+ All Categories
Home > Documents > 13718-Pvt Correlations for Middle East Crude Oils

13718-Pvt Correlations for Middle East Crude Oils

Date post: 28-Apr-2015
Category:
Upload: lucero-hdez
View: 45 times
Download: 0 times
Share this document with a friend
18
. # Pwr Correlations for Mkidle East crude oils Muhammad All Al=Mwhoun, SPE, King Fahd U. of Petroleum and Minerals /37/8 Summary. Empirical equations for estimating bubblepoint pressure, .. nil ~ ~$ p~~~~epo~ ~~~~, ~ ~ ~v~ for ~~e . .. ..- East crude oils were derived as a fimction of reservoir temperature, total surfkce gas dative density, solution GGR, and stock- tank oil relative density. These empirical equations should be valid for all types of oil and gas . muturea with properties failing within the range of the data used in this study. Introduction PVT correlations are important tools in reservoir-performance cal- culations. The major use of PVT data is in carrying out material- balance calculations. In 1947, Sttding ‘“~pubiished correlations for determining the bubblepoint pressure and FVF from known values of temperature, solution GOR, gas relative density, and oil API gravity. A total of 105 experimentally determined data points on 22 different crude oil and gas mixtures from California were used in deriving the corre- lations. Standing reported an average relative error of 4.8% for the bubblepoint pressure correlation and an average relative error of 1.17% for the FVF correlation. In 1980, Gla.w4 presented correlations for calculating bub- blepoint pressure, oil FVF, and total FVF from known values of temperature, solution GOR, gas relative densky, and oil API gravity. A total of 45 oil samples, mostly from the North Sea region, were used in obtaining the correlations. G1a.wrepcmed average relative errors of 1.28%, -0.43%, and -4.56% for the bubblepoint pres- sure, the bubblepoint oil FVF, and the total FVF correlations, re- spectively. Reviews of other empirical PVT correlations were presented by Sutton and Farshad5 in 1984. Standing used a graphic method and GlastDused both a graphic methcd and lir regression analysis in the development of their PVT correlations. The graphic estimation and curve-fitting, how- ever, do not lead to the best estimate. Therefore, this study devel- oped the correlations using only linear and nonlinear multiple regression analyses to obtain the highest accuracy. This paper (Ms with PVT COmlatiOIIS ~x~jU~~v~jy fcr am+jes of Middle East crude oils. However, they should be valid for all QW ef g~i~fl ~fi~~ums wft properties faii ing within the range of data used in this study. Moreover, this study evaluates the ac- curacy of Standing’s and Glaso’s PVT correlations, which are shown in Table 1. Error analyses were done for this study and also for Standing’s and Glasgis correlations to compare their degree of accuracy. Finally, nomography for bubblepoint pressure, bub- blepoint oil FVF, and two-phase total FVF wem conshucted on the basis of the developed empirical correlations. PVT Data ThePVTanalyses of 69 bottomhole fluid samples from 69 Middle East oil reservoirs were made available for this study. The ex- perimentally obtaind data points were 160 each for the bubblqmint pressure, pb, and bubblepoint oil FVF, Bd, correlations, and 1,556 for the total FVF, B,, correlation. The ranges of the data used are shown in Table 2. PVT Corrohtlons The correlations for bubblepoint pressure, bubblepoint oil FVF, and two-phase total FVF were developed by use of the linear and nonlinear multiple regression analyses shown in the Appendix. 650 Bubblepoint Pmasure. The following generaI relation of bub- blepoint pressure of an oil and gas mixture with its fluid and reser- voir properties was assumed *: Pb.=mss7gP70*n .......... . . . . . . . . . . . . . . . . . ...(1) Table 3 shows the 160 experimentally dckrmined bubblepoint pressures obtained from PVT analyses of 69 different Middle East oil/gas mixtures. The nonlinear multiple regression analysis was used to develop the following relatioa. pb =5.38088X 10 ‘3R$7t~~g- 1.577540y~.143700T-370, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...(2) where Pb = bubblepoint PWSSUE, R. = solution GGR, 78 = dissolved gas relative density (air= 1), 70 = stock-tank oil relative density (water= 1), and T = absolute temperature. Bubblepoint Oil FVF. Gil FVF at bubblepoint pressure can be de- rived as a function of solution GGR, average gas relative density, oil rehttive density, and temperature as follows: B& =j(R., Tg, -yo, T). . . . . . . . . . . . . . . . . . . . . . . . . . ...(3) The foUowing empirical equation was developed by use of the nonlinear multiple regression analysis and a trial-and-error method based on the 160 experimentally obtained data points shown in Ta- ble 3: B% =0.256805X 10-ZR~T4Z~7$323~T;l.= +1.63 x10-ST , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...(4) where B% is au intermedii oil FVF value. The bubblepoint oil FVF correlation @q. 4) was further retined by applying the lii regression analysis on the same data. This regression analysis yielded the following equation: B~ =0.497069+0.862963x 10 ‘3T +O. I132594X10-2F+0.318099 X1O-5F2, . . . . . ...(5) where F=R$T423~&232~y; 1.~~ . Journal of PetroleumTechnology,May 1988
Transcript
Page 1: 13718-Pvt Correlations for Middle East Crude Oils

. #

Pwr Correlations for MkidleEast crude oilsMuhammad All Al=Mwhoun, SPE, King Fahd U. of Petroleum and Minerals

/37/8

Summary. Empirical equations for estimating bubblepoint pressure, . .nil ~ ~$ p~~~~epo~ ~~~~, ~ ~ ~v~ for ~~e. . . ..-

East crude oils were derived as a fimction of reservoir temperature, total surfkce gas dative density, solution GGR, and stock-tank oil relative density. These empirical equations should be valid for all types of oil and gas .muturea with properties failingwithin the range of the data used in this study.

IntroductionPVT correlations are important tools in reservoir-performance cal-culations. The major use of PVT data is in carrying out material-balance calculations.

In 1947, Sttding ‘“~pubiished correlations for determining thebubblepoint pressure and FVF from known values of temperature,solution GOR, gas relative density, and oil API gravity. A totalof 105 experimentally determined data points on 22 different crudeoil and gas mixtures from California were used in deriving the corre-lations. Standing reported an average relative error of 4.8% forthe bubblepoint pressure correlation and an average relative errorof 1.17% for the FVF correlation.

In 1980, Gla.w4 presented correlations for calculating bub-blepoint pressure, oil FVF, and total FVF from known values oftemperature, solution GOR, gas relative densky, and oil API gravity.A total of 45 oil samples, mostly from the North Sea region, wereused in obtaining the correlations. G1a.wrepcmed average relativeerrors of 1.28%, -0.43%, and -4.56% for the bubblepoint pres-sure, the bubblepoint oil FVF, and the total FVF correlations, re-spectively.

Reviews of other empirical PVT correlations were presented bySutton and Farshad5 in 1984.

Standing used a graphic method and GlastDused both a graphicmethcd and lir regression analysis in the development of theirPVT correlations. The graphic estimation and curve-fitting, how-ever, do not lead to the best estimate. Therefore, this study devel-oped the correlations using only linear and nonlinear multipleregression analyses to obtain the highest accuracy.

This paper (Ms with PVT COmlatiOIIS ~x~jU~~v~jy fcr am+jes

of Middle East crude oils. However, they should be valid for all

QW ef g~i~fl ~fi~~ums wft properties faiiing within the rangeof data used in this study. Moreover, this study evaluates the ac-curacy of Standing’s and Glaso’s PVT correlations, which areshown in Table 1. Error analyses were done for this study and alsofor Standing’s and Glasgis correlations to compare their degree ofaccuracy. Finally, nomography for bubblepoint pressure, bub-blepoint oil FVF, and two-phase total FVF wem conshucted onthe basis of the developed empirical correlations.

PVT DataThePVTanalyses of 69 bottomhole fluid samples from 69 MiddleEast oil reservoirs were made available for this study. The ex-perimentally obtaind data points were 160 each for the bubblqmintpressure, pb, and bubblepoint oil FVF, Bd, correlations, and1,556 for the total FVF, B,, correlation. The ranges of the dataused are shown in Table 2.

PVT CorrohtlonsThe correlations for bubblepoint pressure, bubblepoint oil FVF,and two-phase total FVF were developed by use of the linear andnonlinear multiple regression analyses shown in the Appendix.

650

Bubblepoint Pmasure. The following generaI relation of bub-blepoint pressure of an oil and gas mixture with its fluid and reser-voir properties was assumed *:

Pb.=mss7gP70*n . . . . . . . . . . . . . . . . . . . . . . . . . . . ...(1)

Table 3 shows the 160 experimentally dckrmined bubblepointpressures obtained from PVT analyses of 69 different Middle Eastoil/gas mixtures. The nonlinear multiple regression analysis wasused to develop the following relatioa.

pb =5.38088X 10 ‘3R$7t~~g- 1.577540y~.143700T-370,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...(2)

wherePb = bubblepoint PWSSUE,

R. = solution GGR,

78 = dissolved gas relative density (air= 1),

70 = stock-tank oil relative density (water= 1), andT = absolute temperature.

Bubblepoint Oil FVF. Gil FVF at bubblepoint pressure can be de-rived as a function of solution GGR, average gas relative density,oil rehttive density, and temperature as follows:

B& =j(R., Tg, -yo, T). . . . . . . . . . . . . . . . . . . . . . . . . . ...(3)

The foUowing empirical equation was developed by use of thenonlinear multiple regression analysis and a trial-and-error methodbased on the 160 experimentally obtained data points shown in Ta-ble 3:

B% =0.256805X 10-ZR~T4Z~7$323~T;l.=

+1.63 x10-ST , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...(4)

where B% is au intermedii oil FVF value.The bubblepoint oil FVF correlation @q. 4) was further retined

by applying the lii regression analysis on the same data. Thisregression analysis yielded the following equation:

B~ =0.497069+0.862963x 10 ‘3T

+O. I132594X10-2F+0.318099 X1O-5F2, . . . . . ...(5)

where

F=R$T423~&232~y; 1.~~ .

Journal of PetroleumTechnology,May 1988

Page 2: 13718-Pvt Correlations for Middle East Crude Oils

tooccur. The microprocesaor units also have logic that can detectwhen a well is logged up rather than pumped off and can preventprematw shutdown. The microprocessor unit can store data inmemolyandthemtransmitthe data bymdioorotherc0mawnicationlinks uponcommand toacentral hoatunnputer. TbiaallowarhemicqmXeWXunita to beusedwithout comrnunhtion, orthecul-tral communication can be added when justified.

Coneludons

1. Pumpoff control is a profitable technique to be used on rod-pumping wells except iu low-resemoir-pressure, high-PI wells.

2. Sevehl studies have shown that minimum crit&ia for justifi-cadonofpumpoffcontrol area20% reduotionin energy consumption, a2S%reduction inpullingjoba, anda lto4%increawinproduction. These are achievable when compamd with good oper-ation witbout pumpoff control. If poor qemtion currmtly exists,then greater benefits are available.

3. The anaiog and micqmceam r local logic type of pumpoffcontrollers are rwxxnmended. The decision to use central commu-nication to a host computer should be juatitkd individuaUy,~ on the existing conditions in a given field.

AdmowlodgmontWethankthemmagementof Shell Weaern E&PInc. forpemkionto publish this paper.

Roforoneos

1. Wcstemml,G.w.: “~ ~of ~~;”MM SPE 6853~ x the 1977SPE /innual Techakal Cuafer-ence arai Exhibhion, Denver, Get. 9-12.

2. Ghauri,W.K., Gaborae,A.F., ad Magnuwn,W.L.: “Chiu@nSCoo-ceptain C@maateWaterflooding-West TexasDaaverUnitRo@ct-AIIIllustrativeExample,” JPT (Iuac 1974)595-606.

3. Ghauri, W.K.: “Producdon Techao@y Ex#ence in a Large Car-bonate Waterflood, Deaver Unit, Waawn Sao Andres Field, WestTexas,” paper SPE 8406pmated at tk 1979SPE Anmd TechnicalCdererm and Exbibitioa, Las Vegas, Sept. 23-26.

4, HUa@r,I:Il., HUM!, M., d Reiter, c: “!kmr Uiiit%%!!SWVdhlWC and Pum@ffCoatrol S@tan,” JPT(Scpt. 1978)1319-26.

5. Gibbs,S.G. ml Nec!y,A.B.: “ComputarD@nosisof Down4de CuI-didonsin SuckerRodPumpingWella,’’WT(Jan. 1966)91-98; Tin.,AIME 237.

6. Kramer,M.J.G., Martin, J.D., ad hkdy, A.B.: Wnaite AldySiSofSuokerRodPumpingWells,''paperSPE l1037pramtedat thel982SPE Aimial Teeiina COiiff and BxMition, New Grieans,Se.@6-29.

Journal of PetroleumTechnology,May 1988 649

Page 3: 13718-Pvt Correlations for Middle East Crude Oils

TASLE l-PVT CORRELATIONS OF STANDING AND GLASO

StandingPb = la.zl(~.l~g)o”~(loo”-’r~ -0”0’25~~1 ) -1.41.B* -0.9759+ 12x 10 ‘s[R,(T~/TO)05 + 1.25 TF]’”2.

Glaeopb = antilog[l .7669 + 1.7447 logp: - 0.30218(109p~)z],

whereP;= (~.h’s) o.8t6 T~f~~#@S .

B*= 1.0 +arrtifog[ - 6.58511+ 2.91329 IW B% - 0.27683(Iw B~)2],

whereS% _R,(~/yo)O- + 0.988TF.

B,=antilog[8.0135 x10-2+4.7257x10-l 109L3;+1.7351 XIO-I(IW B~2],

whereB;= R,(T#s/y/3p ‘1.1mTo2gx10-0”-’R* .

TABLE 2-RANGE OF DATA

Bubblepointpressure, peiaPressure, paiaBubblepointoil FVF, RB/STBTotal FVF below pb, RB/STBSolution GOR, acf/STBAverage gas relative density (air= 1),Stock-tank oil gravity, “APIC02 in surface gases, mol%Nitrogen in surface gases, mol%H*S in surtaee gases, mol%Reservoir temperature, ‘F

130to 357320 to 3573

1.032to 1,9971.032 to 6.982

26 to 16020.752 to 1.367

19.40 to 44.60.00 to 18.38

0.00 to 3.890.00 to 16.13

74 to 240

Total FVF Below Bubblepoint Pressure. The following generalrelation wm ~sumed for the tti ~ below pb:

Bt=~(Rs~7g> 70s T* P). .0...... . . . . . . . . . . . . . . . . ...(6)

Nordii multiple regression analysis was applied to develop thefollowing dation, which is based on the 1,556 expmimmd y deter-mined two-phase total FVF:

ly=o. 159579x10-4R$.6’t4516Tg- L079W

X7: ZM874T2.006210P-0.761910 . . . . . . . . . . . . . . . . . . . . 0)

where B: is an intermediate total PVP value.A refinement to the total PVP correlation was done by further

applying linear regression analysis on the same data. This regres-sion analysis yielded the following equation:

.-.-----Bt=0.3i4693+0. i06253 x iO-4F, +u. ltmwux iO-l~Fj,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (g)

where

~f =K9w%g- ‘“w~”73~@’4 ~2”~lc’P -0”761910.

B, is in RB/STB.

Emor AMlyslsThe statisticaland graphic error analyses were used to check theperformance, as well as the accm’aey, of the PVT emrelations de-velopod in this study and by Standii and GIsw.

Statiatkal Error Analysis. The accuracy of eorrelations relativetotheexperkmd valueaia ~by Varioussmdstidmeana.The criteria used in this study were average percent relative error,average absolute percent relative error, minimum/maximum abao-lute percent relative error, standmd deviation, and the correlationcoefficient.

Journal of Petroleum Technology,May 1988

Avemge PmentRefative Envr. This is an indication of the rela-tive deviation in percent from the experimental values and is givenby

Er=(l/nd) ~ Ei. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...(9)i= I

Ei is the relative deviation in percent of an estimated value froman experimental vaiue and is defied by .

Ei=[(x~_~ew)/xew] ixl~, i=l,2 . . .tid, . . . . . . . . . . .(10)

where Xem and Xew represent the estimated and experimentalvalues, respecdvely. The lower the value of E,, the more equallydistributed are the errors between positive and negative values.

Avemge Absolute Pement Relative Error. This is defined as

Ea=(hd) ~ lEil . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(11)i-l

d indicates the relative absolute deviation in percent from the ex-YAEs. A lower value implies a better correlation.

aximum Absokte Parent Rdiziive Envr. After theabsolute percent relative error for each data point is calculated,iEii, i=i,2. . .nd, “ti the hum d _trm values wescanned to know the range of error for each correlation:

‘d

Ed= filEil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(12)i= 1

and

‘d

Em= msx lEi I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (13)i= 1

The accuracyof a correlation can be examined by maximum ab-solute percent relative error. The lower the value of maximum ab-solute percent relative error, the higher the accuracy of thecorrelation is.

Stam&udlbidion . StandaKJdeviation, s., is a measure of dk-persion and is expressed as

‘d

(14)s; =[l/(nd-n-l)] z E;, . . . . . . . . . . . . . . . . . . . . . . .i=l

where (rid-n - 1) are the degrees of freedom in multiple regres-sion. The symbol x repmsem pb, Bd, or B,. A lower value ofstandard deviation means a smaller degree of scatter.

651

Page 4: 13718-Pvt Correlations for Middle East Crude Oils

TABLE 3-SURFACE PROPERTIE8 AND EXPERIMENTAUYDETERMINED BUBBLEPOINT PRESSURE AND BUBBLEPOINT OIL FVF

Number

:34

:

;9

101112131415161716

X!21222324

z2728293031323334353637363940414243

:46474849505152

:

z

z59606162636465666768

$?

BubblepointPreaeure,

(f!$a)

3,5733,5713,4263,4053,3543,3113,2375,2783,2503,226

::=3,2043,2013,1963,1803,1553,1553,1273,1013,0803,0663,0573,0573,0303,0032,8412,9252,8012,2002,6862,6712,8652,8452,8352,8312,8042,7892,7512,6672,6522,6392,6362,6172,6072,5862,5592,5582,5302,5212,5042,4452,4130 An4C,W I

2,3822,3652,3592,3502,3442,2592,2562,2492,2312,2302,1772,1722,1722,1462,133

Bubblepointoil FVF,

(R&13)1.8751.4711.4511.8971.4311.4251.456. .-*

; :T71.4131.3871.6861.3721.9201.8861.3821.3841.4271.4111.3761.3601.4201.4451.3711.6361.3401.4211.4061.3521.3651.8521.3861.3271.6621.4031.6421.3641.3521.3331.3041.7161.3231.6471.3711.3151.2841.7861.3231.3491.4401.5481.3281.5761.3?81.4781.2781.2741.7691.5831.2571.3001.2721.3961.3161.2131.2731.7341.2861,432

GOR,

(W&B)1,507

838686

1,579825825867---

1,203775750

1,151742

1,5781,602

730700816

700660667811679

1,151

811693700818

1*579825742

1,143811

1,203867775750

1,507700

1,143811672685

1,578

683746

1,151565

1,203..-X{805486521

1,6021,143

521

468748

421602

1,493585~

AverageG**

Re~aynDensity,

(a~~ 1)

0.851

::%0.930O.m

:Z----Cr.uoz0.9250.7830.6000.8940.7520.9300.3600.7570.7740.7890.8020.7740.7550.7880.8120.7780.8840.7860.8120.7740.7740.7890.9300.7780.7520.9510.8120.9250.7880.7830.6000.7550.8510.7740.9510.8120,7700.7660.9300.6030.7740.8070.8940.8150.925- —r-U.r6d0.0290.7960.8010.9600.8510.8010.8150.8240.3070.8020.7880.803

iRn 9%-.--”

2,132 1.240 521 0.801

~p!

Gravityat 60°F,

(yA~l)

38.3

&42.634.234.235.4

z34.432.039.932.642.844.633.132.2

E32.229.735.436.5,32.038.930.636.533.232.234.242.8

&38.436.540.235.434.4

=!38.332.238.436.532.Q30.842.8

:::36.138.9

z34.5

:;30.144.638.430.133.328.836.138.121.9

E33.3&a.f

Temperature,

&

225175

E185175180125240175175

160

E175185170100175175140165175160175160175140100145100100240140160100100100100100

E100foo100100170

z100180100175

175180100150135140165150175145100100120?50

30.1 110

652 Journal of Petroleum Technology, May 1988

Page 5: 13718-Pvt Correlations for Middle East Crude Oils

TABLE 3-BURFACE PROPERTIED AND EXPERIMENTALLY DETERMINEDBUBBLEPOINT PRESSURE AND BUBBLEPOINT OIL FVF (continual)

AverageGaa API

Bubblepoint Bubblepoint Relative GravityPreaeura, oil IWF, GOR, Daneity, at 60”F, Temperature,

Numbar (~a) (Rl$& (J!4?B) (ai7~ 1) (7A?I) &— —

?; ~,:~~ 1- aa~ n E74S“.”. “ Ai a 4nc

72 2,035 ‘“— E1.272 0.815 G.i ;;73 2,016 1.452 1.013 36.2 16074 1,930 1.222 521 0.801 30.1 8575 1,888 1.375 692 0.676 41.9 15076 1,981 1.228 0.798 30.1 10077 1,862 1.354 746 0.307 35.1 10078 1,328 1.228 0.824 28.6 10073 1,912 1.257 585 0.615 33.3 8080 1,830 1.253 0.802 38.1 100W 1,!$47 1,387 605 0,923 3$!,1 10062 1,834 1.425 755 39.3 17083 1,624 1.344 692 ;&! 41.9 11584 1,766 1.533 1,087 1.056 36.0 10065 1,641 1.313 0.676 41.9 8086 1,631 1.337 803 1.013 36.2 10087 1,630 1.203 347 0.333 26.1 16566 1,603 1.387 755 39.3 12589 1,480 1.280 412 :s 31.0 16000 1,477 1.327 S60 1.002 38.6 15091 1,4n 1.267 417 0.360 31.2 18532 1,437 1.226 389 15033 1,405 1.165 347 ::= ::? 10034 1,405 1.259 412 0.973 31.0 16095 1,378 1.250 417 0.380 31.2 16096 1,377 1.210 331 0.921 28.4 16097 1,367 1.347 755 33.3 80

1,232 1.238 412 i% 31.0 130: 1,282 1.291 469 0.360 36.5 155 ~

lm 1,265 1.223 417 0.960 31.2 130101 1,230 1.188 302 0.931 28.9 160102 1,205 1.177 1.002 28.2 80103 1,133 1.246 % 0.980 36.5 130104 1,180 1.216 412 0.973 31.0 100105 1,180 1.156 331 0.821 28.4 100106 1,159 1.262 512 1.010 37.0 100107 1,153 1.208 417 0.980 31.2 lW108 1,137 1.269 1.002 38.6 74103 1,095 1.268 433 1.168 31.2 130110 1,O@l 1.180 1.056 22.6 185111 1,061 1.152 0.931 28.9 100112 1.245 z 1.188 31.2 150113 674 1,152 0.989 27.2 160ii4

---654 i.i4i

---0.942 32.i

---175

115 847 1.132 ~ 1.056 22.8 100116 1.215 1.186 31.2 100117 687 1.102 168 1.031 27.9 80116 1.027 0.942 32.1 100119 642 1.220 E 1.182 37.3 165120 601 1.191 1.182 37.3 145121 1.114 127 1.025 25.1 160122 ~ 1,125 141 1,~~ ~:5 155123 516 1.163 266 1.192 37.3 1054m.1c+ e.==1O ; ~~ 4 An.1.036 1.U6J 25.; ; cm125 506 1.110 141 1.072 27.5 130126 477 1.163 156 1.308 27.1127 1.173 168 1.367 30.5 205128 421 1.045 62 0.675 31.6 170123 1.096 104 1.126 27.4 160130 392 1.148 168 1.367 30.5 165131 370 1.033 79 1.146 23.5132 1.124 100 1.247 26.0 E133 343 1.125 166 1.367 30.5 125134 331 1.076 74 1.083 27.4 160135 1.080 79 1.146 23.5 1454“a 233 . -emI .Uw . -.74 I.Wii n- A&l.* 120R 230 1.108 103 1.335 25.4 155138 1.079 45 1.123 21.8

261 1.033 44 1.050 30.2 E;Z 255 1.086 61 1.272 26.2 160

Journalof PetroleumTechnology,May 1968 653

Page 6: 13718-Pvt Correlations for Middle East Crude Oils

TABLE 3-BURFACE PROPERTIED AND EXPERIMENTALLY DETERMINEDBUBBLEPOINT PREBBURE AND BUBBLEPOINT OIL FVF (eontlnued)

Averagema ~pf

BLI:&u~nt But&lq#nt Relatlve GravityGOR, Oen@ty, at 60°F, Temperature,

Number (#a) (R&B) (J!!) (ai?: 1)‘YAP1

(“API) (~n—— .141 246 1.065 45 1.123 21.8 160142 240 1.066 61 1.272 26.2 140. .- ----iW 1.072 44 1.050 30.2 165144 236 1.090 1.356 25.4 190145 236 1.001 : 1.267 26.5 155146 231 1.051 46 1.123 21.6 130147 214 1.047 61 1.272 26.2 100146 214 1.052 44 1.050 20.2 125149 211 1.075 61 1.356 25.4 160150 1.061 39 1.251 19.4 160151 166 1.039 61 1.356 25.4 130152 166 1.075 29 1.165 23.6 160153 179 1.045 39 1.251 19.4 120154 174 1.061 1.165 160155 174 1.036 z 1.105 z: lm156 163 1SW a ~.f~ -~.~157 161 1.047 29 1.165 23.6 i~j% ~~ ?.032 m 1.;85 23.s 100159 147 1.062 1.182 26.2 160160 130 1.041 2 1.162 29.2 120

The assumptionof normal distribution of errors allows establish- Table 4 presents the co-n of errors relative to the ex-ment of ~ntldence intervals for the estimated value. IfXm =.xe *z, then the confidence limits, z, in percent, areS==68.3, 2X=95.45, and 3s, =99.73.

Cbnddon Clr@cient. The correlation coefficient, r, representsthe degree of success in reducing the standad deviation by regression analysis. It is defined SS6

[ 1P ‘1 - }1[(X*-.Z~~p)i12/}1 [(~q-~)i12 , . . ..(15)

where

‘d-F=(l/n~) ~ (X~p)i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (16)

i=l

The correlation coefficient lies between Oand 1. A value of 1 indi-cates a perfect correlation, whereas a value of Oimplies no corre-lation at all among the given independent variables.

Graphic Error Analysis. Graphic means help in visualizing theaccuracy of a correlation. Two gfaphic analysis techniques wereused.

Cms$pfot. In this tedmique, all the dmated values are plottedvs. the experimental values, and thus a crossplot is formed. A450[0.79-rad] straight line is drawn on the crossplot on which estimat-ed value is equal to experimental value. The closer the plotted datapoints aii ‘b “&s iti, the ‘&tter the correlation is.

Erwr Distribution. Tbe deviations, Ei, for a good correlation

raree to be as close aspodble to the “normaldistriion.”Tbe uation of a norrnaldistribution curve to fit any data set canbe derived by use of the mean and standard deviation of that dataset. 7 This technique involvea pmenting relative _ of devi-~~~s ~mih~stomm. o-A ●L-- f-:- - - --

6*WU - ‘=11 ‘Lug u ‘@4~*tiu~m ~mc

to it. The accuracy of the correlation is then judged by matchhgthe error distribution with the normaldistribution curve.

Compwkon of CorrolatlonsStatisticalError Analysis. Average percent relative error, aver-age absolute percent relative error, rninirnumhaximum absolutepercent relative error, standard deviation, and correlation coeffi-cient were computed for each correlation.

perimentall~ determined bubblepoint pressure of 160 data points@imated from the three correlations. The cmrelation for bub-blepoint premure of this study achieved the lowest emors and stan-dard deviation, with the highest comletion coefficient accuracy of0.997, as prmented in Table 5. Standing’s correlation stood sec-ond in aceumcy, with a correlation coefficient of 0.979. Glas#scorrelation showed poor accuracy, with the highest errors and the10WCIW Correlation C4WffiCkDt of 0.891.

Wimated bubblepoint oil FVF end the experimentally obtainedbubblepoint oil FVF for the 160 data points are given in Table 6,akmgwhhtherelativedmhtiontbreachdatapoint.Forbubblepointoil FvFcormMon , this study again achieved the highest accura-~, foU~d by G~ @ Sti~~ M ti~ @Tabie7.

Atotalof l,556data points used indeveloping the total FVFcorrelation was sorted according to tbe percent relative error, and51&pointswemAectedby takingeveTyotller 3opointstorefkcttheaccumcy. Thesekcted51datapointsfort otalFVFwithreser-voir properties of the oil samples are given in Table 8. The rela-tive error for each data point is also presented in the same table.The statisdcal error analyses for the two correlations are presentedin Table 9. This study’s codauon. fortotal FVFoMained bigher~ than GIaso’s correlation.

G’OSSPIOtS.The crossplot of dmated vs. experimental valuesfor bubblepoint presswe codations are presented in Figs. 1tbrough 3. Mostoftheplotted pointaofthis study 'scomeWon“Wvery close to the perfect correlation of the 45” [o.79-rad] line. Thecorrelations of standing and Glas9reveal theii Ovemdmatl .OD.Ac-&fi#~g t-h~. 2 r.1.. +. --1A-.. “1.-.... -I —.- + —- - ---

,6.., .4. W.b=wuu ?Weu UIUGUmore overW-timation than Standi@s cordation.

Tile crossplot for bubblepoint oil FVF correlations are givenin Figs. 4 through 6. Moat of the plotted data points of this study’scomeladon fall on tbe 45° [0.%had] line, Mcating its high degreeof comlation, while the correlations of Glasoand StandingrevealMU OV~&~ ~ti~ ~ bJMi@fi CM ~ Of 1.5 P*!W.

[1.5 res mshtock-tank m3].The piotted i,556 data points of this study’s correlation for total

FvF fall very close to the perfect C43rrelationof the 45° [o.79-rad]line (see Fig. 7). Gntheotber hand, the plotted 1,556 data pointsof Glase’s codation scatted above or below the 45” [0.79-md]line, as prmentd in Fig. 8.

Error INstributimI. Error distribution histograms with overlaidnormal-distribution curve for tbe bubblepoint pressure correlations

Journal of PetroleumTechnology,May 1988654

Page 7: 13718-Pvt Correlations for Middle East Crude Oils

,TABLE 4-COMPAR180N OP BUBBLEPOINT PREBSlfREB EBTIMATED

m“ AA-m., . -A.- —.. -...a -- .-., --- . .. .. .. . . .. -. . --DT eUmIUIIUIW mum Inm asuuT, simwusq Alsu CsLAsw

Experimental Estimated Bubblepoint Deviatkm in PercentBubblepoint Pressure (pale) of Estimated pb

Pressure This ThisNumber (psia) Study Standing Giaao study Standing Giaae—— —— .__.

~,~~ ~,~ A 9- A AnA ~ ~c~~.,6UU .,-~g.~ ~gJg

: 3,571 3,446 3,452 3,040 -3.51 -3.323 3,426

10.323,267 3,275 3,845 -4.65 -4.41

4 3,40512.23

3,650 4,141 4,404 7.203,354

21.61 29.333,398 3,222

:-3.92

3,3119.07

3,329 3,155 :&l ;:3,297

-4.71 9.503,246 3,143 3,594 -1.47 -4.66 9.m

: 3,279 3,080 3,107 3,735 -5.76 -5.28 13.913,213 3,611 3,841

1:-1.14 11.11

3316.18

3,141 2,864 3,42311

-2.713,223

-6.17 8.033,065 3,037 3,512 -4.23

12 3,216-5.77 6.88

3,211 3,463 3,785 -0.211?

7.613,204

17.623,293 3,016 3,539 2.77 -5.81

14 3,20110.45

3,340 3,766 4,254 4.34 17.8415 3,196

33.193,332 3,833 4,161 4.20

18 3,18019.87 30.73

3,286 3,012 3,478 3.3517

-5.29 9.373,155 3,177 2,832 3,427 0.71

18 3,155-5.15 8.62

3,195 3,067 3,550 1.31 -2.7919 3,127

12.532,918 2,947 3,804 -6.74 -5.77

20 3,10115.25

3,112 2,930 3,396 0.36 -5.52 9.513,090 3,352 3,139 3,651 8.49

21.60

3,06616.14

2,982 2,668 3,450 -2.75 -5.8123 3.057

12.52-, ___ 2,97A 9 R7n-,-. - !?9flQ-,--- - ~.?~ -e *9 ?.=

24 3,057 3,027 2,860 3,32225 3,030

-0.97 -;~ 8.672,963 3,182 3,666 -2.21

265.03 20.96

3,003 3,143 2,943 3,430 4.66 -1.6127 2,941

14.232,822 2,722 3,210 -4.06 -7.44

26 2,9259.16

3,031 2,622 3,273 3.63 -3.5223 2,901

11.892,887 2,721 3,273 -0.50 -6.21

30 2,30012.82

2,734 2*645 3,25431

-5.73 -8.79 12.212,876 3,037 3,425 4,090 4.85 16.26 41.21

32----- ---

2,871 3,817 2,693 3,308---

-1.88 -6.2233 2,665

15.262,677 2,656 3,276 0.41

34-7.21 14.35

2,984 3,460 3,888 4.88 21.62 29.5535 :E 2,701 2,609 3,139 -4.7436

-7.982,631

10.702,735 3,050 3,600 -3.39 7.73

37 2,60427.15

2,721 2,654 3,264 .-2.97 -5.3538 2,789

18.402,658 2,529 3,119 -4.70 -9.31

33 2,75111.83

2,611 2,592 3,203 -5.10 -5.8040 2,667

18.432,837 2,879 3,332 5.59 -0.20

41 2,65224.02

2,703 3,254 3,959 2.1542 2,633

49.272,534 2,500 3,094 -0.19 -7.;

43 2,63617.24

2,760 3,18044

3,5792,617

35.782,396 2,866

45- :E -7.$

2,60713.32

;:Z 2,441 3,025 -1.72 -8.3846 2,566

18.032,660 2,516 3,126 2.78

47- 2,559-2.78 20.79

2,741 3,11448

21.70 50.772,558 2,541 2,420 XX -::

49-5.38 11.05

2,530 2,566 2,40850

2,979 -4.622,521

17.742,354 2,547 2,883 -:: 1.04

51 2,50414.35

2,462 2,687 3,331 -0.89 7.32 33.0352 2:445 2,456 _,___2.362 2.7A3-, --- Q54 - ~,~ ~~,~j53 2,413 2,389 2,887 3,334 -0.98~

11.34 38.16* An*G,W 1 nc4.3 “6- . ..9C,QI0 <,&l1 e,wf . *- . .- .A a.?*.W -al/

55IU.w

2,392 2,257 2,439 2,780 -5.85 18.2156 2,365 2,393 2,282 2,691 1.4457

- k: 13.762,359 2,289 2,741

56-2.98 16.21

2,350 ;:= 2,913 3,667 ;%!59 2,344 2,466

23.97 56.052,881 3,415

60 2,25945.70

2,267 2,171 2,681 -:: -=3:;2 17.8167 ,. . . .

Z,zw* ~--

2,171 2,625 -‘-62

-3.77 ‘- ‘-lf3.3a2,249 := 2,148 2,579 - :s -4.51 14.672,231 2,123 2,291 2,743 -4.56

z22.%

2,230 2,277 2,046 2,395 2.10 -::: 7.4165 2,177 2,345 2,359 3,107 7.70 42.7266 2,172 2,173 2,087 2,590 0.0687

- :=2,172

19.222,231 2,714 3,417 24.%

6857.32

2,148 2,157 2,081. H -3.1369

18.%2,133 2,033 2,134 :E -4.70 23.84

70 2,132 2,132 2,056 2,567 -0.01 -:2 20.40

Journal of Petroleum Technology, May 1988 655

Page 8: 13718-Pvt Correlations for Middle East Crude Oils

TABLE 4-Comparison OP BUBBLEPOINT PRESSURES ESTIMATED BYCORRELATIONS PROM TENSSTUDY, STANDING, AND QLABO (continued)

Ex&kfmrf;i Estimated Bubblepoint Daviation in PercentPraaaure (pa&) of Eatimatad Pb

Prasaure ThisNumber (psia) Study standing Glaae St; Standing Glaae—— —

71 2,124 ZZZ 2,015 2,364 -1.87 -5.14 11.3172 2,036 2,059 1,984 2,473 1.17 -2.00 21.5473 2,0i 6 i ,880 Z,Z6Z 2,863

-----7.74 12.22 33.10

74 1,990 2,008 1,852 2,452 -1.91 23.2175 1,988 1,870 2,276 - :E -5.91

1% 1,84614.49

76 1,981 2,437 -1.75 23.021,862 1,801 2,061 2,555 - :; 30.21

2 1,926 1,878 1,871 2,356 -2.66 - ;:: 22.3179 1,912 1,982 1,911 2,378 2.81 -0.03 24.2680 1,880 1,827 1,745 2,163 1.96 -7.69 14.4581 1,847 1,815 1,973 2,460 -1.75 8.82 33.2082 1,834 1,745 2,020 2,366 -4.84 10.14 30.0983 1*824 1,789 1,736 2,166 -1.89 -4.60 18.8584 1,786 1,805 2,354 2,921 2.19 33.30 65.4185 1,641 1,646 1,812 2,027 -1.78 23.5086 1,631 1,625 1,892 2,489 -:: 22.14 51.4087 1,630 1,464 1,624 1,979 -10.20 -0.35 21.3888 1,603 1,582 1,836 2,256 -1.33 14.53 40.76

1,480 1,434 1,821 1,874 -3.14 9.54 26.63: 1,4n 1,373 1,639 1,829 -7.04 4.1991 1,472 1,436 1,636 1,878 -2.45 11.12 FE92 1,437 1,290 1,534 1,656 -10.21 6.76 29.1883 1,405 .,___1.26s !,AjA !,~ “.””-am Q.= 9QM84

&“.-1,405 1,374 1,554 1,832 -2.18

8510.66 30.42

1,376 1,362 1,551 1,828 -1.1396

12.55 32.631,377 1,371 1,460 1,738 -0.46 6.01 26.24

97 1,367 1,422 1,668 2,078 22.0596

52.031,292 1,287 1,457 1,761 - W

9912.80 36.29

1,262 1,376 1,476 1,732 7.46 15.17 35.12100 1,265 1,276 1,455 1,756 0.84 15.01 36.83101 1,230 1,246 1,319 1,550 1.27 7.25 26.01. a-IUL 1,205 I,om ‘--- 1,6441,321 -8.92 9.66 36.44

103 1,183 1,304 1,400 1,674 9.31 17.34 40.33104 1,~so 1,201 1,367 1,674 1.75 15.85 41.62105 1,180 1,197 1,2s4 1,566 1.46 8.84 34.40106 1,159 1,167 1,335 1,821 0.67 15.16 39.65107 1,153 1,190 1,365 1,889 3.24 16.36 44.75106 1,137 1,151 1,309 1,585 1.21 15.03 40.29109 1.085 1,038 1,451 1,639 -5.16 32.49 49.69110 1,094 1,062 1,337 1,638 -2.90 22.23 49.74111 1,061 1,086 1,160 1,411 2.57 32.98112 954 1,332 1,565 -1.21 3;:: 61.97113 874 952 1,054 1,216 8.86 20.54 39.36114 854 868s50 -0.48 5.20115 847 881 1,115 1,450 ;: 31.63 71.22116 852 1,197 1,443 5.86 48.88 79.52117 697 625 703 791 -10.40 0.90 13.60116 696 723 5.51 3.82 14.11119 642 618 757 789 -4.10 17.87 22.87120 601 766 -1.86 20.57 27.52121 584 E 649 896 3.34 11.19 19.51122 !W 628 3.46 15.49 20.31123 516 539684 713 3.86 26.24 37.58124 515 585 15.55 26.91125 534 830 :E 17.32 23.96126 477 L? 660 1.64 42.95 38.43127 444 423 -4.62 36.27 27.40128 421 437 334 270 -20.66 -36.78129 406 419 447 :: 15.06130 392 390554 636 -0.51 41.41 3;:131 370 2.53 16.82 10.76132 3.10 29.91 18.04133 343 357 508 503 4.15 48.02 46.74134 331 347 367 314 4.91 -6.16135 327 395 6.56 ~~ 18.05136 316 326 289 8.47 11.34 -1.47137 x 311 .421 401 7.26 45.29 38.25136 283 276 284 240 4.80 8.04 -8.71139 281 268235 157 2.76 -10.00 -39.76140 255 233 272 217 -8.64 6.62 -14.71

656 Journal of PetroleumTechnology,May 1988

Page 9: 13718-Pvt Correlations for Middle East Crude Oils

TABLE 4-COMPARISON OF BUBBLEPOINT PRESSURES ESTIMATED BYCORRELATIONS FROM TWS STUDY, STANDING, AND GLASO (oontinued)

Experimental Estimated Bubblepoint Oaviatbn in Peroant

Bubblepoint Pressure (paia) Of Estimated pb

Pressure This ThisNumber (paia) Study Standing Glaae Study Standing Glaae—— —

141 248 G265 230 -6.69142 240 223260 210 - ;; :; -12.53143 247 214 3.78 -10.10 -37.78144 238 224 282 z -5.28 19.40 -6.70145 314 9.22 33.01 10.03148 231 242 248 217 4.92 7.17 -5.92147 214 237 182 -4.89 10.83 -10.31148 214 226 195 137 5.72 -9.01 - 35.s0jAg ~~f 9* n 233 m

- ~.=d

.-ai.”a - UAO

150 205 G 227 200 -2.19 10.96 -2.42151 188 197 245 199 31.98152 188 175 112 -:: -8.73 -:.:153 179 184 k? 185 2.53 15.72 3.48154 174 185 158 107 -5.31 -9.27 -38.53155 174 170 138 84 -2.40 -21.87158 183 149 130 89

-51.48-8.71 -20.34

157 161-57.61

154 147 101 -4.18 -8.88158 148 144 138

-37.3994 -2.74 -7.97 - 36.s2

159 147 137 117 85 - &&~ -~.~? ~g.g!180 130 125 108 59 -3.57 -16.58 -54.35

TABLE 5-STATISTICAL ACCURACY OFBUBBLEPOINT PRESSURE CORRELATIONS

This Study Standing Glaae— .Average relative error, % 0.03 6.60 17.76Average absolute relative 3.88 12.08 25.22

error, %Minimum absolute relative 0.01 0.03 0.28

error, %Maximum absolute relatiie 10.40 48.89 79.52

error, %Standard deviation, % 4.536 16.020 29.983Correlation coefficient 0.997 0.979 0.891

of this study, Standing, and Glsso are presentedin Figs. 9 throughii. Tine error ranges of ii5, f40. and *80% are used for thisstudy’s, Standing’s, and Giaso”s correlations, respectively. Thisstudy’s correlation has a mean almost equal to zero, while the peakiie@ of ‘h normai-distfloution curve for the Standing and Girt,wcorrelations are at about 7 and 18% error. indicating overestima-tion by positively skewed error distribution.

Error distribution for this study’s correlation for bubblepoint oilFVF is a normal distribution with a mean almost equal to zero (seeFig. 12). Norrnaldistribution curves for Standing and Glaso aregiven in Figs. 13 and 14. The mean distribution of Glas#s eorre-hkmyclwmtioftimml*m ofti*, ww-ing’s ccmdation indicated its overestimation by a positively skewednonnaldistribution curve with a mean of a60ut_2 %. -

The range of error dktribution for total FVF correlation for thisstudy is A 15% (see Fig. 15), while the error of Glas#s correla-tion ranges from -20 to +50%, as shown in Fig. 16. This study’scorrelation distributed the error evenly across the entire range witha mean of slmost 0.0%. Gn the other hand, the norrnaldistributioncurve for Glaso’s correlation shows a positively skewed error re-tribution with a mean of about 8%.

NomographyOn the basis of the mathematically developed PVT correlations,correlation charts have been devebped for bubblepoint pressure,bubblepoint OtiFVF, and tWC@SSe (oil/gas)totalFVF. The

chartsare presented in Figs. 17 through 19. The standatd proce-dures were followed in constructing nomography. 9*10

A nomogrsph is quite simple to use. The data points are con-nected from one scale to the other by a straight line. It is straight-

forward in determining pb, Bd, and B,. Engineering personnelwill find these charts very simple and useful tools in determiningthe reservoir performance or in designing production facilities.

conoluslon81. PVT cmrelations for Middle Bast oil and gas mixtums have

Mz?fi&V:iOped. E@. 2, 5, and 8 krrm the ‘basis for caicuisdngthe bubblepoint pressure, oil FVF at bubblepoint pressure, and ~td FVF below bubblepoint pressure. Moreover, the nomogrsphsemstructed in this study are so alternative solution without reduc-ing the accumey achievable by using Eqs. 2, 5, and 8 in a mucheasier manner.

2. Eqs. 2,5, and 8 were developed specifically for Middle Bastoilandmsm ixturesb utcanbeused foresdmabnrz“ thesame PVT*rsforrdltypesof oilsndgas “mmturea Wiipropeties fsu-ing within the range of data used ~Ath~s sttttd.

3. Deviations from eqerhenMy deterdd data, imiicated asaverage percent relative errors, average absolute percent relativeerrors, snd tlMstdd deviio@ We~ iowti fo~ t!& study Lhm

for estimations based on the correlations of Standing and Ghisg.4. The correlation ecreffiiients of the correlations of this study

tiw~Hontie Mtie Moti_lm~cl~rti lthsnthose of Standing and Glaso.

5. The PVT correkdions can be placed in the following orderwith respect to their accuracy: (1) for bubblepoint pmasure, thisstudy, Smnding, and Gw, (2) for bubblepoint oiI FVF, this study,Gw and Standing; and (3) for total FVF, this study and Glaso.

Nomondatum~= (n+l) v*ra = least-squares solution to tbe system Xz=y

B& = oil FVF at bubblepoint pressure, ItB/m[rea m3/stock-tsnk m3]

W* = intermediate value for B&B, = m Oti ~ bdoW bubtdepoint prSS.3~, RB/STB

[rea m3/stock-tank m3]~ = jnte~ v~ue for B,E . e~r

Ea = average absolute relative error, Eq. 11, %Ei = pxcent relativeerror,Eq. 10E, = average relative error, Bq. 9, %f = function

F = correlationparameter, Eq. 5

Journal of Petroleum Technology, May 1988 657

Page 10: 13718-Pvt Correlations for Middle East Crude Oils

TABLE S-COMPARISON OF BUBBLEPOW/T OIL FVF’S ESTtMATEDSY CORRELATIONS PROM THIS STUDY, STANDING, AND GLASO

Experimental Estimated Bubblepoint Daviatbn in PercentBubblepoint Oil WF (RS/STS) of Estimated B ~

Oil FVF This misNumbar (FM/m) Study Standing Glaae Study Standing Giaao

1 1.875—— .

G 2.018 ~ -0.98 3.892 1.471 1.457 1.514 1.480 -0.94 :: 0.833 1.461 1.436 1.496 1.466 -1.06 3.08 1.054 1.s87 1.920 2.073 1.882 -3.84 3.82 -0.235 1.431 1.438 1.478 1.440 0.34 3.118 1.425 1.427 1.488 1.435 0.18 3.04 ::7 1.458 1.458 1.503 1.488 -0.03 3.10 0.758 1.430 1.414 1.4n 1.452 -1.12 3.329 1,747 1.718 1.811 1.756 -1.77 :::

10 1.413 1.406 1.442 1.408 -0.38 ;: -0.2811 1.387 1.383 1.430 1.387 0.40 3.06 0.7112 1.688 1.663 1.748 1.700 -1.3413 1.372 1.370 1.403 1.372 -0.15 :: -::14 1.s20 1.881 2.037 -2.01 6.07 2.4815 1.985 1.s54 2.109 X -1.62 6.19 1.9816 1.392 1.380 1.408 1.376 -0.84 1.24 -1.1617 1.364 1.377 1.403 1.369 -0.52 1.41 -1.1116 1.427 1.422 1.464 1.431 -0.36 2.57 0.3019 1.411 1.3s2 1.458 1.438 -1.31 3.43 1.8420 1.378 1.388 1.388 1.363 -0.57 1.46 -0.8421 1.360 1.350 1.378 1.345 -0.72 1.36 -1.1222 1.420 1.423 1.47423

1.447 0.22 3.811.445 1.444 1.480 1.446 -0.07 2.45 k:

24 1.371 1.380 1.388 1.353 -0.83 1.08 -1.341.636 1.628 1.717 1.678

=-0.43 4.88 2.55

1.340 1.348 1.374 1.34127

0.66 0.071.421 1.422 1.482 1.432 0.10 :: 0.78

26 1.408 1.368 1.38123

-2.68 -0.67 -3.231.352 1.&

30i:w 1.344 -1.04 -0.60

1.385 1.381 1.413 1.382 -0.25 k: 2.011.s52 1.843 2.000 1.943

::-0.51 6.00 4.92

1.368 1.383 1.414 1.38333

-0.40 3.381.327 1.316 1.351 1.339

34-0.67 2.55 ::

1.882 1.689 1.780 1.728 0.43 5.85 2.7435 1.403 - ‘-- 1.448 1.42136

0.16 3.20 1.281.642 ; :G 1.748 1.712 0.30

376.52 4.24

1.354 1.388 1.445 1.424 0.33 4.42 2.9238 1,= ~.~~ ?.38Q ,._1.- ~ o,& ~.?: ? .~~

1.333 1.328 I .3n I .355;

-0.38 3.27 1.691.304 1.285 1.326 1.304 -1.42 1.71 0.01

41 1.718 1.748 1.916 1.875 1.79 11.51 9.1542 1.323 1.303 1.344 1.322 -1.48 1.57 -0.0543 1.647 1.655 1.748 1.708 6.22 3.5744, 1.371 1.371 1.419 1.389 -:: 3.51

1.315 1.235 1.334 1.312 -1.53 1.41 - t:: 1.284 1.284 1.322 1.300 0.01 2.9847 1.786 1.804 1.864 1.Q18 1.m 9.97 ;:48 1.323 1.330 1.348 1.315 0.49 1.86 -0.5849 1.348 1.303 1.341 1.320 -3.38 -0.57 -2.1850 1.440 1.443 1.478 1.442 0.23 2.83 0.1651 1.548 1.580 1.656 1.633 o.n 6.S8 5.4752 1.329 1.333 1.348 1.314 0.33 1.43 -1.1053 1.576 1.585 1.703 1.678 8.05 6.4754 1.318 1.320 1.330 1.285 k: 0.88 -1.64

1.479 1.485 1.524 1.488 0.41 3.04 0.83: 1.278 1.283 1.2s3 1.259 0.33 1.07 -1.55~? ?.Gq~ f.= ~.=-m f .plj 6.48 i .64 a a.- U.ul

58 1.788 1.642 2.003 1.854 11.88 9.24-,.1.599 i .61i 1.711 1.678 ;; 6.S8 4.92

; 1.257 1.259 1.278 1.251 0.12 1.67 -0.5261 1.300 1.298 1.320 1.283 -0.08 -0.5662 1.272 1.263 1.274 1.242 -0.72 k: -2.3663 1.3s8 1.400 1.442 1.414 0.16 3.13 1.18

1.316 1.337 1.344 1.311 1.58 2.12 -0.382 1.213 1.211 1.228 1.188 -0.14 1.24 -1.19

1.273 1.2s9 1.288 1.278 -0.30 2.08 0.37z 1.734 1.793 1.s50 1.308 3.30 12.43 10.0168 1.286 1.282 1.307 1.282 -0.35 1.61 -0.3168 1.432 1.442 1.487 1.460 3.8670 1.240 1.237 1.281 1.237 -:: 1.71 - k%’

658 Journalof Pctrolcum Technology, May 1988

Page 11: 13718-Pvt Correlations for Middle East Crude Oils

,TASLE 5-COMPAR~ OP BUBWSMINT OIL WP’O SSTIMATED

BY CORRSLAIWW PROM THIS STUDY, STANDINQ, AND QLAS@ (continwd)

El$J$e: Estimated Bubblepoint Deviation in PeroentOii W (RB/BTB) of Estimated B*

Oii FVFNumber (RB/STB) s!! standing Giaso &by standing Giaso

71 1.405—— .

m 1.435 m72

2.031.272

-0.311.264 1.293 1.271 -::

731.55

i AK9-0.05f.~ ~.~ff $.~ n ●n e..4.03

74 ‘“—w.au

1.2226.1%

1.216 1.245 1.224 -0.5475 1.375

0.191.388 1.4*O 1.352

1.225;E

1.219 1.242 1.220;

-::1.354

-::1.357 1.405 1.387 0.22

78 1.225;E 2.42

1.207 1.231 1.m -1.7373

0.221.257

-1.611.247 1.250 1.261

80-0.78

1.2530.30

1.272 1.292 1.27181

1.041.357

k: 0.841.383 1.451 1.433 0.35

824.62

1.425 1.448 1.430 1.4@ 1.5483

4.54 ;21.358 1.355

841.05

; :Z3.04 1.41

1.588 1.671 ;:% 1.6555

9.011.313 1.325 1.360 1.344 1.141.387

3.60 :Z1.402 1.467 1.450

:0.33

1.2035.03

1.216 1.221 1.180 1.W85

1.511.357

- W1.410 1.457 1.435

59 1.280 1.258 1.274 1.241 -:: -::1.327

- :Z1.333 1.352 1.325 0.45

:1.88

1.267-0.13

1.277 1.282 1.245 0.76 1.16 -1.5092 i .226

----- .- .-. .l.zau 1.Zw 1.Z14 ----

. --

93 1.1651.37 - ‘–

1.150-0.97

1.173 1.15734

- :.Z1.253

-0.651.252 1.251 1.231

95-0.57

1.250:5 -2.23

1.255 1.265 1.235 0.4085

1.191.210

-1.211.207 1.210 1.178

97-0.24 -0.04

1.347-2.55

1.371 1.42538

1.4101.235

5.75 4.711.225 1.241 1.215

99- X

1.2810.25 -1.53

1.254 1.233 1.254 -0.55lW

0.141.223

-2.091.229 1.245 1.219

1010.01 1.23

1.186-0.78

1.195 1.195 1.155102

0.62l.in

-1.951.170 1.197 1.173 -::

1031.71

1.2450.13

1.252 1.276 1.251 1.=104

2.401.216

0.381.200 1.221 1.2W -1.32

1050.4

1.156-1.32

1.155 1.171 1.149 -0.05108

1.301.252

-0.551.253 1.286 1.269

1070.10 2.10

1.205 1.203 1.225 1.204 -0.33105 1.253

-::1.300 1.284

109-0.13 ;:

1.258 ;Z 1.3201.20

1.257 2.%110

4.071.180

1.431.183 1.188 1.154

1111.64 1.55 -1.32

1.152 1.144 1.157 1.135 -0.72112

0.451.245

-1.411.27+ 1.292 1.255 2.m

1133.80

1.1521.65

1.164 1.152 1.132 1.M1+4

0.551.141

-1.731.153 1.151 1.120

115O.w

1.132-1.85

1.125 1.145 1.124 - ;:..- 1.11 -0.73110 f .215 “ ‘--

. ---1.- 1.ZWI

---i236

117 1.102 1.On 1.033 1.078 -::116 1.097

-:: - ;:1.088 1.105 1.085 0.12

1190.73 -0.38

1.220 1.203 1.202 1.172 -0.83120

-1.481.191

-3.831.191 1.159 1.152 -0.14

121 1.114-2.42

1.113 1.108 1.082122

-::1.125

-0.51 -2.911.119 1.115 1.086 -0.53

123-0.92

1.153-3.28

1.157 1.154 1.143 -0.53124

0.051.086

-1.731,078 1,W 1,= -1.~ -fG@ - ~a~j

125 1.110 1.087 l.lm 1.078126

-1.13 -0.321.163

-2.821.191 1.173 1.135 q.85

1270.33

1.173-2.88

1.155 1.173 1.138 1.23125

0.001.045

-3.021.M7 1.OW 1.055 4.00

1233.34

1.0980.97

1.?05 1.100 1.074 0.53 0.15 -2.20lW 1.148 1.154 1.148 1.119131

0.48 -0.011.038

-2.541.111 1.101 1.072 1.07

1320.18 -2.46

1.124 1.143 1.127 1.093 1.71133

0.27 -2.731.125 1.119 1.123 1.101

134-0.52 -0.15 -2.15

1.075 1.057 1.083 1.059 -1.74135 1.Wo 1.078 1.075 1.055136

-:: -:2 -2.211.059 1.053 1.050 1.044

137-0.58 0.14 -1.38

l.lm 1.103 1.101 1.075 -0.4 -0.53138

-2.831.073 1.024 1.085 1.058 1.40

1330.32 -l.%

1.093 1.105 1.084 1.083140

0.07 -2731.055 1.W2 1.079 1.055 - H!’ -0,65 -2.78

Journal of Pctrdcum Technology, May 1988 659

Page 12: 13718-Pvt Correlations for Middle East Crude Oils

TABLE 6-COMPARISON OF BUBBLEPOINT OIL FVF’s ESTIMATEDBY CORRELATIONS FROM TNtS STUDY, STANDING, AND GLASO (continued)

Number

141142143144145146147146143150151152153154155156157158159160

ExperimantelBubblepoint

Oil FVF

Eetimated BubblepointOil FVF (RB/~)

This(RB/STB) Study Standing—~

1.065 m 1.066 1.0471.0661.0721.0901.0911.0511.0471.0521.0751.0611.0591.0751.0451.0611.0361.0631.0471.0321.0621.041

1.0s41.0741.1061.0601.0421.0301.0391.0621.0651.0561.0651.0301.0561.0221.0321.0331.0071.0561.023

1.0681.0711.0971.0671.0521.0451.0461.0601.0661.0631.0761.0441.0611.0371.0621.0441.0261.0601.036

1.0461.0461.0661.0641.0361.0341.0341.0571.0451.0451.0511.0321.0411.0261.0541.0311.0221.0401.027

Deviation In Percentof Estimated B*

ThlaStudy

0.30-0.16

0.141.67

-0.05-0.62-1.65-1.23

0.660.38

-0.240.S9

-1.36-0.22-1.63

0.65-1.35-2.43-0.41-1.72

Standing

0.320.14

-0.13

-::

-::-0.36

0.46

::0.28

-0.06-0.01-0.21-0.06-0.25-0.35-0.22-0.32

aaao-1.72-1.67-2.24-1.99-2.52-1.40-1.21-1.70-1.71-1.50-1.26-2.19-1.29-1.92-1.07-2.66-1.56-1.00-2.11-1.36

Ft = correlation parameter, Eq. 8n = number of independent variables

?td = number of data points

P = absolute pressure, psie @&a]

Pb = bubblepoint pressure, psia pa]= correlation cdficient, Eq. 15

R; = solution GOR, scf/STS [std m3 /stock-tank ms]Sx = standmd deviation, Bq. 14T = temperature, “R ~]

T~ = temperature, ‘F ~]

x = independent variable, Eq. A-1z = average value of x-, Eq. 16X = nd)((n+l) matrix, Eq. A-3

xT=~pwoftix

Y = dependent variable, Eq. A-17. T.).@tti= _ (n Al\.,

z = Ixa-xewlTm = (141.5/7.)- 131.5 =stock-tank Oil gravity, “API

~lcms]

-Yg= average gas relative density (air= 1)

70 = oil stock-tank Aative density (water= 1)

subscriptseat = estimated from correlation

exp = experimentalmax= maximummin = minimum

Acknourlodgmont

I express my apprdation to ShamawMm“ H. Shenawi for his con-tribution in the computer work and construction of nomography.

~ncos

1. SQX&I# tilt.: “A FmasuIHolumeTeqeramm COrddonforMix-caMomiaoiIsardGasca,’’ DriU. andPnd Pmc., APl(l947)

275.2. Smnding, M.B.: “oil-system correlations,” Pcrn?lelata Pru&clion

ffandbock, T.C. Frick (cd.), SPE, -RKhdson, lx (1962) 2, chap. 19.3. 8tmdins, M.B.: VoiwndcatniPJawe Behuvior@OilFii H@mcar.

bon $wsens, SPE, Richardson, TX (1981) 124.4. ~ @ **Genedi@ FmasumVolumeTempemtm Corrdadons,”

JPT (MSy 1980) 783-95.5. Sutton, R.P. and Farshsd, F. F.: “Evaluation of &ll@liCSdlyDeSiVCd

PVT Pro@ies for Gulf of Mexkm Crude Oils,” paper SPE 13172

660 .

TABLE 7-STATISTICAL ACCURACY OFBUBBLEPOINT OIL FVF CORRELATIONS

Thie Study standing GlaaeAverage relative error, % -0.01 F 0.05Average ebeolute relative 0.66 2.32 1.68

error, %Minimum abaolute relative 0.01 0.00 0.01

error, %Maximum abaolute relattva 4.00 12.43 10.01

error, %standard deviation, % 1.160 3.366 2.559Correlationcoefficient 0.997 0.665 0.962

praatadattbc 1984sPE Armual Technical cderlweand Exhibi-don, Hous!on: Sept. !6-19.

6. Wdpole, R.E. d Myers, R.H.: Pru&bii@ and Srmistics@r kkgi-necrs and &icnrists, IvfcMillan PublishingCo. Inc., New York City(1985) 373.

7. Dixon, W.J. and Massey, F.J. Jr.: Intrddmn “ to Stati&d Analy-ses, KO@kusha CO. Ltd., Tokyo (1969) &i.

8. Leon, S.J.: LiworAlgebm with /4pplicadons, MacMilhn I%blishingCO. Inc., New York City (1980) 152.

9. Johnson, L.H.: Nomogmplryand EmpiridEqudons, fmutb edidon,John Wiley and Sons IDC., New York C@ (1966) 1S-57.

10. Davis, D.S.: Nomogqohy and Enqsirical Eqnatkw, second edition,Reinhold Publishing Coq)., New York City (1962) 137-210.

AP~-U-r and NonilnoarMuttiplo negroUbllLinear.Thebasicconceptof mrdtiple qression is to produce alinear combination of idepdent variables that will correlate asclosely as possiile with the depmdent variable.

Asample isofsize ndonwhich thepmpertiesy, Xl, xz. ..xnaremeaaumd. Thex'sare thei&pendent variables andtheyisthe depedent variable. The linear regression equation of y on x’sCai3hewriltenas

y=ao+a1x1+a2x2+ . ..+a#n. . . . . . . . . . . . . . . . . . ..(A-l)

which represents a hyperplane in (n+ 1) dimensional apace. Eq.A-1 ean be written for any observation point i as

yi=ao+apjl+azX~+.. . +a~ti, i=l,2. . .nd. . . . . . .(A-2)

Journal of Petroleum Tedmology, May 1988

Page 13: 13718-Pvt Correlations for Middle East Crude Oils

TABLE 8-COMPARISON OF TOTAL FVF’S ESTIMATED BY CORRELATIONS FROM THIS STUDYAND GLASO (SELECTED DATA POINTS)

Average Stook-TankGss oil Estimated Deviation in

Relative Relatiie ExW~~tal Total FVF Percent of

GOR, Daneity, Danaity, (RB/STB) IMmated B,Temperature Praaaure

Number (ae&B) (ai~~ I) (wE&= I)This This

(OR) (paia) (R~&B) Study Glaae study Glaae—— .1

——1.247 0.6s8 664 295

: 1.3351.166 1.266 1.546 10.28 32.74

0.202 614 1.276 1.389 1.652:: 530

45.120.815 0.859 579 2rm 8.842 7.400 8.466

91:: -5.50

1,037 0.851 0.626 683 1,200 2.733 2.s42 2.898~~~

7.66 9.72472 ~.~? &f17L3 m.nUlv i ,200

151; .588 $.73i i.652 7.08 3.33

743 0.779 0.654 634 1,615 1.623 1.943 1.639161 41

0.841.123 0.923 1.328 1.403 1.666

211:&l 28S6

178 O.& 0.665 E E 1.192 1.259 1.286241 240 1.056 0.917

5.83 8.87559 1.522 1.802 1.883

2715.28 28.99

1.188 0.670 950 1.381 1.460 1.744742

5.00 25.440.768 0.654 629 1,000

z2.816 2.740 2.524 4.76 -3.49

1.002 0.666381 1,027

2.124 2.218 2.3040.s51

4.410.626 609 1,400 1.866 1.944 2.279

381 8284.16 k:

0.676 0.816 1,400 1.643 1.706 1.896421 392

3.85 3.311.188 0.870 664 1,050 1.316 1.365 1.837 3.75 24.44

0.302 849 160$ z

1.259;% 0.629

1.303 1.661 3.48 31.971,400 1.557 1.605 1.761

511 814 0.602 0.6623.06 14.37

634 1,800 1.959541

2.014 1.987 0.411.356 0.802 619 1.091 1.119 1.475

571 5X:~ 35.14

1.002 0.632801

z 1.3411,027

1.3710.951

1.585 2.25 18.920.626 803 1,700 1.650 1.665 1.991

ml2.12 20.88

~,03? “.””, “.”~”n Ml n n9n ~ 4 CM ,.44 =.I,izuu i.588 i.%i5676 0.207

i .890.644

24.35609 1,200 1.748 1.775 1.916

::1.84

352 1.002 0.8889.73

700 1.300 1.318 1.559721 24 1.182

1.380.881 539

19.6980 1.053 1.085 1.259

751 1,081 0.9251.07 19.55

0.824 559 1,200 1.937 1.954 2.324781 728

0.84 19.241$013 00844 ~g i ,-&Jo ?.~i i i .di$ i .~g Ac

811WA

1,091

~~.~i

0.925 0.824 619 1,800 1.919841

1.925 2.201 0.290.929 0.629

14.701,200

871 1,0441.498 1.423 1.594 0.05

0.8946.38

0.626 z 1.888 1.894 2.053901 1,091

-0.19 8.160.925 0.824 ;E 2.064 2.072 2.140

931-0.58 2.69

814 0.802 0.862 564 1,600 1.732 1.715 1.779881

-0.84 2.740.912

931 1,$ :s 0.604849 1.364 1.552 -1.17 12.44559 1,::

1,021;E 2.188 2.622 -1.50 28.43

1.123 0.%?31,051 4

6.137 6.029 6.8310.812

-1.76 8.050.842 619 2,&?l 1.524 1.494 1.515

1,081 723-2.01 -0.59

1.013 0.644 678 1,600 1.6981,111 575

1.857 1.831 -2.40 7.851.010 0.854 1.437 1.338 1.510

1,141 814-2.74

0.802 0.662 ::E6341,171

1.648 1.594 1.801 -3.12 -::0.812 0.642 2,0W 1.480 1.403 1.462 -3.50

i ,201 O&

0.174* i .387 6.87S 684

. -- - --- - .—-lWJ Z.sn

1231 3102.476 3.122 -4.00 21.03

0.937 0.838 619 1.383 1.323 1.446 -4.36 4.711,281 1,432 0.930 0.612 ;Z 2.188 2.083 2.2721,291

-4.8035

3.851.25f 0.936 664 1.411 1.338 1.581 -5.16 12.06

1,321 1,432 0.930 0.612 1*E 3.350 3.182 3.764 -5.621,351 682 0.757 0.880

12.36634 2,665 1.382 1.312 1.278

1,381 373-6.20 -8.73

0.973 0.871 1,400 1.267 1.181 1.308 -6.78 3.311,411 1,044 0.894 0.626 2: 2,800 1.571 1.456 1.614 -7.33 2.721,441 635 0.774 0.664 2,400 1.331 1.225 1.253 -7.911,471

-5.831,357 0.951 0.828 884 2,715 1.936 1.774 2.008 -8.44 3.59

1,Wi 742 &7~9 n Ku ~,~ ?.48 t.278 i.==1,531 1,4s3 0.960 i:iia

-9. i 6 - 7.8iz 915 4.3s3 4.504 4.875

1,556-9.80 -2.36

1.004 0.626 4.236 3.744 4.308 -11.85 1.66

‘h6 nd -- f~ the n~ expefidd ~~~n~ ~ beexprsaacd in matrix form as TABLE 9-STATISTICAL ACOURACY OF

TOTAL WF CORRELATIONS

1 xl~x~z . . .x~n

1 X21X22. . .x~

. . .

. . .

. . .

‘ndlxnd2. . .xn* IIao

al

an

Y1

Y2

‘1Yn~

. . . . . . ..(A-3)

Average relative error, %Average absolute relative

error, %Minimum absolute relative

error, %Maximum absolute relative

error, %Standard deviation, %Correlationeoaffieiant

ma study Glaae——0.14 6.%4.11 10.52

0.00 0.00

11.85 50.45

4.840 14.2600.234 0.971

Journal of Petroleum Technolow. Mav 198x

Page 14: 13718-Pvt Correlations for Middle East Crude Oils

I

Page 15: 13718-Pvt Correlations for Middle East Crude Oils

hn.J

ESTIMATED EUBEjLE POINT OIL FVF1.00 1.24 I.+a.,

K

1.72 I.*@

&-

m alx- \m - i.a -’ 8>- ;, ..% ~x ●

m ;,.

z . ... .

-4●

.8....r-- .“. .. -.:

kmmc .\

rm

-uo

z-4

01-

7<7

..*: ..

.... .x..”. .. .

. .

)

II

. ..-. --- ,.ESTIMATEO BUBBLE POINT OIL FVF

t.na * ,.● +a l.ra 1.s0

N

-~

I’ll:..xwma-

1--1

z-1‘4

\.

. .. .

. .

\

. .

. .

I

Page 16: 13718-Pvt Correlations for Middle East Crude Oils

:

.!!>0

:

:“eL

ICMIIW coma (1)

W. ~ d~htion for bubblopdnt prawre (thkBtudy’800mmiOn.

●m

.:●

9::●

ah

-U.W -n.vl -1*.- -!$.s0 -S.W t.- ,.” ,,,” ,, “ “ “ * “ULAIIVCIwnc(s)

F@. 1O-EI’IWdld~on for bubblepointprouuro (3tand-Ing oorrolatfon).

:

mlATlvccmo@(:)

F@ 1l-Errmr distribution for bubblepoint pro8wro (W8@Corrofation).

.e

I.! LA?IvE VXDOE (1)

Fig. 12-Emwdfgm&ti~~tidl FVF(thfsstudy’sWrel@or!),

:

.

.

::>0:L

.i , , /-I*.N +.N +.** 4.” -1.n O.M I.n O.n ,.” ,.” ,,.”

BELAIIVECmEon(s)

Fig. 13-Error didrlbutlon for bubblepoint dl FVF (Standingoorrddlon).

:

*QC1$lIW tRCOR (1)

FffI. 14-Ermrdis!rlbution for bubbfepdnt oil FVF (Gfaao cor-rdatlon).

664 Journal of Petvoleum Technology, May 1988

Page 17: 13718-Pvt Correlations for Middle East Crude Oils

. . . .

UIAIIVC mtam (1)

‘lg. 15-Error distribution for totalFVF (this 8tudy’s corm.atlon).

R< Al AZ

3000 -

moo

11000 \,

I

800 ~,

60C+

400

300

200

100

ao

60

403

304

20

10I

I0.5

0.6 ‘b= 10000

FI!==&--.T 6000 To

..7 -- -, 41300 1.0----2000 ----

o.a 10003--V--- 0.9

‘ -+600

0.9o.a<

400

1.0 L5$ ‘m100

:.:

[.2

[.3

I..l

. 5

0.7

Ew!F!!sstimate bubble point pressure at 2400F of a reservoirluid with GOR 1203 SCF/ST8, average gas relative densityf 0.925 and stock tank oil relative density of 0.824.Memlined Pb jS 33~ ~sfa.

Ffg. 17-Correlation cfuti for bubblepoint preaure.

: I

@ELallVE EIW~[S)

‘lg. 16-Error di8trlWtin for total FVF (Gfno oorrofatfon).

20(

A3

u %,,~“? -

x,\ %‘,1 .5

$

l’!2\

1

Lo’

o.a

0.6

0.5~

L

20Estimsts fovmstion SOIUSS factor ●t 24@F of a bubble pointliquid with GOR 1203 SCF/SIB, average gas relatlve densityof 0.925 md stock tank oil relatiwe density of 0.824.kb~hd aob k 1.?7.

10

~!g. 4n.-e —la.. A.d L. L..idd.--, -. . . . --.—. m.mWII WIWL WE SSSSSJSJS8pUSfSS 4VSI rvr.

Journal of Petroleum Technology. May 1988665

Page 18: 13718-Pvt Correlations for Middle East Crude Oils

\ M A?

moo P

1000

am

W

400

m

200

100

So

60

40

w

20

Qi?5L!S10

Estlmsts h phsse (oil -gss) totsl fomtion volums factorat lWF ●ti ●t ttsS PWSUW Of lS@ fjsia of . ~SWVOi rfluid with 60R 628 SCF/STB, wera~ ges relative densityof 0.a76 and stock tink oil relatlve &nsltY of o.a]b.OSterdned Bt IS 1.67.

Ftg. 19-CamhUon chart for twqthaaa (Wg@ totalFVF.

or shortly as

x~=~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(A-4)

where Xiaann~X(n+l) matrix, Z’iaan(n+l) vector, and ~is~ nd v-r.

Given an ndx(n+l) system of equations with n~>(n+l) asahown inllq. AA, a vector Zfor which XZequals ~cannotbefti. _,a~hfm av~or Zti~h XZkmcl~as possible to ~ia the maximum that can be achieved. Such a vec-tor is the least-aquarea solution. The unique kast-aquams solutiontotbesystemxir=yid

S2=(XrX)-lX~jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..(A-S)

Nonlinear. Nonlinear multiple regression is achieved by reducingthe nonlinear relationship to a linear one by appropriate tranafor-rnation of variables.

Taking the total FVF correlation as an example, Eq. 7 can bewritten in a general form:

B, =a$:l Y;2T$3 Ta4p”s. . . . . . . . . . . . . . . . . . . . . . . . (A+)

Eq. Ax can be tiuced to linear form by logarithmic tranafor-. . ... . .Ulauuu.

log B,= log ah +al log R$+a2 log 78 +a3 log TO

+a410g T+a510gp . . . . . . . . . . . . . . . . . . . . . ..(A-7)

or

y=ao+alxl +a2x2+a~3+a4x4 +aq5, . . . . . . . . . . . . .(A-8)

whereY = log B,, ao=log a~,

xi = In. P.“= ..$, z~ =!cg Y*,

x3 = log To, x4=log T,x5 = log p.

I@. A-8 can be solved by the method of linear multiple segrea-sion, as mentioned earlier.

S1Motdo Conversion Faotors“API 141.5/(131.5+ ‘API) = $s3

bbl X 1.589873 E-01 =“F (°F+459.67)/1.8 =Kpsi x 6.894757 E+OO =kFa“R 0R/1.8 =K

acf/bbl X 1.801 175 E-01 = std m3/m3

“Canvadmhctorb W.

cmgkSdaPEsnm~ maoivuffarW+W Much6,1aaa. rhpu9cccpbd rarpublb.tbn June 22, 19S7. FWi#od mnUWlptmaeiv9docI. 1, laa7. PapM(aPE W71e)flmf

=&m;t~4PE Mlddb W Oil ToahnhI (hbmnaQ and Exhibirbsrhektln

666 Journal of Petroleum Tecbndogy, May 1988


Recommended