+ All Categories
Home > Documents > 136 Performance & Emission Charecterstics of Diesel Engine ...N. Saravanan and G. Nagarajan...

136 Performance & Emission Charecterstics of Diesel Engine ...N. Saravanan and G. Nagarajan...

Date post: 14-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
4
International Journ International ISSN No: 2456 - 64 @ IJTSRD | Available Online @ www.i Performanc Diesel Engine Blende S 1 Res Department of Mechanical Engineering ABSTRACT Our present fuel resources are not going forever and with the ever increasing their extinction is nearly unavoidable. resources which are mostly made up of f not renewable in nature. In the present st at a constant flow rate of 4lpm was in suction, at some distance away from manifold, along with air. Two diffe volume basis were tested as main fue cylinder, 4-stroke, air cooled, direct in engine developing a power of 4.4 kW, a of 1500 rpm. One fuel was the sole use oil (UTO/UTO100) and the other one w 40% blended with 60% diesel fuel ( results indicated increase in brake therm for both the main fuels when hydrogen i also high reduction in smoke levels. Key words: Hydrogen, Used tran Performance, Emission, Combustion INTRODUCTION The present energy situation has stim research interest in non-petroleum, renew polluting fuels. Much of the present w demand may still be supplied by exh fuels (natural gas, oil and coal), which material basis for the chemical indust known that combustion of fossil fu pollution in cities and acid rains that da and also leads to produce more ca resulting environmental degradation. In the concern for cleaner air, due to stric regulation and the desire to reduce the d fossil fuels. Many attempts are made to new and renewable energy sources t existing petroleum fuels. Alternativ nal of Trend in Scientific Research and De l Open Access Journal | www.ijtsrd.com 470 | Volume - 3 | Issue – 1 | Nov – Dec ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 20 ce & Emission Charecterstics o ed with Used Transformer Oil: Samyak Jain 1 , Yogesh Yadav 2 search Scholar, 2 Assistant Professor g, Millennium Institute of Technology, Bhopal, g to be around g consumption Also our fuel fossil fuels are tudy hydrogen nducted in the m the intake erent fuels on els in a single njection diesel at a rated speed ed transformer was the UTO at (UTO40). The mal efficiency is inducted and nsformer oil, mulated active wable and non world’s energy haustible fossil h are also the try. It is well uel causes air amages forests, arbon dioxide n recent year, ct air pollution dependency on o find various to replace the ve fuels are available in the form of s Biomass, biodiesel from diffe LPG are some of the exampl gaseous alternative fuels r commonly used to run th engines. Although these fuels considerable pollutants from engines. Hydrogen is found to all other alternative fuels. available and renewable in nat Transformer oils are an impo oils. It acts as heat transfe operating temperature of a exceed the specific acceptable are produced from wax-free na these types of crudes p exceptionally low pour point the need for dew axing or s degree of fractionation or di also contain high percentages which must be removed in stringent stability requiremen has been found that a highly a content naphthenic crude oil is to prepare good transformer oi Mineral oil is the base materia is used as coolant in tran substations and welding transf use, the transformer oil be becomes waste. However, transformer oil (UTO) posses value and some of the prope diesel fuel. Therefore, it can b fuel in compression ignition UTO in compression igniti evelopment (IJTSRD) m 2018 018 Page: 1011 of : A Review Madhya Pradesh, India solid, liquid, and gas. erent vegetable oils and les for solid, liquid and respectively which are he internal combustion s are used, they generate the internal combustion o be cleaner fuel among Hydrogen is largely ture. ortant class of insulating er medium so that the transformer does not e limits. Transformer oils aphthenic oils. Although permit production of t insulating oils without special attention to the istillate cut width, they of sulphur and nitrogen n order to satisfy the nts of insulating oils . It aromatic, low paraffinic s a suitable raw material il. al for transformer oil that nsformers in electrical formers. After prolonged ecomes deteoriated and the waste or used s a considerable heating erties similar to that of be used as an alternative engines. But the use of ion engine gives high
Transcript
Page 1: 136 Performance & Emission Charecterstics of Diesel Engine ...N. Saravanan and G. Nagarajan experiment were on a DI Diesel engine with hydrogen in the dual fuel mode The optimized

International Journal of Trend in

International Open Access Journal

ISSN No: 2456 - 6470

@ IJTSRD | Available Online @ www.ijtsrd.com

Performance & Emission Charecterstics Diesel Engine Blended

Samyak Jain1Research Scholar,

Department of Mechanical Engineering, Millennium Instit ABSTRACT Our present fuel resources are not going to be around forever and with the ever increasing consumption their extinction is nearly unavoidable. Also our fuel resources which are mostly made up of fossil fuels are not renewable in nature. In the present studat a constant flow rate of 4lpm was inducted in the suction, at some distance away from the intake manifold, along with air. Two different fuels on volume basis were tested as main fuels in a single cylinder, 4-stroke, air cooled, direct injectiengine developing a power of 4.4 kW, at a rated speed of 1500 rpm. One fuel was the sole used transformer oil (UTO/UTO100) and the other one was the UTO at 40% blended with 60% diesel fuel (UTO40). The results indicated increase in brake thermal for both the main fuels when hydrogen is inducted and also high reduction in smoke levels. Key words: Hydrogen, Used transformer oil, Performance, Emission, Combustion INTRODUCTION The present energy situation has stimulated active research interest in non-petroleum, renewable and non polluting fuels. Much of the present world’s energy demand may still be supplied by exhaustible fossil fuels (natural gas, oil and coal), which are also the material basis for the chemical industry. It is well known that combustion of fossil fuel causes air pollution in cities and acid rains that damages forests, and also leads to produce more carbon dioxide resulting environmental degradation. In recent year, the concern for cleaner air, due to strict air pollution regulation and the desire to reduce the dependency on fossil fuels. Many attempts are made to find various new and renewable energy sources to replace the existing petroleum fuels. Alternative fuels are

International Journal of Trend in Scientific Research and Development (IJTSRD)

International Open Access Journal | www.ijtsrd.com

6470 | Volume - 3 | Issue – 1 | Nov – Dec 2018

www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018

ance & Emission Charecterstics oended with Used Transformer Oil: A Review

Samyak Jain1, Yogesh Yadav2 Research Scholar, 2Assistant Professor

Department of Mechanical Engineering, Millennium Institute of Technology, Bhopal, Madhya Pradesh, India

Our present fuel resources are not going to be around forever and with the ever increasing consumption their extinction is nearly unavoidable. Also our fuel resources which are mostly made up of fossil fuels are not renewable in nature. In the present study hydrogen at a constant flow rate of 4lpm was inducted in the suction, at some distance away from the intake manifold, along with air. Two different fuels on volume basis were tested as main fuels in a single

stroke, air cooled, direct injection diesel engine developing a power of 4.4 kW, at a rated speed of 1500 rpm. One fuel was the sole used transformer oil (UTO/UTO100) and the other one was the UTO at 40% blended with 60% diesel fuel (UTO40). The results indicated increase in brake thermal efficiency for both the main fuels when hydrogen is inducted and

Hydrogen, Used transformer oil,

situation has stimulated active petroleum, renewable and non

polluting fuels. Much of the present world’s energy demand may still be supplied by exhaustible fossil fuels (natural gas, oil and coal), which are also the

s for the chemical industry. It is well known that combustion of fossil fuel causes air pollution in cities and acid rains that damages forests, and also leads to produce more carbon dioxide resulting environmental degradation. In recent year,

for cleaner air, due to strict air pollution regulation and the desire to reduce the dependency on fossil fuels. Many attempts are made to find various new and renewable energy sources to replace the existing petroleum fuels. Alternative fuels are

available in the form of solid, liquid, and gas. Biomass, biodiesel from different vegetable oils and LPG are some of the examples for solid, liquid and gaseous alternative fuels respectively which are commonly used to run the internal combustion engines. Although these fuels are used, they generate considerable pollutants from the internal combustion engines. Hydrogen is found to be cleaner fuel among all other alternative fuels. Hydrogen is largely available and renewable in nature. Transformer oils are an imporoils. It acts as heat transfer medium so that the operating temperature of a transformer does not exceed the specific acceptable limits. Transformer oils are produced from wax-free naphthenic oils. Although these types of crudes peexceptionally low pour point insulating oils without the need for dew axing or special attention to the degree of fractionation or distillate cut width, they also contain high percentages of sulphur and nitrogen which must be removed in stringent stability requirements of insulating oils . It has been found that a highly aromatic, low paraffinic content naphthenic crude oil is a suitable raw material to prepare good transformer oil. Mineral oil is the base material is used as coolant in transformers in electrical substations and welding transformers. After prolonged use, the transformer oil becomes deteoriated and becomes waste. However, the waste or used transformer oil (UTO) posses a considvalue and some of the properties similar to that of diesel fuel. Therefore, it can be used as an alternative fuel in compression ignition engines. But the use of UTO in compression ignition engine gives high

Research and Development (IJTSRD)

www.ijtsrd.com

Dec 2018

Dec 2018 Page: 1011

of : A Review

Bhopal, Madhya Pradesh, India

e in the form of solid, liquid, and gas. Biomass, biodiesel from different vegetable oils and LPG are some of the examples for solid, liquid and gaseous alternative fuels respectively which are commonly used to run the internal combustion

these fuels are used, they generate considerable pollutants from the internal combustion engines. Hydrogen is found to be cleaner fuel among all other alternative fuels. Hydrogen is largely available and renewable in nature.

Transformer oils are an important class of insulating oils. It acts as heat transfer medium so that the operating temperature of a transformer does not exceed the specific acceptable limits. Transformer oils

free naphthenic oils. Although these types of crudes permit production of exceptionally low pour point insulating oils without the need for dew axing or special attention to the degree of fractionation or distillate cut width, they also contain high percentages of sulphur and nitrogen which must be removed in order to satisfy the stringent stability requirements of insulating oils . It has been found that a highly aromatic, low paraffinic content naphthenic crude oil is a suitable raw material to prepare good transformer oil.

Mineral oil is the base material for transformer oil that is used as coolant in transformers in electrical substations and welding transformers. After prolonged use, the transformer oil becomes deteoriated and becomes waste. However, the waste or used transformer oil (UTO) posses a considerable heating value and some of the properties similar to that of diesel fuel. Therefore, it can be used as an alternative fuel in compression ignition engines. But the use of UTO in compression ignition engine gives high

Page 2: 136 Performance & Emission Charecterstics of Diesel Engine ...N. Saravanan and G. Nagarajan experiment were on a DI Diesel engine with hydrogen in the dual fuel mode The optimized

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

vibration. Therefore attempts have been made to utilize the heating value of hydrogen to reduce the viscosity of UTO. LITERATURE REVIEW: There are some papers which have been studied and referred on my work. L. M. Das studied that the mixture formation method plays a important role for the practical application of a hydrogen fuelled specific engine. The use of cryogenic hydrogen supplied from the liquid hydrogen tank, method of late fuel injection are studied and evaluated. It was suggested that the integrated fuel induction and storage method must be designed for an hydrogen specific engine N. Saravanan et al. did experiments on DI diesel engine supplemented with hydrogen fuel. Two techniques were adopted to inject hydrogen inside the engine cylinder ;( 1) Carburetion technique and (2) TPI –Timed Manifol d Injection technique and compared their performance, emission and combustion parameter with sole diesel by adopboth the techniques. It was concluded that TPI technique gives better performance compared to carburetion technique. The knock can occur at high flow rate of hydrogen. They concluded the optimum hydrogen enrichment with diesel was 30% by volume. N. Saravanan et al. inducted hydrogen in a DI diesel engine adopted EGR technique to reduce NOemission. The arrangement was provided in such a way that, some part of exhaust gases is sent back to the engine intake manifold. This arrangement is called as Exhaust Gas Recirculation (EGR). Minimum Concentration of NOx is 464 ppm with 25 % EGR. N. Saravanan and G. Nagarajan experiment were on a DI Diesel engine with hydrogen in the dual fuel mode The optimized injection timing was found to be 5CA before gas exchange top dead centre (BGTDC) with injection duration of 30 CA for hydrogen diesel dual fuel operation in hydrogen port injection. The optimum hydrogen flow rate is found to be 7.5 lpm based on the performance, combustion and emissions behaviour of the engine. The brake thermal efficiency for hydrogen diesel dual fuel operation increases by 17% compared to diesel at optimized timings. The NOX emission is found to be similar at 75% load and full load for both hydrogen and diesel operation. However the concentration is lower at

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018

e been made to utilize the heating value of hydrogen to reduce the

en studied and

studied that the mixture formation method practical application of a

hydrogen fuelled specific engine. The use of cryogenic hydrogen supplied from the liquid hydrogen tank, method of late fuel injection are studied and evaluated. It was suggested that the

method must be designed for an hydrogen specific engine

did experiments on DI diesel hydrogen fuel. Two

techniques were adopted to inject hydrogen inside the engine cylinder ;( 1) Carburetion technique and (2)

Timed Manifol d Injection technique and compared their performance, emission and combustion parameter with sole diesel by adopting both the techniques. It was concluded that TPI technique gives better performance compared to carburetion technique. The knock can occur at high flow rate of hydrogen. They concluded the optimum hydrogen enrichment with diesel was 30% by volume.

inducted hydrogen in a DI technique to reduce NOx

emission. The arrangement was provided in such a way that, some part of exhaust gases is sent back to the engine intake manifold. This arrangement is called

haust Gas Recirculation (EGR). Minimum is 464 ppm with 25 % EGR.

Saravanan and G. Nagarajan conducted engine with hydrogen

in the dual fuel mode The optimized injection timing ore gas exchange top dead

centre (BGTDC) with injection duration of 30 CA for hydrogen diesel dual fuel operation in hydrogen port injection. The optimum hydrogen flow rate is found to be 7.5 lpm based on the performance, combustion and

of the engine. The brake thermal efficiency for hydrogen diesel dual fuel operation increases by 17% compared to diesel at optimized

emission is found to be similar at 75% load and full load for both hydrogen and diesel

the concentration is lower at

lower loads in hydrogen dual fuel operation due to lean mixture operation. The smoke emission reduces by 44% in hydrogen diesel dual operation compared to diesel operation. The CO and HC for hydrogen operation at optimized conditions are same as that of diesel emissions. It was concluded that the engine operated smoothly with hydrogen except at full load that resulted in knocking especially at high hydrogen flow rates. N. Saravanan et al. investigated the combustion analysis on a direct injection DIhydrogen with diesel and hydrogen with diethyl ether as ignition source. Hydrogen was inducted hydrogen through intake port and diethyl ether through intake manifold and diesel was injected directly inside the combustion chamber. The optimized timing for the injection of hydrogen was 50 CA before gas exchange top dead centre and 400CA after gas exchange top dead centre for diethyl ether. They concluded that the hydrogen with diesel results in increased brake thermal efficiency by 20% and oxides of nitrogen showed an increase of 13% compared to diesel whereas hydrogen – diethyl ether showed a higher brake thermal efficiency of 30% with a significant reduction in oxides of nitrogen compared to diesel. Li Jing Ding et al. experiment by using hydrogen as a sole fuel and then hydrogen mixed with petrol and hydrogen diesel oil mixed fuel. The main aim was to improve the combustion properties of hydrogen fuelled engine. It was concluded that increase in compression ratio is the best technique to make petrol engine or diesel engine free from back fire. An increase in compression ratio brings about a wider back fire free range of engine output and an increase in thermal efficiency and a reduction in exhaust gas temperature. Smoke can be reduced by using diesel oil – hydrogen mixed fuels (rather than oil alone).Under low speed and in high load conditions the result will be better. J. M. Gomes Antunes et al. development of an experimental set upof a diesel engine in the direct injection hydrogen fuelled mode. The use of hydrogen direct injection in a diesel engine gave a higher power output to weight ratio when compared to conventional diesel fuelled operation with approximate 14% high peak poweThe direct injection of hydrogen allows much better control of engine operation compared to port injection in HCCI mode. Comparison of direct injection of

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Dec 2018 Page: 1012

lower loads in hydrogen dual fuel operation due to smoke emission reduces

by 44% in hydrogen diesel dual operation compared to diesel operation. The CO and HC for hydrogen

nditions are same as that of diesel emissions. It was concluded that the engine operated smoothly with hydrogen except at full load that resulted in knocking especially at high hydrogen

investigated the combustion on a direct injection DI diesel engine using

hydrogen with diesel and hydrogen with diethyl ether as ignition source. Hydrogen was inducted hydrogen through intake port and diethyl ether through intake manifold and diesel was injected directly inside the combustion chamber. The optimized timing for the

CA before gas exchange CA after gas exchange top

dead centre for diethyl ether. They concluded that the hydrogen with diesel results in increased brake

rmal efficiency by 20% and oxides of nitrogen showed an increase of 13% compared to diesel

diethyl ether showed a higher brake thermal efficiency of 30% with a significant reduction in oxides of nitrogen compared to diesel.

experiment by using hydrogen as a hydrogen mixed with petrol and

hydrogen diesel oil mixed fuel. The main aim was to improve the combustion properties of hydrogen fuelled engine. It was concluded that increase in

io is the best technique to make petrol engine or diesel engine free from back fire. An increase in compression ratio brings about a wider back fire free range of engine output and an increase in thermal efficiency and a reduction in exhaust gas

e. Smoke can be reduced by using diesel oil hydrogen mixed fuels (rather than oil alone).Under

low speed and in high load conditions the result will

Gomes Antunes et al. described the development of an experimental set up for the testing of a diesel engine in the direct injection hydrogen fuelled mode. The use of hydrogen direct injection in a diesel engine gave a higher power output to weight ratio when compared to conventional diesel fuelled operation with approximate 14% high peak power. The direct injection of hydrogen allows much better control of engine operation compared to port injection in HCCI mode. Comparison of direct injection of

Page 3: 136 Performance & Emission Charecterstics of Diesel Engine ...N. Saravanan and G. Nagarajan experiment were on a DI Diesel engine with hydrogen in the dual fuel mode The optimized

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

hydrogen with HCCI mode of operation was done and concluded that the direct injection of hydrogen the possibility to control and limit excessive mechanical loads while this is virtuallyin the HCCI mode of operation. They also observed the reduction of NOx emission level. L. M. Das studied the phenomenon such as backfire, pre ignition, knocking and rapid rate of pressure rise and presented in his review paper on the development of hydrogen fuelled internal combustion engines. According to him,” Hydrogen is the only one such fuel which can meets the twin challenges of the energy crisis and the environmental pollution”. METHOD USED The engine used for the present investigation is a single cylinder four stroke air cooled Initially the engine was operated with neat diesel and the performance, emission and combustionwere evaluated. Then the engine was allowed to run with UTO40 and UTO100/UTO respectively without hydrogen. Again the performance, emission and combustion parameters were evaluated. Now for the third test, hydrogen gas is introduced by considerfirst UTO40 as a main fuel and then UTO100 as a main fuel respectively. Hydrogen fuel from a high pressure cylinder was inducted through an intake pipe. A double stage diffusion pressure regulator was employed over the high pressure cylinder. The regulator is used to control the outlet pressure. Hydrogen fuel, at a pressure of 2 bars and a constant flow rate of 4 lpm is then supplied to the flame arrester and flame trap and finally to the intake pipe (a distance of 40 cms away from the intake manifold) where it mixes with air and finally, this hydrogen- air mixture get inducted into the engine cylinder. Used transformer oil of 40% blended with 60% diesel fuel (UTO40) on volume basis is introduced from the fuel tank into the engine cylinder by direct injection. Then engine is allowed to run for different loads. The same procedure is adopted by considering sole used transformer oil (UTO/UTO100) as a main fuel with hydrogen flow rate of 4 lpm. The performance and combustion parameter is obtained by computer provided into data acquisition system. AVL exhaust gas analyser is used to calculate the emission parameter whereas smoke meter is used to get smoke values. Combustion diagnosis was carried out by means of a Kistler make quartz piezoelectric pressure transducer (Model Type

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018

hydrogen with HCCI mode of operation was done and concluded that the direct injection of hydrogen offers the possibility to control and limit excessive mechanical loads while this is virtually uncontrolled in the HCCI mode of operation. They also observed

studied the phenomenon such as backfire, rapid rate of pressure rise

and presented in his review paper on the development of hydrogen fuelled internal combustion engines. According to him,” Hydrogen is the only one such fuel which can meets the twin challenges of the

crisis and the environmental pollution”.

The engine used for the present investigation is a diesel engine.

Initially the engine was operated with neat diesel and the performance, emission and combustion parameters were evaluated. Then the engine was allowed to run with UTO40 and UTO100/UTO respectively without hydrogen. Again the performance, emission and combustion parameters were evaluated. Now for the third test, hydrogen gas is introduced by considering first UTO40 as a main fuel and then UTO100 as a

Hydrogen fuel from a high pressure cylinder was inducted through an intake pipe. A double stage diffusion pressure regulator was employed over the

lator is used to control the outlet pressure. Hydrogen fuel, at a pressure of 2 bars and a constant flow rate of 4 lpm is then supplied to the flame arrester and flame trap and finally to the intake pipe (a distance of 40 cms away

where it mixes with air and air mixture get inducted into

the engine cylinder. Used transformer oil of 40% blended with 60% diesel fuel (UTO40) on volume basis is introduced from the fuel tank into the engine

ection. Then engine is allowed to run for different loads. The same procedure is adopted by considering sole used transformer oil (UTO/UTO100) as a main fuel with hydrogen flow rate of 4 lpm. The performance and combustion

provided into data acquisition system. AVL exhaust gas analyser is used to calculate the emission parameter whereas smoke meter is used to get smoke values. Combustion diagnosis was carried out by means of a Kistler make

sducer (Model Type

5395A) mounted on the cylinder head in the standard position. The air flow rate is calculated according to the difference in the level of water in the Umanometer mounted into the air suction line. The engine specification is given in the Table 4also carried out by considering diesel as a main fuel without using hydrogen. All the test results of engine using UTO40 and UTO as a main fuel with hydrogen induction were compared with neat diesel fuel and other two main fuels without hydrogen. CONCLUSIONS A single cylinder, four stoke, air cooled direct injection compression ignition engine was operated successfully using hydrogen gas, supplying at a flow rate of 4 LPM and inducting at a distance of 40 cm from the intake manifold. The performance, emission and combustion parameters of the engine using UTO40 and UTO100 as a main fuel, with and without hydrogen induction were obtained in the investigation are compared with the diesel fuel. The following conclusions are drawn Experimental results shows UTO40 as the optimum blending compared to all other blending proportion with diesel. The performance, emission and combustion characteristics of UTO40 can be improved further by hydrogen induction along with air. Also with UTO100, the engine was able to run but envibration. So by inducting hydrogen on UTO100, the engine was able to run smoother.efficiency for both the main fuel inducted with hydrogen was found to be high, UTO40 with hydrogen is 42.14% and UTO100 with hydrogen addition was 38.91 %, because of proper combustion and high burning velocity. REFERENCES 1. V.M. Domkundwar,”A course in internal

combustion engines” Dhanpat Rai publication, ISBN 81-7700-003-0, pp 22.22

2. G. D. Rai,”Non conventional energy sources” Khann a publishers, ISBN 81615.

3. R.B. Gupta,”Hydrogen fueland t ransportation” CRC Press publicationand Francis group, ISBN 9781-12.

4. V.Ganeshan,”A textbook on Internal Combustion En gines” 2 nd edition, ISBN 0220-223.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Dec 2018 Page: 1013

5395A) mounted on the cylinder head in the standard position. The air flow rate is calculated according to the difference in the level of water in the U- tube manometer mounted into the air suction line. The

in the Table 4. The test is also carried out by considering diesel as a main fuel without using hydrogen. All the test results of engine using UTO40 and UTO as a main fuel with hydrogen induction were compared with neat diesel fuel and

s without hydrogen.

A single cylinder, four stoke, air cooled direct injection compression ignition engine was operated successfully using hydrogen gas, supplying at a flow rate of 4 LPM and inducting at a distance of 40 cm from the intake manifold. The performance, emission and combustion parameters of the engine using UTO40 and UTO100 as a main fuel, with and without hydrogen induction were obtained in the investigation are compared with the diesel fuel. The following conclusions are drawn Experimental results shows

the optimum blending compared to all other blending proportion with diesel. The performance, emission and combustion characteristics of UTO40 can be improved further by hydrogen induction along with air. Also with UTO100, the engine was able to run but engine gives high vibration. So by inducting hydrogen on UTO100, the engine was able to run smoother. The brake thermal efficiency for both the main fuel inducted with hydrogen was found to be high, UTO40 with hydrogen is 42.14% and UTO100 with hydrogen

ion was 38.91 %, because of proper combustion

V.M. Domkundwar,”A course in internal combustion engines” Dhanpat Rai publication,

22.22-22.32.

Non conventional energy sources” Khann a publishers, ISBN 81-7409-073-8, pp 315-

R.B. Gupta,”Hydrogen fuel-Production, storage and t ransportation” CRC Press publication Taylor and Francis group, ISBN 978-1-4200-4575-8, pp

V.Ganeshan,”A textbook on Internal Combustion edition, ISBN 0-07-049457-6, pp

Page 4: 136 Performance & Emission Charecterstics of Diesel Engine ...N. Saravanan and G. Nagarajan experiment were on a DI Diesel engine with hydrogen in the dual fuel mode The optimized

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

@ IJTSRD | Available Online @ www.ijtsrd.com

5. L.E. Reid, D.A. Gudelis, Low Pour Point Transformer Oils from Paraffinic Crudes, US Patent 4, 018, 666, and 1977

6. Tulstar products, inc. material safety data sheet Transformer Oil, Type II, and TS-3487.

7. P. Behera, S. Murugan,”combustion, performance, a nd emission parameters of used transformer oil and its diesel blends in a DI diesel engine” Fuel manuscript no: JFUE-D-11-00382,2011.

8. L. M. Das,”Fuel induction techniques for a hydrog en operated engine” Int. J. Hydrogen Energy, Vol. 15, pp 833-842, 1990.

9. N. Saravanan, G. Nagarajan, S. Narayanswamy,”An exp erimental investigation of DI diesel engine with hydrogen fuel”, Energy 33, pp 415-421, 2008.

10. N. Saravanan, G. Nagarajan, K. M.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456

www.ijtsrd.com | Volume – 3 | Issue – 1 | Nov-Dec 2018

L.E. Reid, D.A. Gudelis, Low Pour Point Transformer Oils from Paraffinic Crudes, US

products, inc. material safety data sheet 3487.

Murugan,”combustion, performance, a nd emission parameters of used transformer oil and its diesel blends in a DI diesel engine” Fuel

0382,2011.

M. Das,”Fuel induction techniques for a hydrog en operated engine” Int. J. Hydrogen Energy, Vol.

Nagarajan, S. Narayanswamy,”An exp erimental investigation of

engine with hydrogen fuel”, Renewable

M. Kalaiselvan,

C. Dhanasekaran,”An experimental investigation on hydrogen as a dual fuel for engine system with exhaust gas recirculation technique” Renewable Energy 33, pp 422-427, 200

11. N. Saravanan, G. Nagarajan, “Performance and em ission studies on port injection of hydrogen with varied flow rates with diesel as an ignition source” Applied Energy, Vol.87, pp 22182010.

12. N. Saravanan, G. Nagarajan, G. Sanjay, C. Dhanasekaran, K. M. Kalaiselvan, “Combustio n analysis on a DI diesel engine with hydrogen in dual fuel mode”, Fuel 87,pp 3591

13. Li Jing-Ding, Lu Ying-Qing and Du Tianmprovement on the combustion of a hydrogen fuelled engine” Int. J. Hydrogen Energy, Vol 11.No.10,pp 661-668, 1986.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Dec 2018 Page: 1014

Dhanasekaran,”An experimental investigation on hydrogen as a dual fuel for engine system with exhaust gas recirculation technique” Renewable

427, 2008.

N. Saravanan, G. Nagarajan, “Performance and em ission studies on port injection of hydrogen with varied flow rates with diesel as an ignition source” Applied Energy, Vol.87, pp 2218-2229,

N. Saravanan, G. Nagarajan, G. Sanjay, C. M. Kalaiselvan, “Combustio n

analysis on a DI diesel engine with hydrogen in dual fuel mode”, Fuel 87,pp 3591-3599, 2008.

Qing and Du Tian-Shen, ”I on the combustion of a hydrogen

fuelled engine” Int. J. Hydrogen Energy, Vol 668, 1986.


Recommended