Date post: | 04-Jan-2016 |
Category: |
Documents |
Author: | may-weaver |
View: | 237 times |
Download: | 6 times |
VHDL VHDL Structural ModelingDigital Logic
OutlineStructural VHDLUse of hierarchyComponent instantiation statementsConcurrent statementsTest Benches
A general VHDL designentity entity-name is [port ( In_1, In_2, In_3 : in bit; out_1, out_2 : out bit; inout_1, inout_2 : inout bit);] end [entity] [entity-name];architecture arch-name of entity-name is [declaration]begin architecture bodyend [architecture] [arch-name];
entity
architecture
entity-name
In_1
In_2
In_3
input
component
Out_1
inout
Out_2
process
output
concurrent assignment
Inout_1
Inout_name
arch-name
Component and Signal DeclarationsDECLARATION of architecture contains:component declarationsignal declarationExample of component declarationcomponent AND2_OP port (A, B : in bit; Z : out bit);end component;Example of signal declarationsignal list-of-signal-names : type-name [ := initial-value] ;ex) signal sig_a, sig_b : bit ;
Concurrent Assignmententity fulladder_df is port ( A, B, Cin : in bit; Sum, Cout : out bit);end fulladder_df;
architecture data_flow of fulladder_df isbegin Sum
Processentity fulladder_bh is port ( A, B, Cin : in bit; Sum, Cout : out bit);end fulladder_bh;
architecture behavioral of fulladder_bh isbegin process (A , B, Cin) begin if ( A = 0 and B = 0 and Cin = 0) then Sum
Component Instantiation StatementsThe statement part of an architecture body of a structural VHDL description contains component instantiation statementsFORMATlabel : component_name port map (positional association of ports);label : component_name port map (named association of ports);EXAMPLESA1 : AND2_OP port map (A_IN, B_IN, INT1);A2 : AND2_OP port map (A => A_IN, C => C_IN, Z => INT2);
Componententity fulladder_st is port ( A, B, Cin : in bit; Sum, Cout : out bit);end fulladder_st;
architecture structral of fulladder_st is
componenet XOR3_OP port ( IN_A, IN_B, IN_C : in bit; OUT_Z : out bit ); end component;
componenet AOI3_OP port ( IN_A, IN_B, IN_C : in bit; OUT_Z : out bit ); end component;begin XOR : XOR3_OP port map (A, B, Cin, Sum); AOI : AOI3_OP port map (A, B, Cin, Cout);end structral;
A
B
Cin
XOR
Sum
fulladder_st
AOI
Cout
Hirarchical StructureCan combine 4 fulladder_xx functions (defined earlier) to form another 4-bit fulladder function component fulladder_st port (A, B, Cin : in bit; Sum, Cout : out bit); end component;
signal sig_c0, sig_c1, sig_c2 : bit;
begin FA0 : fulladder_df port map (A(0), B(0), Cin, Sum(0), sig_c0); FA1 : fulladder_bh port map (A(0), B(0), sig_c0, Sum(0), sig_c1); FA2 : fulladder_st port map (A(0), B(0), sig_c1, Sum(0), sig_c2); FA3 : fulladder_bh port map (A(0), B(0), sig_c2, Sum(0), Cout);end hirarchical;entity fulladder_4bit is port (A, B : in bit_vetcor (3 downto 0); Cin : in bit; Sum : out bit_vetcor (3 downto 0); Cout : out bit);end fulladder_4bit ;
architecture hirarchical of fulladder_4bit is
component fulladder_df port (A, B, Cin : in bit; Sum, Cout : out bit); end component;
component fulladder_bh port (A, B, Cin : in bit; Sum, Cout : out bit); end component;
FA0
FA1
FA2
FA3
B(3)
A(3)
B(2)
A(2)
B(1)
A(1)
B(0)
A(0)
Cin
Cout
Sum(3)
Sum(2)
Sum(1)
Sum(0)
sig_c0
sig_c1
sig_c2
fulladder_4bit
Example of a four-bit registerentity reg4 is port ( en, clk : in bit; d : in bit_vector (3 downto 0); q : out bit_vector (3 downto 0));end reg4;Let us look at a 4-bit register built out of 4 D latches
reg4
d(3)
d(2)
d(1)
d(0)
en
clk
q(3)
q(2)
q(1)
q(0)
Structral Composition of Register entity d_latch is port (d, clk : in bit; q : out bit);end d_latch;
architecture arch_dff of d_latch isbegin process (clk) begin if (clk = 1) then q
Structural Description of Registerarchitecture struct of reg4 is
component d_latch port (d, clk : in bit; q : out bit); end component;
component and2_op port (x, y : in bit; z : out bit); end component;
signal int_clk : bit;
begin DFF3 : d_latch port map(d(3), int_clk, q(3)); DFF2 : d_latch port map(d(2), int_clk, q(2)); DFF1 : d_latch port map(d(1), int_clk, q(1)); DFF0 : d_latch port map(d(0), int_clk, q(0)); AND : and2_op port map(en, clk, int_clk);end struct;
DFF3
d(3)
d(1)
d(2)
d(0)
en
clk
q(3)
q(2)
q(1)
q(0)
DFF2
DFF1
DFF0
reg4
int_clk
AND
Mixed ModelsModels need not be purely structural or behavioralOften it is useful to specify a model with some parts composed of interconnected component instances and other parts using processesUse signals as a way to join component instances and processesA signal can be associated with a port of a component instance and can be assigned to or read in a process
Example of Mixed Modeling : Multiplier
clk
product
entity
architecture
multiplier
reset
multiplicand
multiplier
mixed
arith_unit
multiplier_sr
process
partial_product
result
full_product
arith_control
mult_bit
mult_load
result_en
Example of Mixed Modeling : Multiplierentity multiplier is port ( clk, reset : in bit; multiplicand, multiplier : in integer; product : out integer);end multiplier;
architecture mixed of multiplier is
signal partial_product : integer; signal full_product : integer; signal arith_control, result_en, mult_bit, mult_load : bit;
compononent shift_adder port ( addend, augend : in integer; arith_control : in bit; sum : out interger); end component; compononent shift_adder port ( addend, augend : in integer; arith_control : in bit; sum : out interger); end component; compononent shift_adder port ( addend, augend : in integer; arith_control : in bit; sum : out interger); end component;begin arith_unit : shift_adder port map ( addend => multiplicand, augend =>full_product, sum => partial_product, add_control => arith_control); result : reg port map (d => partial_product, q => full_product, en => result_en, reset => reset); multiplier_sr : shift_reg port map (d => multiplier, q => mult_bit, load => mult_load, clk => clk); product
Concurrent Signal Assignmententity XOR2_OP is port (A, B : in bit; Z : out bit);end XOR2_OP;
architecture AND_OR of XOR2_OP isbegin Z
Concurrent Signal Assignmententity XOR2_OP is port (A, B : in bit; Z : out bit);end XOR2_OP;
architecture AND_OR of XOR2_OP is signal INT1, INT2 : bit;begin -- different order, same effect INT1
Data Flow Modeling of Combinational LogicConsider a parity function of 8 inputs
entity EVEN_PARITY is port ( BVEC : in bit_vector(7 downto 0); PARITY: out bit);end EVEN_PARITY;
architecture DATA_FLOW of EVEN_PARITY isbegin PARITY
Alternates Architecture BodiesThree different VHDL descriptions of the even parity generator were shownThey have the same interface but three different implementationUse the same entity description but different architecture bodiesarchitecture DATA_FLOW of EVEN_PARITY is ...architecture TREE of EVEN_PARITY is ...architecture CASCADE of EVEN_PARITY is ...
Test BenchesOne needs to test the VHDL model through simulationWe often test a VHDL model using an enclosing model called a test benchA test bench consists of an architecture body containing an instance of the component to be testedIt also consists of processes that generate sequences of values on signals connected to the component instance
Example Test Benchentity test_bench isend test_bench;
architecture test_reg4 of test_bench is
signal sig_d, sig_q : bit_vector (3 downto 0); signal sig_en, sig_clk : bit;
begin
tb_reg4 : reg4 port map (sig_en, sig_clk, sig_d, sig_q); process begin d
SummaryStructural VHDLUse of hierarchyComponent instantiation statementsConcurrent statementsTest Benches