+ All Categories
Home > Documents > 1+21 tan Example 1: 2+30t+2e tan t - Peoplepeople.math.gatech.edu/...parameters.slides.scan.pdf ·...

1+21 tan Example 1: 2+30t+2e tan t - Peoplepeople.math.gatech.edu/...parameters.slides.scan.pdf ·...

Date post: 31-May-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
18
Transcript
xchen
Pencil

Example 1: Solve ~x ′ =

[

1 14 1

]

~x +

[

−1 + 21t + e3t tan t

2 + 30t + 2e3t tan t

]

Example 1: Solve ~x ′ =

[

1 14 1

]

~x +

[

−1 + 21t + e3t tan t

2 + 30t + 2e3t tan t

]

◮ Eigenvalues & eigenvectors of

[

1 14 1

]

(details skipped here)

⇒ Complementary solutions: ~xc(t) = C1e−t

[

−12

]

+ C2e3t

[

12

]

⇒ A fundamental matrix: M(t) =

[

−e−t e3t

2e−t 2e3t

]

Example 1: Solve ~x ′ =

[

1 14 1

]

~x +

[

−1 + 21t + e3t tan t

2 + 30t + 2e3t tan t

]

◮ Eigenvalues & eigenvectors of

[

1 14 1

]

(details skipped here)

⇒ Complementary solutions: ~xc(t) = C1e−t

[

−12

]

+ C2e3t

[

12

]

⇒ A fundamental matrix: M(t) =

[

−e−t e3t

2e−t 2e3t

]

◮ Set ~x(t) = M(t)~u(t)

Example 1: Solve ~x ′ =

[

1 14 1

]

~x +

[

−1 + 21t + e3t tan t

2 + 30t + 2e3t tan t

]

◮ Eigenvalues & eigenvectors of

[

1 14 1

]

(details skipped here)

⇒ Complementary solutions: ~xc(t) = C1e−t

[

−12

]

+ C2e3t

[

12

]

⇒ A fundamental matrix: M(t) =

[

−e−t e3t

2e−t 2e3t

]

◮ Set ~x(t) = M(t)~u(t)

◮ The original system is simplified to ~u ′(t) = M(t)−1~f(t):

~u ′(t) =

[

−e−t e3t

2e−t 2e3t

]

−1 [

−1 + 21t + e3t tan t

2 + 30t + 2e3t tan t

]

=1

−4e2t

[

2e3t −e3t

−2e−t −e−t

] [

−1 + 21t + e3t tan t

2 + 30t + 2e3t tan t

]

=

[

(1 − 3t)et

18te−3t + tan t

]

.

Example 1 (continued): ~x ′ =

[

1 14 1

]

~x +

[

−1 + 21t + e3t tan t

2 + 30t + 2e3t tan t

]

◮ Integrate ~u ′(t) =

[

(1 − 3t)et

18te−3t + tan t

]

:

R

(1 − 3t)etdt = (1 − 3t)et −R

(−3)etdt = (1 − 3t)et + 3et + C,R

18te−3tdt = −6te−3t −R

(−6)e−3tdt = −6te−3t − 2e−3t + C,R

tan t dt = − ln | cos t| + C.

⇒ ~u(t) =

[

(4 − 3t)et + C1

(−2 − 6t)e−3t − ln | cos t| + C2

]

.

Example 1 (continued): ~x ′ =

[

1 14 1

]

~x +

[

−1 + 21t + e3t tan t

2 + 30t + 2e3t tan t

]

◮ Integrate ~u ′(t) =

[

(1 − 3t)et

18te−3t + tan t

]

:

R

(1 − 3t)etdt = (1 − 3t)et −R

(−3)etdt = (1 − 3t)et + 3et + C,R

18te−3tdt = −6te−3t −R

(−6)e−3tdt = −6te−3t − 2e−3t + C,R

tan t dt = − ln | cos t| + C.

⇒ ~u(t) =

[

(4 − 3t)et + C1

(−2 − 6t)e−3t − ln | cos t| + C2

]

.

◮ Finally, the solutions ~x(t) are obtained from ~x(t) = M(t)~u(t):

~x(t) =

[

−e−t e3t

2e−t 2e3t

] [

(4 − 3t)et + C1

(−2 − 6t)e−3t − ln | cos t| + C2

]

=

−6 − 3t − e3t ln | cos t|

4 − 18t − 2e3t ln | cos t|

+ C1e−t

[

−12

]

+ C2e3t

[

12

]

.

Example 2: Solve 2y′′ − y′ − y =3e

3

2t

1 + et.

Example 2: Solve 2y′′ − y′ − y =3e

3

2t

1 + et.

◮ Eigenvalues: 2λ2 − λ − 1 = (2λ + 1)(λ − 1) ⇒ λ1 = −1/2, λ2 = 1

⇒ Complementary solutions: yc(t) = C1e−

1

2t + C2e

t with

y1(t) = e−1

2t, y2(t) = et.

Example 2: Solve 2y′′ − y′ − y =3e

3

2t

1 + et.

◮ Eigenvalues: 2λ2 − λ − 1 = (2λ + 1)(λ − 1) ⇒ λ1 = −1/2, λ2 = 1

⇒ Complementary solutions: yc(t) = C1e−

1

2t + C2e

t with

y1(t) = e−1

2t, y2(t) = et.

◮ A fundamental matrix (the Wronskian of y1, y2):

M(t) =

[

y1 y2

y′

1 y′

2

]

=

[

e−1

2t et

− 12e−

1

2t et

]

.

Example 2: Solve 2y′′ − y′ − y =3e

3

2t

1 + et.

◮ Eigenvalues: 2λ2 − λ − 1 = (2λ + 1)(λ − 1) ⇒ λ1 = −1/2, λ2 = 1

⇒ Complementary solutions: yc(t) = C1e−

1

2t + C2e

t with

y1(t) = e−1

2t, y2(t) = et.

◮ A fundamental matrix (the Wronskian of y1, y2):

M(t) =

[

y1 y2

y′

1 y′

2

]

=

[

e−1

2t et

− 12e−

1

2t et

]

.

◮ Set

[

x1

x2

]

=

[

y

y′

]

= M(t)~u(t). The Diff Eq for ~u(t) is:

d~u

dt= M(t)−1

[

0f(t)/a2

]

=

[

e−1

2t et

− 12e−

1

2t et

]−1[

03e

3

2t

2(1+et)

]

= 13

2e

1

2t

[

et −et

12e−

1

2t e−

1

2t

]

[

03e

3

2t

2(1+et)

]

=

− e2t

1+et

e1

2t

1+et

.

Example 2 (continued): 2y′′ − y′ − y =3e

3

2t

1 + et

◮ Integrate:

u1(t) =∫

− e2t

1+et dt substitute p = et, dp = etdt

=∫

− pdp

1+p=

(−1 + 11+p

)dp = −p + ln |1 + p| + C1

= −et + ln |1 + et| + C1

= −et + ln(1 + et) + C1,

u2(t) =∫

e1

2t

1+et dt substitute q = et/2, dq = 12et/2dt

=∫

2dq

1+q2 = 2 arctan q + C2

= 2 arctan(et/2) + C2.

Example 2 (continued): 2y′′ − y′ − y =3e

3

2t

1 + et

◮ Integrate:

u1(t) =∫

− e2t

1+et dt substitute p = et, dp = etdt

=∫

− pdp

1+p=

(−1 + 11+p

)dp = −p + ln |1 + p| + C1

= −et + ln |1 + et| + C1

= −et + ln(1 + et) + C1,

u2(t) =∫

e1

2t

1+et dt substitute q = et/2, dq = 12et/2dt

=∫

2dq

1+q2 = 2 arctan q + C2

= 2 arctan(et/2) + C2.

◮ Finally, the solutions y(t) of the nonhomog diff eq are obtained:

y(t) = y1u1 + y2u2

= e−1

2t [−et + ln(1 + et) + C1] + et

[

2 arctan(et/2) + C2

]

= −e1

2t + e−

1

2t ln(1 + et) + 2et arctan(e

1

2t) + C1e

−1

2t + C2e

t.


Recommended