+ All Categories
Home > Documents > 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján...

13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján...

Date post: 12-Nov-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
40
A COMPLEX OVERVIEW OF THE ROTARY SINGLE INVERTED PENDULUM SYSTEM 1 ELEKTRO 2012 SINGLE INVERTED PENDULUM SYSTEM Ing. Slávka JADLOVSKÁ prof. Ing. Ján SARNOVSKÝ, CSc. Department of Cybernetics and Artificial Intelligence Faculty of Electrical Engineering and Informatics Technical University of Košice 13. 10. 2012
Transcript
Page 1: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

A COMPLEX OVERVIEW OF THE ROTARY

SINGLE INVERTED PENDULUM SYSTEM

1

ELEKTRO 2012

SINGLE INVERTED PENDULUM SYSTEM

Ing. Slávka JADLOVSKÁ

prof. Ing. Ján SARNOVSKÝ, CSc.

Department of Cybernetics and Artificial Intelligence

Faculty of Electrical Engineering and Informatics

Technical University of Košice

13. 10. 2012

Page 2: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

13. 10. 2012

2

Inverted Pendula Systems – a class of mechanicalsystems significant for control theory

Page 3: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

I. mathematical modeling and simulation of the rotary inverted pendulum system

▫ automatic derivation of motion equations

▫ open-loop dynamical analysis

13. 10. 2012

3

Main Points of the Presented Problem

II. stabilization of the rotary single inverted pendulum via state-feedback control techniques

▫ automatic linear approximation of the system

▫ state-feedback control with a state estimator

▫ state-feedback control with permanent disturbance compensation

III. conclusion and evaluation of the achieved results

Page 4: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

Inverted Pendula Modeling and Control - IPMaC(Simulink block library)

13. 10. 2012

4

simulation models of inverted pendula

state-feedback control

direct-current motor

input/output blocks

demonstrations of the block functionality

direct-current motor

swing-up into the upright position

GUI applications

Page 5: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

A.

13. 10. 2012

5

A.Mathematical Modeling and Simulation

of the Rotary Single Inverted Pendulum

Page 6: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

A.Inverted Pendula Model Equation Derivator(automatic derivation of motion equations)

13. 10. 2012

6

initiates the process of mathematical model derivation

selection of system type & number of pendulum links

generated motion equations

Page 7: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

A.Generalized approach to inverted pendula modeling

13. 10. 2012

7

( ) ( ) ( ) ( )( )Tn tttt θθθ …10=θ

cart/arm position pendula angles

System description:

system of n classical inverted pendula system of n rotary inverted pendula

Page 8: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

13. 10. 2012

8

( ) ( ) ( ) ( )ttDtLtLd *Q=∂+∂−

Lagrange equations of the second kind:

( ) ( ) ( ) ( )( )Tn tttt θθθ …10=θ

Vector of generalized coordinates:

A.General procedure of mathematical model derivation for

inverted pendula systems – brief outline

13. 10. 2012

invpenderiv.m

( )( )

( )( )

( )( ) ( )tt

tD

t

tL

t

tL

dt

d *Qθθθ

=∂∂+

∂∂−

∂∂

ɺɺ

MATLAB functions which derive the motion equations for a system with a given number

of pendulum links

rotinvpenderiv.m

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ),t t t t t t t+ + =M θ θ N θ θ θ P θ Vɺɺ ɺ ɺRearrangement into standard minimal ODE

form:

Page 9: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

Inverted Pendula Modeling and Control

A.Simulation models of selected inverted pendula systems

(dynamic-masked Simulink library blocks)

13. 10. 2012

9

Inverted Pendula Models

Page 10: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

A.Rotary single inverted pendulum system –

scheme and generated mathematical model

13. 10. 2012

10

( ) ( )

( )( )( )

( ) ( ) ( ) ( )

( ) ( )( )( )

( )

22 2 20 1 1 1 1 1 0 1 1 10 1 0 1 1 1 1 0 1 1

0 0

21 11 1 0 1 11 0 1 1 1

1 11 1sin2 sinsin cos

4 24 211

sin2cos82

0

1sin

ml t t ml l t tJ ml ml t ml l tt t

t tml t tml l t J

m gl t

δ θ θ θ θθ θ θ θθ θθ θ δθ

θ

+ −+ + + + −

+ −

ɺ ɺɺɺ ɺ

ɺɺ ɺɺ

( )0

M t = ( )1 1 1

1sin

2m gl tθ

+ −

0=

0 1

0 11 1

0 1

0,5 0,2750,6 0,50,3 0,011458

m kg m kgl m l m

kgs sδ δ− −

= == == =

( )M t

( )1 tθ

( )0 tθrotary single inverted

pendulum systemtorque model

Page 11: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

4dfi1dt pendulum angular velocity

3

2fi1 pendulum angle

1fi0 arm angle

dfi0/dtf i1

M

fi1

f i0

dfi0/dt

1M external torque

11

Rotary Single Inverted Pendulum function block

13. 10. 2012

A.Rotary single inverted pendulum system –

library block structure

3dfi0dt arm angular velocity

d2fi0/dt2

dfi1/dt

d2fi1/dt2

Pendulum

dfi1/dt

d2fi/dt2

dfi0/dt

d2fi0/dt2

Arm

pendulum subsystemrotary arm subsystemrotary arm subsystem

Page 12: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

Inverted Pendula Modeling and Control

A.Demo Simulations I: Open-loop dynamical analysis for

nonlinear force-torque models of inverted pendula systems

13. 10. 2012

12

Page 13: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

A.Rotary single inverted pendulum (torque model) –

open-loop dynamical analysis

13. 10. 2012

13

Scoperad2deg

M external torque

fi0 arm angle

fi1 pendulum angle

Impulse

Scoperad2deg1

Rotary Single Inverted Pendulum

0 2 4 6 8 10 12 14 16 18 200

10

20

30

40

50

60

70

80

90

Simulation time [s]

Arm

ang

le [d

eg]

Rotary Single Inverted Pendulum (Torque Model)Open-loop Analysis - Arm Angle

Arm angle

0 2 4 6 8 10 12 14 16 18 20-300

-250

-200

-150

-100

-50

0

Simulation time [s]

Pen

dulu

m a

ngle

[deg

]

Rotary Single Inverted Pendulum (Torque Model) - Open-loop Analysis - Pendulum Angle

Pendulum angle

Page 14: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

A.Simulation model of actuating mechanism (DC motor) for

inverted pendula systems (Simulink library block)

13. 10. 2012

14

Inverted Pendula Motors

Inverted Pendula Modeling and Control

Page 15: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

A.DC motor model in form of a voltage-to-torque

conversion relationship

13. 10. 2012

15

rotary single inverted pendulum

torque model

( )0 tθ

( )1 tθ

( )aV t

( ) ( ) ( )2 2

0m g m g r

aa a

k k k kM t V t t

R Rθ= − ɺ

( ) ( ) ( )2 2

02m g m g c

aa a

k k k kF t V t t

R r R rθ= − ɺ

rotary single

inverted pendulum

system:

classical single inverted pendulum

system

1

Page 16: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

A.Demo Simulations II: Open-loop dynamical analysis for nonlinear voltage models of inverted pendula systems

13. 10. 2012

16

Inverted Pendula Modeling and Control

Page 17: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

A.Rotary single inverted pendulum (voltage model) –

open-loop dynamical analysis

13. 10. 2012

17

Scope2

Scope

Scoperad2deg2

Scoperad2deg1

Scoperad2deg

M external torque

fi0 arm angle

fi1 pendulum angle

dfi0dt arm angular velocity

dfi1dt pendulum angular velocity

Impulse

V motor voltage

dfi0dt arm angular velocity

M torque induced on the cart

DC Motor for Inverted Pendula Systems

0 2 4 6 8 10 12 14 16 18 200

5

10

15

20

25

30

Simulation time [s]

Arm

ang

le [d

eg]

Rotary Single Inverted Pendulum (Voltage Model)Open-loop Analysis - Arm Angle

Arm angle

0 2 4 6 8 10 12 14 16 18 20-300

-250

-200

-150

-100

-50

0

Simulation time [s]

Pen

dulu

m a

ngle

[deg

]

Rotary Single Inverted Pendulum (Voltage Model)Open-loop Analysis - Pendulum Angle

Pendulum angle

Scoperad2deg3Rotary Single Inverted Pendulum

Page 18: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B.Stabilization of the Rotary Single

13. 10. 2012

18

Stabilization of the Rotary Single Inverted Pendulum via State-Feedback

Control Techniques

Page 19: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

19

B.Control techniques for inverted pendula systems supported

by the IPMaC block library

13. 10. 2012

Control Objective

Stabilization of the pendulum in the upright position

Swing-up into the upright position

IPMaC Derivator

Inverted Pendula Models

• pole-placement algorithm

• linear quadratic optimal control method (LQR)

• PID/PSD algorithm

upright position

Linear state-space pendulum model

Nonlinear state-space pendulum model

• state-dependent Riccatiequation

• input-output linearization

• artificial intelligence

Nonlinear state-space pendulum model

• energy-based methods

• artificial intelligence

LinearizatorModels

Inverted Pendula ControlInverted Pendula

Swing-up

Page 20: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 1)Inverted Pendula Model Linearizator & Discretizer

13. 10. 2012

20

selection of system type & number of pendulum links

system parameters

motor

matrices of the linearized system

matrices of the discretized system

parameters

Page 21: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 1)State-space description of inverted pendula systems

13. 10. 2012

21

( ) ( ) ( )( )Tttt θθx ɺ= state vector

Standard minimal ODE form

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )tttttVtt

ttttttt

θθθθθθ PNM

VθPθθθNθθM

+−=

=++− ɺɺɺɺ

ɺɺɺɺ

,

,1

( ) ( )( )( ) ( )( )ttutt

ttutt

,,)(

,,)(

xgy

xfx

==ɺ

nonlinear state-space

description

Page 22: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 1)Linear approximation of inverted pendula systems

(upright position)

( ) ( ) ( )( )Tttt θθx ɺ=

13. 10. 2012

22

( ) ( )( )( ) ( )( )ttutt

ttutt

,,)(

,,)(

xgy

xfx

==ɺ

TS =x 0

state vector

( ) ( ) ( )( ) ( ) ( )t t u t

y t x t du t

= +

= +

x Ax b

C

ɺ

( ) ( )( ) ( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )

( ) ( )( )S

u

ikSk

u

n

k k

iSSii utu

tu

tutfxtx

tx

tutfuftutf

SSSS

−∂

∂+−∂

∂+≈ ∑+

= ,,

22

1

* ,,,,

xx

xxxx

matrices_single.m

matrices_double.m

matrices_rotary.m

Page 23: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 1)Linearized (continuous-time) and discretized (discrete-time) state-space description of rotary single inverted pendulum

13. 10. 2012

23

[A,B,C,D] = matrices_rotary([0.5 0.6 0.275 0.5 0.3 0.011458],'up','m')

0 0 1 0

0 0 0 1

0 14,3243 3,5435 0,2434

= − −

A1 0 0 0

0 1 0 0

=

C

0

0

0,1288

0,2318

= −

b0

0

=

d

Ts=0.01[F,G]=c2d(A,B,Ts)

0 55,2138 6,3783 0,938 −

0,2318 −

1 0,0007 0,0098 0

0 1,0027 0,0004 0,01

0 0,1402 0,9652 0,0017

0 0,5456 0,0624 0,9935

− = −

F

0,000006

0,000011

0,0013

0,0023

− = −

g 1 0 0 0

0 1 0 0

=

C0

0

=

d

Page 24: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

Inverted Pendula Modeling and Control

B. 2)Software support for state-feedback controller design

(Simulink library blocks)

13. 10. 2012

24

Inverted Pendula Control

Page 25: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

feedforward component

B. 2)State-feedback control – basic control scheme

13. 10. 2012

25

disturbance input

( )tw

( )tdu

( )tu ( )ty( ) ( ) ( )tutxtx bA +=ɺ

( ) ( )ff ffu t k w t=

( )ffu t

ffk

feedback component

( ) ( ) ( )tutxtx bA +=ɺ

( ) ( )txty C=

k

( )tx

( ) ( ) ( ) ( ) ( ) ( ) ( )R ff u ff uu t u t u t d t t k w t d t= + + = − + +kx

( ) ( )Ru t t= −kx

( )Ru t

ffk

Page 26: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)Library block State-Feedback Controller with FeedForward Gain

continuous-time state-space model

13. 10. 2012

26

Computation of the feedback gain vector k

a) using the pole-placement algorithm

discrete-time state-space model

Page 27: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)Library block State-Feedback Controller with FeedForward Gain

13. 10. 2012

27

Computation of the feedback gain vector k

2) using the linear quadratic optimal control method (LQR)

( ) ( ) ( ) ( ) ( )( )1 T TJ t t t u t ru t dt∞

= +∫ x Qx ( ) ( ) ( ) ( ) ( )1N

T TLQR R RJ i i i u i ru i

−= +∑ x Qx

continuous-time state-space model discrete-time state-space model

( ) ( ) ( ) ( ) ( )( )02

T TLQR R RJ t t t u t ru t dt= +∫ x Qx ( ) ( ) ( ) ( ) ( )

0LQR R R

k

J i i i u i ru i=

= +∑ x Qx

1

r= Tk g P

1

r= Tk b P

10

r+ − + =T TA P PA Pb b P Q ( ) 1

0−

− + + =T T T TF PF F Pg r g Pg g PF Q

Page 28: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)Library block State-Feedback Controller with FeedForward Gain

– supported control objectives

• Initial deflection of the pendulum (nonzero

initial conditions)

• Time-constrained and permanent

13. 10. 2012

28

disturbance input compensation

( )

• Tracking a desired reference trajectory by the

cart or arm

0≠ud

( ) 11

1ffk −

−=−c A bk b ( )( ) 1

1

1ffDk −=

− −2n+2c I F gk g

Page 29: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)State-feedback control with a discrete-time state estimator

13. 10. 2012

29

ffDk ( ) ( ) ( )1i i u i+ = +x Fx g

( ) ( )i i=y Cx

( )w i ( )y i( )ud i

( )u i

( )u i( )ffu i

Dk

( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1i i u i i i+ = + + −x Fx g L y Cx( )Ru i

( )x̂ i

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆR ff u D ffD uu i u i u i d i i k w i d i= + + = − + +k x

Page 30: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)Library block Luenberger Estimator

pole-placement algorithm optimal control method (LQR)

13. 10. 2012

30

Computing the state estimator matrix L

Page 31: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)Demo Simulations III: State-feedback control for nonlinear force-torque / voltage models of inverted pendula systems

13. 10. 2012

31

Inverted Pendula Modeling and Control

Page 32: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)Rotary single inverted pendulum (voltage model) –general simulation setup for state-feedback control

13. 10. 2012

32

Model already linearized and discretized using default parameters.Use Linearizator to obtain modified matrices if a change in parameters occurs. --->>>

xe(i+1)=Fxe(i)+Gu(i)+L(y(i)-ye(i))u

yxe

Luenberger Estimator

Linearizator

Inverted Pendula ModelLinearizator and Discretizer

[arm1]

x

wuState-Feedback Controller

xu

State-Feedback Controller with Feedforward Gain1

Signal 1

Signal Builder1

Scoperad2deg1

Scoperad2deg

M external torque

fi0 arm angle

fi1 pendulum angle

dfi0dt arm angular velocity

Rotary Single Inverted Pendulum[ref]

Goto3

[pend1]

Goto2

[arm1]

Goto1

-K-

Gain

[pend1]

From5

[arm1]

From1

[ref]

From

V motor voltage

dfi0dt arm angular velocityM torque induced on the cart

DC Motor for Inverted Pendula Systems

0

Constant

Page 33: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)Rotary single inverted pendulum –

simulation results for LQR control compared to pole-placement

13. 10. 2012

33

• control objective:▫ the arm should rotate for a total of half a circle and stop every quarter-turn to

stabilize before returning to its initial position;

▫ the pendulum should be kept upright all the time

• state-feedback control designed using continuous-time & discrete-time LQR and continuous-time pole-placement

0 2 4 6 8 10 12 14 16 18 20-50

0

50

100

150

200

Simulation time [s]

Arm

ang

le [d

eg]

Rotary Single Inverted PendulumReference Trajectory Tracking by Arm Angle (LQR vs. Pole-Placement)

Arm angle referenceLQR - discretePole-placementLQR - continuous

0 2 4 6 8 10 12 14 16 18 20-20

-15

-10

-5

0

5

10

15

20

Simulation time [s]

Pen

dulu

m a

ngle

[deg

]

Rotary Single Inverted Pendulum Pendulum Angle Stabilization (LQR vs. Pole-Placement)

Pendulum angle referenceLQR - discretePole-placementLQR - continuous

and continuous-time pole-placement

Page 34: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)Rotary single inverted pendulum –

evaluation of the impact of weight matrices on system performance

13. 10. 2012

34

• tuning the functional weight matrices enables us to stress one of the two contradictory control objectives:

▫ bringing the rotary arm into the desired position in the shortest time possible

▫ stabilization of the pendulum in the upright position with the lowest possible overshoot

0 5 10 15 20 25 30 35-50

-25

0

25

50

75

100

125

150

175

200

Simulation time [s]

Arm

ang

le [d

eg]

Rotary Single Inverted Pendulum Weight Matrices Comparison - Arm Angle

Arm angle referenceLQR with Q

1 weight matrix

LQR with Q2 weight matrix

0 5 10 15 20 25 30 35-40

-30

-20

-10

0

10

20

30

40

Simulation time [s]

Pen

dulu

m a

ngle

[deg

]

Rotary Single Inverted Pendulum Weight Matrices Comparison - Pendulum Angle

Pendulum angle referenceLQR with Q

1 weight matrix

LQR with Q2 weight matrix

Page 35: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)State-feedback control with permanent disturbance compensation using a summator – control scheme

13. 10. 2012

35

( ) ( ) ( )1i i u i+ = +x Fx g

( ) ( )i i=y Cx

2k

∑2k 1

z

( )ud i

( )w i ( )y i( )u i( )1v i + ( )v i

( )ffu i

– ( ) ( )i i=y Cx

( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1i i u i i i+ = + + −x Fx g L y Cx

1k 1c

z

( )Ru i

Page 36: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

36

B. 2)Library block State-Feedback Controller with a Summator

Control objectives:

Page 37: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)Demo Simulations IV: State-feedback control with a

summator for nonlinear force-torque / voltage models of inverted pendula systems

13. 10. 2012

37

Inverted Pendula Modeling and Control

Page 38: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

B. 2)Rotary single inverted pendulum –

simulation results for LQR control with a summator

13. 10. 2012

38

• control objective: to track the reference trajectory & keep the pendulum upright with a constant disturbance input present▫ the conventional LQR controller fails to track the reference trajectory

without producing steady-state error

▫ permanent disturbances are successfully compensated by a LQR algorithm with a summator included in the control structure

0 2 4 6 8 10 12 14 16 18 20-50

0

50

100

150

200

Simulation time [s]

Arm

ang

le [d

eg]

Rotary Single Inverted PendulumPermanent Disturbance Compensation - Arm Angle

Arm angle referenceLQR with summatorLQR without summator

0 2 4 6 8 10 12 14 16 18 20-30

-20

-10

0

10

20

30

Simulation time [s]

Pen

dulu

m a

ngle

[deg

]

Rotary Single Inverted PendulumPermanent Disturbance Compensation - Pendulum Angle

Pendulum angle referenceLQR with summatorLQR without summator

with a summator included in the control structure

Page 39: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

13. 10. 2012

39

• comprehensive approach to modeling and control of the

rotary single inverted pendulum system

• custom-designed Simulink block library Inverted

Conclusion and Evaluation of Results

• custom-designed Simulink block library Inverted

Pendula Modeling and Control

▫ software framework for all covered issues (model derivation,

open-loop analysis, linearization, state-feedback controller design)

▫ provides suitable library blocks and original GUI

applications to support every step of the process

Page 40: 13. 10. 2012 Ing. Slávka JADLOVSKÁ prof. Ing. Ján ...kyb.fei.tuke.sk/laboratoria/ludia/pdf/JadlovskaSarnovsky...standard minimal ODE form: Inverted Pendula Modeling and Control

13. 10. 2012

40

Thank you for your attention.


Recommended