Support promoted ports

oid = object identifier (oids give each SysML ‘part’ object a unique identity)

46

SummaryRound 1: Initial Studies - Completed Apr’05

Implemented basic benchmarks for CAD-CAE integration (DAI)– Mechanical part: flap link– Electronics: circuit board– Supporting libraries: generic building blocks

Achieved objectives– SysML parametric diagram scalability and usability – Design-analysis interoperability (DAI)– Mutual benefits: SysML GIT methods

47

SummaryRound 1 (continued)

Benefits to SysML– Leverages GIT parametric object experience

(1992-present)– Provides design-analysis interoperability (DAI) test cases

» Variety: domains, CAD tools, fidelities, CAE tools,...

– Systematically exercises numerous constructs Benefits to GIT methods (COBs, DAI, ...)

– Provides extended modeling constructs» Reusable relations, stereotyping, structured ports, ...

– Broadens & enhances tool support – Increases modeling effectiveness (via tools)

» Tool-aided graphical view creation» Automated consistency between views

48

Next Steps: Round 2 Refine above examples

– Consistency & approach Iterate:

– Propose SysML enhancements– Test with above examples & extended examples– Identify any remaining issues & enhancements

Provide feedback ~May’05 to enhance SysML specification v1.0

49

References

www.SysML.org GIT design-analysis interoperability methods,

including constrained objects (COBs):– http://eislab.gatech.edu/pubs/seminars-etc/2005-cpda-dsfw-peak/

Check here for updated versions of this presentation and related material– http://eislab.gatech.edu/pubs/conferences/2005-pde-peak/

50

Recommended ReferenceAchieving Fine-Grained CAE-CAE Associativity via

Analyzable Product Model (APM)-based Idealizations

Topic Area: Design-Analysis Interoperability (DAI)

This presentation overviews a simulation template methodology based on the analyzable product model (APM) knowledge representation. APMs combine design information from multiple sources, add idealization knowledge, and bridge semantic gaps to enable advanced CAD-CAE interoperability.

To understand why generalized design-simulation integration is a challenging proposition, we first review concepts like heterogeneous transformations and multi-fidelity idealizations via industrial examples.

Next we describe how an APM is a key component in the multi-representation architecture (MRA) simulation template methodology. In brief, MRA-based templates connect APMs with analysis models in a manner that is reusable, modular, and multi-directional. This approach supports multiple levels of abstraction and enhances physical behavior modeling and knowledge capture for a wide variety of design models, analysis models, and engineering computing environments.

Finally, we walk through several design-analysis scenarios including airframe structural analysis and electronics thermal and deformation analysis. Such examples demonstrate how the MRA supports a diversity of physical behaviors, analysis fidelities, and CAD/CAE methods and tools in a unified manner. This holistic approach leverages rich product models and open standards (e.g., STEP AP210 for electronics and AP233/SysML for systems of systems) and provides a foundation for next-generation design/simulation frameworks.

http://eislab.gatech.edu/pubs/seminars-etc/2005-cpda-dsfw-peak/

Backup Slides

52

Flap Link Extensional Model - Usage: Unsolved StateSysML assembly diagram (instance)

Caveat: representation of instances may need further work (vs. current “default values within a dummy class” approach)

«paramConstraint»margin_of_safety_model

margin_of_safety = ?allowable = ?

determined = ?margin_of_safety = ?

allowable = ?

determined = ?

«paramConstraint»extensional_rod

area = ?

undeformed_length = ?

start

end

length

temperature

reference_temperature

force = ?

«paramConstraint»material_model : one_D_linear_elastic_model_noShear

name = ?

youngs_modulus = ?

stress = ?

total_elongation

area = ?

undeformed_length = ?

start

end

length

temperature

reference_temperature

force = ?

«paramConstraint»material_model : one_D_linear_elastic_model_noShear

name = ?

youngs_modulus = ?

stress = ?

name = ?

youngs_modulus = ?

stress = ?

total_elongation

«paramConstraint»relation11

«paramConstraint»relation12

«paramConstraint»relation13

«paramConstraint»relation14

«paramConstraint»relation16

«paramConstraint»relation17

«paramConstraint»relation15

«paramConstraint»load_condition

reaction = 10000

load

reaction = 10000

load

flap_link.[material].name = steel

flap_link.[material].yield_stress = 18000

flap_link.effective_length = 5.0

flap_link.shaft.critical_cross_section.basic.area = 1.125

flap_link.[material].stress_strain_model.linear_elastic.youngs_modulus = 30e6

example : Flap Link Extensional Model State 1.0

Constrained Object (COB) Basics

54

Constrained Object (COB) Modeling LanguagesLexical and Graphical Formulations

StructureLevel(Template)

InstanceLevel

Subsystem-S

Object Relationship Diagram-S

COB StructureDefinition Language

(COS)

I/O Table-S

Constraint Graph-S

Constraint Schematic-S

STEPExpress

Express-G

Lexical Formulations

OWL UMLXML

COB InstanceDefinition Language

(COI)

Constraint Graph-I

Constraint Schematic-I

STEPPart 21

200 lbs

30e6 psi

100 lbs 20.2 in

R101

R101

100 lbs

30e6 psi 200 lbs

20.2 in OWL UML

Lexical Formulations

XML

OWL, XML, and UML formulationsare envisioned extensions

55

Triangle

dh

Ab

Triangle

dh

Ab

COB Structure: Graphical Forms

Tutorial: Triangle Primitive

v a r i a b l e s u b v a r i a b l es u b s y s t e m

e q u a l i t y r e l a t i o n

r e l a t i o n

s

a b

dc

a

b

d

c

e

a . das

r 1r 1 ( a , b , s . c )

e = f

s u b v a r i a b l e s . b

[ 1 . 2 ]

[ 1 . 1 ]o p t i o n 1 . 1

ff = s . d

o p t i o n 1 . 2 f = g

o p t i o n c a t e g o r y 1

gcbe r 2

h o f c o b t y p e h

wL [ j : 1 , n ]

w ja g g r e g a t e c . w

e l e m e n t w j

Basic Constraint Schematic-S Notation

c. Constraint Schematic-Sa. Shape Schematic-S

2222

1

:2

1:

hbdr

bhAr

b. Relations-S

d. Subsystem-S(for reuse by other COBs)

h

bA

d

base, br1

r2

bhA 21

height, h

222 hbd

area, A

diagonal, d

Aside: This is a “usage view” in AP210 terminology (vs. the above “design views”)

56

TriangularPrism

Vh

b

l

COBs as Building Blocks Tutorial: Triangular Prism COB Structure

c. Constraint Schematic-Sa. Shape Schematic-S

b. Relations-S

d. Subsystem-S(for reuse by other COBs)

T ria n g le

dh

Ab

T ria n g le

dh

Ab

le n g th , l vo lu m e , Vr1

AlV

c ro s s -se c tio nh

b

V l

AlVr :1

e. Lexical COB Structure (COS)COB triangular_prism SUBTYPE_OF geometric_shape; length, l : REAL; cross-section : triangle; volume, V : REAL;RELATIONS r1 : "<volume> == <cross-section.area> * <length>";END_COB;

57

200 lbs

30e6 psiResult b = 30e6 psi (output or intermediate variable)

Result c = 200 lbs (result of primary interest)

X

Relation r1 is suspended X r1

100 lbs Input a = 100 lbs

Equality relation is suspended

a

b

c

Example COB InstanceTutorial: Triangular Prism

Constraint Schematic-I Lexical COB Instance (COI)

state 1.0 (unsolved):INSTANCE_OF triangular_prism; cross-section.base : 2.0; cross-section.height : 3.0; length : 5.0; volume : ?;END_INSTANCE;

state 1.1 (solved):INSTANCE_OF triangular_prism; cross-section.base : 2.0; cross-section.height : 3.0; cross-section.area : 3.0; length : 5.0; volume : 15.0;END_INSTANCE;

Basic Constraint Schematic-I Notation

example 1, state 1.1

Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, Vr1

AlV

cross-section

3 in22 in

3 in

15 in35 in

Other Potential Examples and Challenges

59

Analysis Tools

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

rear spar fitting attach point

BLE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

F tuLT

Fty

F tyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

F su

IAS FunctionRef D6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, ethickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,max allowable yield stress,

max allowable long transverse stress,max allowable shear stress,plastic ultimate strain,

plastic ultimate strain long transverse,young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

F su

epu

epuLT

E

FtuLT

product structure (channel f itting joint)

Flexible High Diversity Design-Analysis Integration Phases 1-3 Airframe Examples:

“Bike Frame” / Flap Support Inboard Beam

Analysis Modules (CBAMs) of Diverse Feature:Mode, & Fidelity

Design Tools

Materials DBFEA

Elfini*MATDB-like

Analyzable Product Model

XaiTools

XaiTools

Fitting:Bending/Shear

3D

1.5D

Modular, ReusableTemplate LibrariesMCAD Tools

CATIA v4, v5

Lug:Axial/Oblique; Ultimate/Shear

1.5D

Assembly:Ultimate/

FailSafe/Fatigue** = Item not yet available in toolkit (all others have working examples)

diagonal brace lug joint j = top

0.7500 in

0.35 in

0.7500 in

1.6000 in

2

0.7433

14.686 K

2.40

4.317 K

8.633 K

k = norm

Max. torque brake settingdetent 30, 2=3.5º

7050-T7452, MS 7-214

67 Ksi

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Diagonal Brace Lug Joint

Program

Part

Feature

Lug JointAxial Ultimate Strength Model

Template

j = top lugk = normal diameter (1 of 4)

Dataset

material

deformation model

max allowable ultimate stress, FtuL

effective width, W

analysis context

objective

mode (ultimate static strength)

condition

estimated axial ultimate strength

Margin of Safety(> case)

allowableactual

MS

normal diameter, Dnorm

thickness, t

edge margin, e

Plug joint

size,n

lugs

lugj hole

diameters

product structure (lug joint)

r1

nP join tlug

L [ j:1,n ]

Plug

L [ k]Dk

oversize diameter, DoverD

PaxuWe

t

Ftuax

Kaxu

Lug Axial UltimateStrength Model

BDM 6630

Fasteners DB

FASTDB-like

General Math Mathematica

In-HouseCodes

Image API(CATGEO);

VBScript

60

Fitting Analysis Template Applied to “Bike Frame” Bulkhead CBAM constraint schematic - instance view

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

bulkhead fitting attach point

LE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef DM 6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, ethickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,max allowable yield stress,

max allowable long transverse stress,max allowable shear stress,plastic ultimate strain,

plastic ultimate strain long transverse,young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

e

setr

Pf02

21

e

behtPCf

),,( 13 hbrfK

18 associativity relations

61

Bike Frame Bulkhead Fitting AnalysisCOB-based Analysis Template (CBAM) - in XaiTools

Detailed CAD datafrom CATIA

Idealized analysis features in APM

Explicit multi-directional associativity between detailed CAD data & idealized analysis features

Modular generic analysis templates(ABBs)

Library data for materials & fasteners

Focus Point ofCAD-CAE Integration

62

diagonal brace lug joint j = top

0.7500 in

0.35 in

0.7500 in

1.6000 in

2

0.7433

14.686 K

2.40

4.317 K

8.633 K

k = norm

Max. torque brake settingdetent 30, 2=3.5º

7050-T7452, MS 7-214

67 Ksi

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Diagonal Brace Lug Joint

Program

Part

Feature

Lug JointAxial Ultimate Strength Model

Template

j = top lugk = normal diameter (1 of 4)

Dataset

material

deformation model

max allowable ultimate stress, FtuL

effective width, W

analysis context

objective

mode (ultimate static strength)

condition

estimated axial ultimate strength

Margin of Safety(> case)

allowableactual

MS

normal diameter, Dnorm

thickness, t

edge margin, e

Plug joint

size,n

lugs

lugj hole

diameters

product structure (lug joint)

r1

nP jointlug

L [ j:1,n ]

Plug

L [ k]Dk

oversize diameter, DoverD

PaxuWe

t

Ftuax

Kaxu

Lug Axial UltimateStrength Model

DM 6630

Lug Template Applied to an Airframe Analysis ProblemCBAM constraint schematic - instance view

Solution Tool Interaction

Boundary Condition Objects(links to other analyses)

CAD-CAE Associativity (idealization usage)

Material Models

Model-based Documentation

Geometry

P K WD

DtFaxu axu tuax ( )1

Requirements

Legend: Annotations highlight model knowledge capture capabilities. Other notation is COB constraint schematics notation.

R

c

b

= f( c , b , R )W = f( R , D , )

axial direction

e

D

- 10+ sub-property paths (including aggregates - ex. L[m])

63

Target Situation: Design Driven by AnalysisSimulation-based design (SBD)

Idealized Analysis Features (to scale in CATIA v5)

Idealized bulkhead attach point fitting

Design Model (in CATIA v5)

Idealized rear spar attach point fitting

Idealized diagonal brace lug joint

R

c

b

= f( c , b , R )W = f( R , D , )

axial direction

e

D

64

Outboard beam APM

263r

24rbulkhead_attach_point_cavity

outboard_beam Parameters

material

inter_attach_point_length

bulkhead_attach_point_cavity_angle

bulkhead_fitting_casing_endpad_height

bulkhead_fitting_casing_endpad_effective_hole_offset

bulkhead_fitting_casing_basewall_thickness

Sketch.13

end_pad_height.20

Angle.12

Sketch.15

Sketch.2

Hole.3

Sketch.1

Body.2

Angle

Offset.54

t_b.43

Offset

Offset

11r

33r

10r

bulkhead_fitting_fitting_casing

……

74rrear_spar_1_attach_point_cavity

rear_spar_1_attach_point_cavity_angle

rear_spar_1_fitting_casing_endpad_height

rear_spar_1_fitting_casing_endpad_effective_hole_offset

rear_spar_1_fitting_casing_basewall_thickness

Sketch.63

end_pad_height.70

Angle.62

Sketch.65

Sketch.52

Hole.53

Sketch.51

Body.52

Angle

Offset.104

t_b.93

Offset

Offset

61r

83r

60r

rear_spar_1_fitting_casing

……

Parameters (cont.)

bulkhead_attach_point_ origin_x0

rear_spar_1_attach_point_origin_x0

connector_segment

connector_segment_length

Sketch.163 Sketch.165 Offset.204 Offset

184r

……

Parameters (cont.) connector_ segment_origin_x0

connector_ segment_angle

Sketch.63 Angle.62 Angle

183r

274r

210r

part_number

212r

CATIA v5 Implementation

25+ sub-property paths (tree leaves); 15+ relations


Recommended